mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
229 lines
8.4 KiB
229 lines
8.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <string> |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
using namespace std; |
|
|
|
const string FEATURES2D_DIR = "features2d"; |
|
const string IMAGE_FILENAME = "aloe.png"; |
|
const string VALID_FILE_NAME = "surf.xml.gz"; |
|
|
|
class CV_GPU_SURFTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_GPU_SURFTest() |
|
{ |
|
} |
|
|
|
protected: |
|
bool isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2); |
|
void compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints, |
|
const Mat& validDescriptors, const Mat& calcDescriptors); |
|
|
|
void emptyDataTest(SURF_GPU& fdetector); |
|
void regressionTest(SURF_GPU& fdetector); |
|
|
|
virtual void run(int); |
|
}; |
|
|
|
void CV_GPU_SURFTest::emptyDataTest(SURF_GPU& fdetector) |
|
{ |
|
GpuMat image; |
|
vector<KeyPoint> keypoints; |
|
vector<float> descriptors; |
|
try |
|
{ |
|
fdetector(image, GpuMat(), keypoints, descriptors); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
if( !keypoints.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
if( !descriptors.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty descriptors vector (1).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
} |
|
|
|
bool CV_GPU_SURFTest::isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2) |
|
{ |
|
const float maxPtDif = 1.f; |
|
const float maxSizeDif = 1.f; |
|
const float maxAngleDif = 2.f; |
|
const float maxResponseDif = 0.1f; |
|
|
|
float dist = (float)norm( p1.pt - p2.pt ); |
|
return (dist < maxPtDif && |
|
fabs(p1.size - p2.size) < maxSizeDif && |
|
abs(p1.angle - p2.angle) < maxAngleDif && |
|
abs(p1.response - p2.response) < maxResponseDif && |
|
p1.octave == p2.octave && |
|
p1.class_id == p2.class_id ); |
|
} |
|
|
|
void CV_GPU_SURFTest::compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints, |
|
const Mat& validDescriptors, const Mat& calcDescriptors) |
|
{ |
|
if (validKeypoints.size() != calcKeypoints.size()) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Keypoints sizes doesn't equal (validCount = %d, calcCount = %d).\n", |
|
validKeypoints.size(), calcKeypoints.size()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
if (validDescriptors.size() != calcDescriptors.size()) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Descriptors sizes doesn't equal.\n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
for (size_t v = 0; v < validKeypoints.size(); v++) |
|
{ |
|
int nearestIdx = -1; |
|
float minDist = std::numeric_limits<float>::max(); |
|
|
|
for (size_t c = 0; c < calcKeypoints.size(); c++) |
|
{ |
|
float curDist = (float)norm(calcKeypoints[c].pt - validKeypoints[v].pt); |
|
if (curDist < minDist) |
|
{ |
|
minDist = curDist; |
|
nearestIdx = c; |
|
} |
|
} |
|
|
|
assert(minDist >= 0); |
|
if (!isSimilarKeypoints(validKeypoints[v], calcKeypoints[nearestIdx])) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Bad keypoints accuracy.\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
return; |
|
} |
|
|
|
if (norm(validDescriptors.row(v), calcDescriptors.row(nearestIdx), NORM_L2) > 1.5f) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Bad descriptors accuracy.\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
void CV_GPU_SURFTest::regressionTest(SURF_GPU& fdetector) |
|
{ |
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; |
|
string resFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + VALID_FILE_NAME; |
|
|
|
// Read the test image. |
|
GpuMat image(imread(imgFilename, 0)); |
|
if (image.empty()) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
FileStorage fs(resFilename, FileStorage::READ); |
|
|
|
// Compute keypoints. |
|
GpuMat mask(image.size(), CV_8UC1, Scalar::all(1)); |
|
mask(Range(0, image.rows / 2), Range(0, image.cols / 2)).setTo(Scalar::all(0)); |
|
vector<KeyPoint> calcKeypoints; |
|
GpuMat calcDespcriptors; |
|
fdetector(image, mask, calcKeypoints, calcDespcriptors); |
|
|
|
if (fs.isOpened()) // Compare computed and valid keypoints. |
|
{ |
|
// Read validation keypoints set. |
|
vector<KeyPoint> validKeypoints; |
|
Mat validDespcriptors; |
|
read(fs["keypoints"], validKeypoints); |
|
read(fs["descriptors"], validDespcriptors); |
|
if (validKeypoints.empty() || validDespcriptors.empty()) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Validation file can not be read.\n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return; |
|
} |
|
|
|
compareKeypointSets(validKeypoints, calcKeypoints, validDespcriptors, calcDespcriptors); |
|
} |
|
else // Write detector parameters and computed keypoints as validation data. |
|
{ |
|
fs.open(resFilename, FileStorage::WRITE); |
|
if (!fs.isOpened()) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return; |
|
} |
|
else |
|
{ |
|
write(fs, "keypoints", calcKeypoints); |
|
write(fs, "descriptors", (Mat)calcDespcriptors); |
|
} |
|
} |
|
} |
|
|
|
void CV_GPU_SURFTest::run( int /*start_from*/ ) |
|
{ |
|
SURF_GPU fdetector; |
|
|
|
emptyDataTest(fdetector); |
|
regressionTest(fdetector); |
|
} |
|
|
|
TEST(SURF, empty_data_and_regression) { CV_GPU_SURFTest test; test.safe_run(); }
|
|
|