mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
63 lines
2.3 KiB
63 lines
2.3 KiB
#include "test_precomp.hpp" |
|
#include <cstdlib> |
|
#include <cmath> |
|
#include <algorithm> |
|
|
|
static void mytest(cv::Ptr<cv::optim::DownhillSolver> solver,cv::Ptr<cv::optim::Solver::Function> ptr_F,cv::Mat& x,cv::Mat& step, |
|
cv::Mat& etalon_x,double etalon_res){ |
|
solver->setFunction(ptr_F); |
|
int ndim=MAX(step.cols,step.rows); |
|
solver->setInitStep(step); |
|
cv::Mat settedStep; |
|
solver->getInitStep(settedStep); |
|
ASSERT_TRUE(settedStep.rows==1 && settedStep.cols==ndim); |
|
ASSERT_TRUE(std::equal(step.begin<double>(),step.end<double>(),settedStep.begin<double>())); |
|
std::cout<<"step setted:\n\t"<<step<<std::endl; |
|
double res=solver->minimize(x); |
|
std::cout<<"res:\n\t"<<res<<std::endl; |
|
std::cout<<"x:\n\t"<<x<<std::endl; |
|
std::cout<<"etalon_res:\n\t"<<etalon_res<<std::endl; |
|
std::cout<<"etalon_x:\n\t"<<etalon_x<<std::endl; |
|
double tol=solver->getTermCriteria().epsilon; |
|
ASSERT_TRUE(std::abs(res-etalon_res)<tol); |
|
/*for(cv::Mat_<double>::iterator it1=x.begin<double>(),it2=etalon_x.begin<double>();it1!=x.end<double>();it1++,it2++){ |
|
ASSERT_TRUE(std::abs((*it1)-(*it2))<tol); |
|
}*/ |
|
std::cout<<"--------------------------\n"; |
|
} |
|
|
|
class SphereF:public cv::optim::Solver::Function{ |
|
public: |
|
double calc(const double* x)const{ |
|
return x[0]*x[0]+x[1]*x[1]; |
|
} |
|
}; |
|
class RosenbrockF:public cv::optim::Solver::Function{ |
|
double calc(const double* x)const{ |
|
return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]); |
|
} |
|
}; |
|
|
|
TEST(Optim_Downhill, regression_basic){ |
|
cv::Ptr<cv::optim::DownhillSolver> solver=cv::optim::createDownhillSolver(); |
|
#if 1 |
|
{ |
|
cv::Ptr<cv::optim::Solver::Function> ptr_F(new SphereF()); |
|
cv::Mat x=(cv::Mat_<double>(1,2)<<1.0,1.0), |
|
step=(cv::Mat_<double>(2,1)<<-0.5,-0.5), |
|
etalon_x=(cv::Mat_<double>(1,2)<<-0.0,0.0); |
|
double etalon_res=0.0; |
|
mytest(solver,ptr_F,x,step,etalon_x,etalon_res); |
|
} |
|
#endif |
|
#if 1 |
|
{ |
|
cv::Ptr<cv::optim::Solver::Function> ptr_F(new RosenbrockF()); |
|
cv::Mat x=(cv::Mat_<double>(2,1)<<0.0,0.0), |
|
step=(cv::Mat_<double>(2,1)<<0.5,+0.5), |
|
etalon_x=(cv::Mat_<double>(2,1)<<1.0,1.0); |
|
double etalon_res=0.0; |
|
mytest(solver,ptr_F,x,step,etalon_x,etalon_res); |
|
} |
|
#endif |
|
}
|
|
|