Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Alexander Alekhin 085b27fc3d Merge pull request #11390 from dkurt:east_text_detection 7 years ago
..
face_detector Merge pull request #11236 from dkurt:dnn_fuse_l2_norm 7 years ago
CMakeLists.txt Update links to OpenCV's face detection network 7 years ago
README.md Update links to OpenCV's face detection network 7 years ago
classification.cpp Semantic segmentation sample. 7 years ago
classification.py Update tutorials. A new cv::dnn::readNet function 7 years ago
colorization.cpp Minor refactoring in several C++ samples: 7 years ago
colorization.py Merge pull request #10777 from berak:dnn_colorize_cpp 7 years ago
custom_layers.hpp EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2) 7 years ago
edge_detection.py Custom deep learning layers in Python 7 years ago
fast_neural_style.py print() is a function in Python 3 7 years ago
js_face_recognition.html Update links to OpenCV's face detection network 7 years ago
mobilenet_ssd_accuracy.py print() is a function in Python 3 7 years ago
object_detection.cpp select the device (video capture) 7 years ago
object_detection.py Support YOLOv3 model from Darknet 7 years ago
openpose.cpp select the device (video capture) 7 years ago
openpose.py fixed samples/dnn/openpose.py 7 years ago
segmentation.cpp select the device (video capture) 7 years ago
segmentation.py Semantic segmentation sample. 7 years ago
shrink_tf_graph_weights.py Text TensorFlow graphs parsing. MobileNet-SSD for 90 classes. 7 years ago
text_detection.cpp Return a convex hull from rotatedRectangleIntersection 7 years ago
tf_text_graph_ssd.py Update script to generate MobileNet-SSD V2 text graph 7 years ago

README.md

OpenCV deep learning module samples

Model Zoo

Object detection

Model Scale Size WxH Mean subtraction Channels order
MobileNet-SSD, Caffe 0.00784 (2/255) 300x300 127.5 127.5 127.5 BGR
OpenCV face detector 1.0 300x300 104 177 123 BGR
SSDs from TensorFlow 0.00784 (2/255) 300x300 127.5 127.5 127.5 RGB
YOLO 0.00392 (1/255) 416x416 0 0 0 RGB
VGG16-SSD 1.0 300x300 104 117 123 BGR
Faster-RCNN 1.0 800x600 102.9801, 115.9465, 122.7717 BGR
R-FCN 1.0 800x600 102.9801 115.9465 122.7717 BGR

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

Classification

Model Scale Size WxH Mean subtraction Channels order
GoogLeNet 1.0 224x224 104 117 123 BGR
SqueezeNet 1.0 227x227 0 0 0 BGR

Semantic segmentation

Model Scale Size WxH Mean subtraction Channels order
ENet 0.00392 (1/255) 1024x512 0 0 0 RGB
FCN8s 1.0 500x500 0 0 0 BGR

References