mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
5.6 KiB
186 lines
5.6 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
#ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_ |
|
#define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_ |
|
|
|
namespace cvflann |
|
{ |
|
|
|
/** |
|
Adds val to array vals (and point to array points) and keeping the arrays sorted by vals. |
|
*/ |
|
template <typename T> |
|
void addValue(int pos, float val, float* vals, T* point, T* points, int n) |
|
{ |
|
vals[pos] = val; |
|
for (int i=0; i<n; ++i) { |
|
points[pos*n+i] = point[i]; |
|
} |
|
|
|
// bubble down |
|
int j=pos; |
|
while (j>0 && vals[j]<vals[j-1]) { |
|
swap(vals[j],vals[j-1]); |
|
for (int i=0; i<n; ++i) { |
|
swap(points[j*n+i],points[(j-1)*n+i]); |
|
} |
|
--j; |
|
} |
|
} |
|
|
|
|
|
/** |
|
Simplex downhill optimization function. |
|
Preconditions: points is a 2D mattrix of size (n+1) x n |
|
func is the cost function taking n an array of n params and returning float |
|
vals is the cost function in the n+1 simplex points, if NULL it will be computed |
|
|
|
Postcondition: returns optimum value and points[0..n] are the optimum parameters |
|
*/ |
|
template <typename T, typename F> |
|
float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL ) |
|
{ |
|
const int MAX_ITERATIONS = 10; |
|
|
|
assert(n>0); |
|
|
|
T* p_o = new T[n]; |
|
T* p_r = new T[n]; |
|
T* p_e = new T[n]; |
|
|
|
int alpha = 1; |
|
|
|
int iterations = 0; |
|
|
|
bool ownVals = false; |
|
if (vals == NULL) { |
|
ownVals = true; |
|
vals = new float[n+1]; |
|
for (int i=0; i<n+1; ++i) { |
|
float val = func(points+i*n); |
|
addValue(i, val, vals, points+i*n, points, n); |
|
} |
|
} |
|
int nn = n*n; |
|
|
|
while (true) { |
|
|
|
if (iterations++ > MAX_ITERATIONS) break; |
|
|
|
// compute average of simplex points (except the highest point) |
|
for (int j=0; j<n; ++j) { |
|
p_o[j] = 0; |
|
for (int i=0; i<n; ++i) { |
|
p_o[i] += points[j*n+i]; |
|
} |
|
} |
|
for (int i=0; i<n; ++i) { |
|
p_o[i] /= n; |
|
} |
|
|
|
bool converged = true; |
|
for (int i=0; i<n; ++i) { |
|
if (p_o[i] != points[nn+i]) { |
|
converged = false; |
|
} |
|
} |
|
if (converged) break; |
|
|
|
// trying a reflection |
|
for (int i=0; i<n; ++i) { |
|
p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]); |
|
} |
|
float val_r = func(p_r); |
|
|
|
if ((val_r>=vals[0])&&(val_r<vals[n])) { |
|
// reflection between second highest and lowest |
|
// add it to the simplex |
|
Logger::info("Choosing reflection\n"); |
|
addValue(n, val_r,vals, p_r, points, n); |
|
continue; |
|
} |
|
|
|
if (val_r<vals[0]) { |
|
// value is smaller than smalest in simplex |
|
|
|
// expand some more to see if it drops further |
|
for (int i=0; i<n; ++i) { |
|
p_e[i] = 2*p_r[i]-p_o[i]; |
|
} |
|
float val_e = func(p_e); |
|
|
|
if (val_e<val_r) { |
|
Logger::info("Choosing reflection and expansion\n"); |
|
addValue(n, val_e,vals,p_e,points,n); |
|
} |
|
else { |
|
Logger::info("Choosing reflection\n"); |
|
addValue(n, val_r,vals,p_r,points,n); |
|
} |
|
continue; |
|
} |
|
if (val_r>=vals[n]) { |
|
for (int i=0; i<n; ++i) { |
|
p_e[i] = (p_o[i]+points[nn+i])/2; |
|
} |
|
float val_e = func(p_e); |
|
|
|
if (val_e<vals[n]) { |
|
Logger::info("Choosing contraction\n"); |
|
addValue(n,val_e,vals,p_e,points,n); |
|
continue; |
|
} |
|
} |
|
{ |
|
Logger::info("Full contraction\n"); |
|
for (int j=1; j<=n; ++j) { |
|
for (int i=0; i<n; ++i) { |
|
points[j*n+i] = (points[j*n+i]+points[i])/2; |
|
} |
|
float val = func(points+j*n); |
|
addValue(j,val,vals,points+j*n,points,n); |
|
} |
|
} |
|
} |
|
|
|
float bestVal = vals[0]; |
|
|
|
delete[] p_r; |
|
delete[] p_o; |
|
delete[] p_e; |
|
if (ownVals) delete[] vals; |
|
|
|
return bestVal; |
|
} |
|
|
|
} |
|
|
|
#endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
|
|
|