mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1376 lines
46 KiB
1376 lines
46 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
//#define GET_STAT |
|
|
|
#define DIST_E "distE" |
|
#define S_E "sE" |
|
#define NO_PAIR_E "noPairE" |
|
//#define TOTAL_NO_PAIR_E "totalNoPairE" |
|
|
|
#define DETECTOR_NAMES "detector_names" |
|
#define DETECTORS "detectors" |
|
#define IMAGE_FILENAMES "image_filenames" |
|
#define VALIDATION "validation" |
|
#define FILENAME "fn" |
|
|
|
#define C_SCALE_CASCADE "scale_cascade" |
|
|
|
class CV_DetectorTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_DetectorTest(); |
|
protected: |
|
virtual int prepareData( FileStorage& fs ); |
|
virtual void run( int startFrom ); |
|
virtual string& getValidationFilename(); |
|
|
|
virtual void readDetector( const FileNode& fn ) = 0; |
|
virtual void writeDetector( FileStorage& fs, int di ) = 0; |
|
int runTestCase( int detectorIdx, vector<vector<Rect> >& objects ); |
|
virtual int detectMultiScale( int di, const Mat& img, vector<Rect>& objects ) = 0; |
|
int validate( int detectorIdx, vector<vector<Rect> >& objects ); |
|
|
|
struct |
|
{ |
|
float dist; |
|
float s; |
|
float noPair; |
|
//float totalNoPair; |
|
} eps; |
|
vector<string> detectorNames; |
|
vector<string> detectorFilenames; |
|
vector<string> imageFilenames; |
|
vector<Mat> images; |
|
string validationFilename; |
|
string configFilename; |
|
FileStorage validationFS; |
|
bool write_results; |
|
}; |
|
|
|
CV_DetectorTest::CV_DetectorTest() |
|
{ |
|
configFilename = "dummy"; |
|
write_results = false; |
|
} |
|
|
|
string& CV_DetectorTest::getValidationFilename() |
|
{ |
|
return validationFilename; |
|
} |
|
|
|
int CV_DetectorTest::prepareData( FileStorage& _fs ) |
|
{ |
|
if( !_fs.isOpened() ) |
|
test_case_count = -1; |
|
else |
|
{ |
|
FileNode fn = _fs.getFirstTopLevelNode(); |
|
|
|
fn[DIST_E] >> eps.dist; |
|
fn[S_E] >> eps.s; |
|
fn[NO_PAIR_E] >> eps.noPair; |
|
// fn[TOTAL_NO_PAIR_E] >> eps.totalNoPair; |
|
|
|
// read detectors |
|
if( fn[DETECTOR_NAMES].size() != 0 ) |
|
{ |
|
FileNodeIterator it = fn[DETECTOR_NAMES].begin(); |
|
for( ; it != fn[DETECTOR_NAMES].end(); ) |
|
{ |
|
String _name; |
|
it >> _name; |
|
detectorNames.push_back(_name); |
|
readDetector(fn[DETECTORS][_name]); |
|
} |
|
} |
|
test_case_count = (int)detectorNames.size(); |
|
|
|
// read images filenames and images |
|
string dataPath = ts->get_data_path(); |
|
if( fn[IMAGE_FILENAMES].size() != 0 ) |
|
{ |
|
for( FileNodeIterator it = fn[IMAGE_FILENAMES].begin(); it != fn[IMAGE_FILENAMES].end(); ) |
|
{ |
|
String filename; |
|
it >> filename; |
|
imageFilenames.push_back(filename); |
|
Mat img = imread( dataPath+filename, 1 ); |
|
images.push_back( img ); |
|
} |
|
} |
|
} |
|
return cvtest::TS::OK; |
|
} |
|
|
|
void CV_DetectorTest::run( int ) |
|
{ |
|
string dataPath = ts->get_data_path(); |
|
string vs_filename = dataPath + getValidationFilename(); |
|
|
|
write_results = !validationFS.open( vs_filename, FileStorage::READ ); |
|
|
|
int code; |
|
if( !write_results ) |
|
{ |
|
code = prepareData( validationFS ); |
|
} |
|
else |
|
{ |
|
FileStorage fs0(dataPath + configFilename, FileStorage::READ ); |
|
code = prepareData(fs0); |
|
} |
|
|
|
if( code < 0 ) |
|
{ |
|
ts->set_failed_test_info( code ); |
|
return; |
|
} |
|
|
|
if( write_results ) |
|
{ |
|
validationFS.release(); |
|
validationFS.open( vs_filename, FileStorage::WRITE ); |
|
validationFS << FileStorage::getDefaultObjectName(validationFilename) << "{"; |
|
|
|
validationFS << DIST_E << eps.dist; |
|
validationFS << S_E << eps.s; |
|
validationFS << NO_PAIR_E << eps.noPair; |
|
// validationFS << TOTAL_NO_PAIR_E << eps.totalNoPair; |
|
|
|
// write detector names |
|
validationFS << DETECTOR_NAMES << "["; |
|
vector<string>::const_iterator nit = detectorNames.begin(); |
|
for( ; nit != detectorNames.end(); ++nit ) |
|
{ |
|
validationFS << *nit; |
|
} |
|
validationFS << "]"; // DETECTOR_NAMES |
|
|
|
// write detectors |
|
validationFS << DETECTORS << "{"; |
|
CV_Assert( detectorNames.size() == detectorFilenames.size() ); |
|
nit = detectorNames.begin(); |
|
for( int di = 0; nit != detectorNames.end(); ++nit, di++ ) |
|
{ |
|
validationFS << *nit << "{"; |
|
writeDetector( validationFS, di ); |
|
validationFS << "}"; |
|
} |
|
validationFS << "}"; |
|
|
|
// write image filenames |
|
validationFS << IMAGE_FILENAMES << "["; |
|
vector<string>::const_iterator it = imageFilenames.begin(); |
|
for( int ii = 0; it != imageFilenames.end(); ++it, ii++ ) |
|
{ |
|
//String buf = cv::format("img_%d", ii); |
|
//cvWriteComment( validationFS.fs, buf, 0 ); |
|
validationFS << *it; |
|
} |
|
validationFS << "]"; // IMAGE_FILENAMES |
|
|
|
validationFS << VALIDATION << "{"; |
|
} |
|
|
|
int progress = 0; |
|
for( int di = 0; di < test_case_count; di++ ) |
|
{ |
|
progress = update_progress( progress, di, test_case_count, 0 ); |
|
if( write_results ) |
|
validationFS << detectorNames[di] << "{"; |
|
vector<vector<Rect> > objects; |
|
int temp_code = runTestCase( di, objects ); |
|
|
|
if (!write_results && temp_code == cvtest::TS::OK) |
|
temp_code = validate( di, objects ); |
|
|
|
if (temp_code != cvtest::TS::OK) |
|
code = temp_code; |
|
|
|
if( write_results ) |
|
validationFS << "}"; // detectorNames[di] |
|
} |
|
|
|
if( write_results ) |
|
{ |
|
validationFS << "}"; // VALIDATION |
|
validationFS << "}"; // getDefaultObjectName |
|
} |
|
|
|
if ( test_case_count <= 0 || imageFilenames.size() <= 0 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "validation file is not determined or not correct" ); |
|
code = cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
int CV_DetectorTest::runTestCase( int detectorIdx, vector<vector<Rect> >& objects ) |
|
{ |
|
string dataPath = ts->get_data_path(), detectorFilename; |
|
if( !detectorFilenames[detectorIdx].empty() ) |
|
detectorFilename = dataPath + detectorFilenames[detectorIdx]; |
|
printf("detector %s\n", detectorFilename.c_str()); |
|
|
|
for( int ii = 0; ii < (int)imageFilenames.size(); ++ii ) |
|
{ |
|
vector<Rect> imgObjects; |
|
Mat image = images[ii]; |
|
if( image.empty() ) |
|
{ |
|
String msg = cv::format("image %d is empty", ii); |
|
ts->printf( cvtest::TS::LOG, msg.c_str() ); |
|
return cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
int code = detectMultiScale( detectorIdx, image, imgObjects ); |
|
if( code != cvtest::TS::OK ) |
|
return code; |
|
|
|
objects.push_back( imgObjects ); |
|
|
|
if( write_results ) |
|
{ |
|
String imageIdxStr = cv::format("img_%d", ii); |
|
validationFS << imageIdxStr << "[:"; |
|
for( vector<Rect>::const_iterator it = imgObjects.begin(); |
|
it != imgObjects.end(); ++it ) |
|
{ |
|
validationFS << it->x << it->y << it->width << it->height; |
|
} |
|
validationFS << "]"; // imageIdxStr |
|
} |
|
} |
|
return cvtest::TS::OK; |
|
} |
|
|
|
|
|
static bool isZero( uchar i ) {return i == 0;} |
|
|
|
int CV_DetectorTest::validate( int detectorIdx, vector<vector<Rect> >& objects ) |
|
{ |
|
CV_Assert( imageFilenames.size() == objects.size() ); |
|
int imageIdx = 0; |
|
int totalNoPair = 0, totalValRectCount = 0; |
|
|
|
for( vector<vector<Rect> >::const_iterator it = objects.begin(); |
|
it != objects.end(); ++it, imageIdx++ ) // for image |
|
{ |
|
Size imgSize = images[imageIdx].size(); |
|
float dist = min(imgSize.height, imgSize.width) * eps.dist; |
|
float wDiff = imgSize.width * eps.s; |
|
float hDiff = imgSize.height * eps.s; |
|
|
|
int noPair = 0; |
|
|
|
// read validation rectangles |
|
String imageIdxStr = cv::format("img_%d", imageIdx); |
|
FileNode node = validationFS.getFirstTopLevelNode()[VALIDATION][detectorNames[detectorIdx]][imageIdxStr]; |
|
vector<Rect> valRects; |
|
if( node.size() != 0 ) |
|
{ |
|
for( FileNodeIterator it2 = node.begin(); it2 != node.end(); ) |
|
{ |
|
Rect r; |
|
it2 >> r.x >> r.y >> r.width >> r.height; |
|
valRects.push_back(r); |
|
} |
|
} |
|
totalValRectCount += (int)valRects.size(); |
|
|
|
// compare rectangles |
|
vector<uchar> map(valRects.size(), 0); |
|
for( vector<Rect>::const_iterator cr = it->begin(); |
|
cr != it->end(); ++cr ) |
|
{ |
|
// find nearest rectangle |
|
Point2f cp1 = Point2f( cr->x + (float)cr->width/2.0f, cr->y + (float)cr->height/2.0f ); |
|
int minIdx = -1, vi = 0; |
|
float minDist = (float)cv::norm( Point(imgSize.width, imgSize.height) ); |
|
for( vector<Rect>::const_iterator vr = valRects.begin(); |
|
vr != valRects.end(); ++vr, vi++ ) |
|
{ |
|
Point2f cp2 = Point2f( vr->x + (float)vr->width/2.0f, vr->y + (float)vr->height/2.0f ); |
|
float curDist = (float)cv::norm(cp1-cp2); |
|
if( curDist < minDist ) |
|
{ |
|
minIdx = vi; |
|
minDist = curDist; |
|
} |
|
} |
|
if( minIdx == -1 ) |
|
{ |
|
noPair++; |
|
} |
|
else |
|
{ |
|
Rect vr = valRects[minIdx]; |
|
if( map[minIdx] != 0 || (minDist > dist) || (abs(cr->width - vr.width) > wDiff) || |
|
(abs(cr->height - vr.height) > hDiff) ) |
|
noPair++; |
|
else |
|
map[minIdx] = 1; |
|
} |
|
} |
|
noPair += (int)count_if( map.begin(), map.end(), isZero ); |
|
totalNoPair += noPair; |
|
|
|
EXPECT_LE(noPair, cvRound(valRects.size()*eps.noPair)+1) |
|
<< "detector " << detectorNames[detectorIdx] << " has overrated count of rectangles without pair on " |
|
<< imageFilenames[imageIdx] << " image"; |
|
|
|
if (::testing::Test::HasFailure()) |
|
break; |
|
} |
|
|
|
EXPECT_LE(totalNoPair, cvRound(totalValRectCount*eps./*total*/noPair)+1) |
|
<< "detector " << detectorNames[detectorIdx] << " has overrated count of rectangles without pair on all images set"; |
|
|
|
if (::testing::Test::HasFailure()) |
|
return cvtest::TS::FAIL_BAD_ACCURACY; |
|
|
|
return cvtest::TS::OK; |
|
} |
|
|
|
//----------------------------------------------- CascadeDetectorTest ----------------------------------- |
|
class CV_CascadeDetectorTest : public CV_DetectorTest |
|
{ |
|
public: |
|
CV_CascadeDetectorTest(); |
|
protected: |
|
virtual void readDetector( const FileNode& fn ); |
|
virtual void writeDetector( FileStorage& fs, int di ); |
|
virtual int detectMultiScale( int di, const Mat& img, vector<Rect>& objects ); |
|
virtual int detectMultiScale_C( const string& filename, int di, const Mat& img, vector<Rect>& objects ); |
|
vector<int> flags; |
|
}; |
|
|
|
CV_CascadeDetectorTest::CV_CascadeDetectorTest() |
|
{ |
|
validationFilename = "cascadeandhog/cascade.xml"; |
|
configFilename = "cascadeandhog/_cascade.xml"; |
|
} |
|
|
|
void CV_CascadeDetectorTest::readDetector( const FileNode& fn ) |
|
{ |
|
String filename; |
|
int flag; |
|
fn[FILENAME] >> filename; |
|
detectorFilenames.push_back(filename); |
|
fn[C_SCALE_CASCADE] >> flag; |
|
if( flag ) |
|
flags.push_back( 0 ); |
|
else |
|
flags.push_back( CASCADE_SCALE_IMAGE ); |
|
} |
|
|
|
void CV_CascadeDetectorTest::writeDetector( FileStorage& fs, int di ) |
|
{ |
|
int sc = flags[di] & CASCADE_SCALE_IMAGE ? 0 : 1; |
|
fs << FILENAME << detectorFilenames[di]; |
|
fs << C_SCALE_CASCADE << sc; |
|
} |
|
|
|
|
|
int CV_CascadeDetectorTest::detectMultiScale_C( const string& filename, |
|
int di, const Mat& img, |
|
vector<Rect>& objects ) |
|
{ |
|
Ptr<CvHaarClassifierCascade> c_cascade(cvLoadHaarClassifierCascade(filename.c_str(), cvSize(0,0))); |
|
Ptr<CvMemStorage> storage(cvCreateMemStorage()); |
|
|
|
if( !c_cascade ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "cascade %s can not be opened"); |
|
return cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
Mat grayImg; |
|
cvtColor( img, grayImg, COLOR_BGR2GRAY ); |
|
equalizeHist( grayImg, grayImg ); |
|
|
|
CvMat c_gray = cvMat(grayImg); |
|
CvSeq* rs = cvHaarDetectObjects(&c_gray, c_cascade, storage, 1.1, 3, flags[di] ); |
|
|
|
objects.clear(); |
|
for( int i = 0; i < rs->total; i++ ) |
|
{ |
|
Rect r = *(Rect*)cvGetSeqElem(rs, i); |
|
objects.push_back(r); |
|
} |
|
|
|
return cvtest::TS::OK; |
|
} |
|
|
|
int CV_CascadeDetectorTest::detectMultiScale( int di, const Mat& img, |
|
vector<Rect>& objects) |
|
{ |
|
string dataPath = ts->get_data_path(), filename; |
|
filename = dataPath + detectorFilenames[di]; |
|
const string pattern = "haarcascade_frontalface_default.xml"; |
|
|
|
if( filename.size() >= pattern.size() && |
|
strcmp(filename.c_str() + (filename.size() - pattern.size()), |
|
pattern.c_str()) == 0 ) |
|
return detectMultiScale_C(filename, di, img, objects); |
|
|
|
CascadeClassifier cascade( filename ); |
|
if( cascade.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "cascade %s can not be opened"); |
|
return cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
Mat grayImg; |
|
cvtColor( img, grayImg, COLOR_BGR2GRAY ); |
|
equalizeHist( grayImg, grayImg ); |
|
cascade.detectMultiScale( grayImg, objects, 1.1, 3, flags[di] ); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
//----------------------------------------------- HOGDetectorTest ----------------------------------- |
|
class CV_HOGDetectorTest : public CV_DetectorTest |
|
{ |
|
public: |
|
CV_HOGDetectorTest(); |
|
protected: |
|
virtual void readDetector( const FileNode& fn ); |
|
virtual void writeDetector( FileStorage& fs, int di ); |
|
virtual int detectMultiScale( int di, const Mat& img, vector<Rect>& objects ); |
|
}; |
|
|
|
CV_HOGDetectorTest::CV_HOGDetectorTest() |
|
{ |
|
validationFilename = "cascadeandhog/hog.xml"; |
|
} |
|
|
|
void CV_HOGDetectorTest::readDetector( const FileNode& fn ) |
|
{ |
|
String filename; |
|
if( fn[FILENAME].size() != 0 ) |
|
fn[FILENAME] >> filename; |
|
detectorFilenames.push_back( filename); |
|
} |
|
|
|
void CV_HOGDetectorTest::writeDetector( FileStorage& fs, int di ) |
|
{ |
|
fs << FILENAME << detectorFilenames[di]; |
|
} |
|
|
|
int CV_HOGDetectorTest::detectMultiScale( int di, const Mat& img, |
|
vector<Rect>& objects) |
|
{ |
|
HOGDescriptor hog; |
|
if( detectorFilenames[di].empty() ) |
|
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector()); |
|
else |
|
CV_Assert(0); |
|
hog.detectMultiScale(img, objects); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
//----------------------------------------------- HOGDetectorReadWriteTest ----------------------------------- |
|
TEST(Objdetect_HOGDetectorReadWrite, regression) |
|
{ |
|
// Inspired by bug #2607 |
|
Mat img; |
|
img = imread(cvtest::TS::ptr()->get_data_path() + "/cascadeandhog/images/karen-and-rob.png"); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
HOGDescriptor hog; |
|
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
string tempfilename = cv::tempfile(".xml"); |
|
FileStorage fs(tempfilename, FileStorage::WRITE); |
|
hog.write(fs, "myHOG"); |
|
|
|
fs.open(tempfilename, FileStorage::READ); |
|
remove(tempfilename.c_str()); |
|
|
|
FileNode n = fs["opencv_storage"]["myHOG"]; |
|
|
|
ASSERT_NO_THROW(hog.read(n)); |
|
} |
|
|
|
|
|
|
|
TEST(Objdetect_CascadeDetector, regression) { CV_CascadeDetectorTest test; test.safe_run(); } |
|
TEST(Objdetect_HOGDetector, regression) { CV_HOGDetectorTest test; test.safe_run(); } |
|
|
|
|
|
//----------------------------------------------- HOG SSE2 compatible test ----------------------------------- |
|
|
|
class HOGDescriptorTester : |
|
public cv::HOGDescriptor |
|
{ |
|
HOGDescriptor* actual_hog; |
|
cvtest::TS* ts; |
|
mutable bool failed; |
|
|
|
public: |
|
HOGDescriptorTester(HOGDescriptor& instance) : |
|
cv::HOGDescriptor(instance), actual_hog(&instance), |
|
ts(cvtest::TS::ptr()), failed(false) |
|
{ } |
|
|
|
virtual void computeGradient(const Mat& img, Mat& grad, Mat& qangle, |
|
Size paddingTL, Size paddingBR) const; |
|
|
|
virtual void detect(const Mat& img, |
|
vector<Point>& hits, vector<double>& weights, double hitThreshold = 0.0, |
|
Size winStride = Size(), Size padding = Size(), |
|
const vector<Point>& locations = vector<Point>()) const; |
|
|
|
virtual void detect(const Mat& img, vector<Point>& hits, double hitThreshold = 0.0, |
|
Size winStride = Size(), Size padding = Size(), |
|
const vector<Point>& locations = vector<Point>()) const; |
|
|
|
virtual void compute(InputArray img, vector<float>& descriptors, |
|
Size winStride = Size(), Size padding = Size(), |
|
const vector<Point>& locations = vector<Point>()) const; |
|
|
|
bool is_failed() const; |
|
}; |
|
|
|
struct HOGCacheTester |
|
{ |
|
struct BlockData |
|
{ |
|
BlockData() : histOfs(0), imgOffset() {} |
|
int histOfs; |
|
Point imgOffset; |
|
}; |
|
|
|
struct PixData |
|
{ |
|
size_t gradOfs, qangleOfs; |
|
int histOfs[4]; |
|
float histWeights[4]; |
|
float gradWeight; |
|
}; |
|
|
|
HOGCacheTester(const HOGDescriptorTester* descriptor, |
|
const Mat& img, Size paddingTL, Size paddingBR, |
|
bool useCache, Size cacheStride); |
|
virtual ~HOGCacheTester() { } |
|
virtual void init(const HOGDescriptorTester* descriptor, |
|
const Mat& img, Size paddingTL, Size paddingBR, |
|
bool useCache, Size cacheStride); |
|
|
|
Size windowsInImage(Size imageSize, Size winStride) const; |
|
Rect getWindow(Size imageSize, Size winStride, int idx) const; |
|
|
|
const float* getBlock(Point pt, float* buf); |
|
virtual void normalizeBlockHistogram(float* histogram) const; |
|
|
|
vector<PixData> pixData; |
|
vector<BlockData> blockData; |
|
|
|
bool useCache; |
|
vector<int> ymaxCached; |
|
Size winSize, cacheStride; |
|
Size nblocks, ncells; |
|
int blockHistogramSize; |
|
int count1, count2, count4; |
|
Point imgoffset; |
|
Mat_<float> blockCache; |
|
Mat_<uchar> blockCacheFlags; |
|
|
|
Mat grad, qangle; |
|
const HOGDescriptorTester* descriptor; |
|
|
|
private: |
|
HOGCacheTester(); //= delete |
|
}; |
|
|
|
HOGCacheTester::HOGCacheTester(const HOGDescriptorTester* _descriptor, |
|
const Mat& _img, Size _paddingTL, Size _paddingBR, |
|
bool _useCache, Size _cacheStride) |
|
{ |
|
init(_descriptor, _img, _paddingTL, _paddingBR, _useCache, _cacheStride); |
|
} |
|
|
|
void HOGCacheTester::init(const HOGDescriptorTester* _descriptor, |
|
const Mat& _img, Size _paddingTL, Size _paddingBR, |
|
bool _useCache, Size _cacheStride) |
|
{ |
|
descriptor = _descriptor; |
|
cacheStride = _cacheStride; |
|
useCache = _useCache; |
|
|
|
descriptor->computeGradient(_img, grad, qangle, _paddingTL, _paddingBR); |
|
imgoffset = _paddingTL; |
|
|
|
winSize = descriptor->winSize; |
|
Size blockSize = descriptor->blockSize; |
|
Size blockStride = descriptor->blockStride; |
|
Size cellSize = descriptor->cellSize; |
|
int i, j, nbins = descriptor->nbins; |
|
int rawBlockSize = blockSize.width*blockSize.height; |
|
|
|
nblocks = Size((winSize.width - blockSize.width)/blockStride.width + 1, |
|
(winSize.height - blockSize.height)/blockStride.height + 1); |
|
ncells = Size(blockSize.width/cellSize.width, blockSize.height/cellSize.height); |
|
blockHistogramSize = ncells.width*ncells.height*nbins; |
|
|
|
if( useCache ) |
|
{ |
|
Size cacheSize((grad.cols - blockSize.width)/cacheStride.width+1, |
|
(winSize.height/cacheStride.height)+1); |
|
blockCache.create(cacheSize.height, cacheSize.width*blockHistogramSize); |
|
blockCacheFlags.create(cacheSize); |
|
size_t cacheRows = blockCache.rows; |
|
ymaxCached.resize(cacheRows); |
|
for(size_t ii = 0; ii < cacheRows; ii++ ) |
|
ymaxCached[ii] = -1; |
|
} |
|
|
|
Mat_<float> weights(blockSize); |
|
float sigma = (float)descriptor->getWinSigma(); |
|
float scale = 1.f/(sigma*sigma*2); |
|
|
|
for(i = 0; i < blockSize.height; i++) |
|
for(j = 0; j < blockSize.width; j++) |
|
{ |
|
float di = i - blockSize.height*0.5f; |
|
float dj = j - blockSize.width*0.5f; |
|
weights(i,j) = std::exp(-(di*di + dj*dj)*scale); |
|
} |
|
|
|
blockData.resize(nblocks.width*nblocks.height); |
|
pixData.resize(rawBlockSize*3); |
|
|
|
// Initialize 2 lookup tables, pixData & blockData. |
|
// Here is why: |
|
// |
|
// The detection algorithm runs in 4 nested loops (at each pyramid layer): |
|
// loop over the windows within the input image |
|
// loop over the blocks within each window |
|
// loop over the cells within each block |
|
// loop over the pixels in each cell |
|
// |
|
// As each of the loops runs over a 2-dimensional array, |
|
// we could get 8(!) nested loops in total, which is very-very slow. |
|
// |
|
// To speed the things up, we do the following: |
|
// 1. loop over windows is unrolled in the HOGDescriptor::{compute|detect} methods; |
|
// inside we compute the current search window using getWindow() method. |
|
// Yes, it involves some overhead (function call + couple of divisions), |
|
// but it's tiny in fact. |
|
// 2. loop over the blocks is also unrolled. Inside we use pre-computed blockData[j] |
|
// to set up gradient and histogram pointers. |
|
// 3. loops over cells and pixels in each cell are merged |
|
// (since there is no overlap between cells, each pixel in the block is processed once) |
|
// and also unrolled. Inside we use PixData[k] to access the gradient values and |
|
// update the histogram |
|
// |
|
count1 = count2 = count4 = 0; |
|
for( j = 0; j < blockSize.width; j++ ) |
|
for( i = 0; i < blockSize.height; i++ ) |
|
{ |
|
PixData* data = 0; |
|
float cellX = (j+0.5f)/cellSize.width - 0.5f; |
|
float cellY = (i+0.5f)/cellSize.height - 0.5f; |
|
int icellX0 = cvFloor(cellX); |
|
int icellY0 = cvFloor(cellY); |
|
int icellX1 = icellX0 + 1, icellY1 = icellY0 + 1; |
|
cellX -= icellX0; |
|
cellY -= icellY0; |
|
|
|
if( (unsigned)icellX0 < (unsigned)ncells.width && |
|
(unsigned)icellX1 < (unsigned)ncells.width ) |
|
{ |
|
if( (unsigned)icellY0 < (unsigned)ncells.height && |
|
(unsigned)icellY1 < (unsigned)ncells.height ) |
|
{ |
|
data = &pixData[rawBlockSize*2 + (count4++)]; |
|
data->histOfs[0] = (icellX0*ncells.height + icellY0)*nbins; |
|
data->histWeights[0] = (1.f - cellX)*(1.f - cellY); |
|
data->histOfs[1] = (icellX1*ncells.height + icellY0)*nbins; |
|
data->histWeights[1] = cellX*(1.f - cellY); |
|
data->histOfs[2] = (icellX0*ncells.height + icellY1)*nbins; |
|
data->histWeights[2] = (1.f - cellX)*cellY; |
|
data->histOfs[3] = (icellX1*ncells.height + icellY1)*nbins; |
|
data->histWeights[3] = cellX*cellY; |
|
} |
|
else |
|
{ |
|
data = &pixData[rawBlockSize + (count2++)]; |
|
if( (unsigned)icellY0 < (unsigned)ncells.height ) |
|
{ |
|
icellY1 = icellY0; |
|
cellY = 1.f - cellY; |
|
} |
|
data->histOfs[0] = (icellX0*ncells.height + icellY1)*nbins; |
|
data->histWeights[0] = (1.f - cellX)*cellY; |
|
data->histOfs[1] = (icellX1*ncells.height + icellY1)*nbins; |
|
data->histWeights[1] = cellX*cellY; |
|
data->histOfs[2] = data->histOfs[3] = 0; |
|
data->histWeights[2] = data->histWeights[3] = 0; |
|
} |
|
} |
|
else |
|
{ |
|
if( (unsigned)icellX0 < (unsigned)ncells.width ) |
|
{ |
|
icellX1 = icellX0; |
|
cellX = 1.f - cellX; |
|
} |
|
|
|
if( (unsigned)icellY0 < (unsigned)ncells.height && |
|
(unsigned)icellY1 < (unsigned)ncells.height ) |
|
{ |
|
data = &pixData[rawBlockSize + (count2++)]; |
|
data->histOfs[0] = (icellX1*ncells.height + icellY0)*nbins; |
|
data->histWeights[0] = cellX*(1.f - cellY); |
|
data->histOfs[1] = (icellX1*ncells.height + icellY1)*nbins; |
|
data->histWeights[1] = cellX*cellY; |
|
data->histOfs[2] = data->histOfs[3] = 0; |
|
data->histWeights[2] = data->histWeights[3] = 0; |
|
} |
|
else |
|
{ |
|
data = &pixData[count1++]; |
|
if( (unsigned)icellY0 < (unsigned)ncells.height ) |
|
{ |
|
icellY1 = icellY0; |
|
cellY = 1.f - cellY; |
|
} |
|
data->histOfs[0] = (icellX1*ncells.height + icellY1)*nbins; |
|
data->histWeights[0] = cellX*cellY; |
|
data->histOfs[1] = data->histOfs[2] = data->histOfs[3] = 0; |
|
data->histWeights[1] = data->histWeights[2] = data->histWeights[3] = 0; |
|
} |
|
} |
|
data->gradOfs = (grad.cols*i + j)*2; |
|
data->qangleOfs = (qangle.cols*i + j)*2; |
|
data->gradWeight = weights(i,j); |
|
} |
|
|
|
CV_Assert( count1 + count2 + count4 == rawBlockSize ); |
|
// defragment pixData |
|
for( j = 0; j < count2; j++ ) |
|
pixData[j + count1] = pixData[j + rawBlockSize]; |
|
for( j = 0; j < count4; j++ ) |
|
pixData[j + count1 + count2] = pixData[j + rawBlockSize*2]; |
|
count2 += count1; |
|
count4 += count2; |
|
|
|
// initialize blockData |
|
for( j = 0; j < nblocks.width; j++ ) |
|
for( i = 0; i < nblocks.height; i++ ) |
|
{ |
|
BlockData& data = blockData[j*nblocks.height + i]; |
|
data.histOfs = (j*nblocks.height + i)*blockHistogramSize; |
|
data.imgOffset = Point(j*blockStride.width,i*blockStride.height); |
|
} |
|
} |
|
|
|
const float* HOGCacheTester::getBlock(Point pt, float* buf) |
|
{ |
|
float* blockHist = buf; |
|
CV_Assert(descriptor != 0); |
|
|
|
Size blockSize = descriptor->blockSize; |
|
pt += imgoffset; |
|
|
|
CV_Assert( (unsigned)pt.x <= (unsigned)(grad.cols - blockSize.width) && |
|
(unsigned)pt.y <= (unsigned)(grad.rows - blockSize.height) ); |
|
|
|
if( useCache ) |
|
{ |
|
CV_Assert( pt.x % cacheStride.width == 0 && |
|
pt.y % cacheStride.height == 0 ); |
|
Point cacheIdx(pt.x/cacheStride.width, |
|
(pt.y/cacheStride.height) % blockCache.rows); |
|
if( pt.y != ymaxCached[cacheIdx.y] ) |
|
{ |
|
Mat_<uchar> cacheRow = blockCacheFlags.row(cacheIdx.y); |
|
cacheRow = (uchar)0; |
|
ymaxCached[cacheIdx.y] = pt.y; |
|
} |
|
|
|
blockHist = &blockCache[cacheIdx.y][cacheIdx.x*blockHistogramSize]; |
|
uchar& computedFlag = blockCacheFlags(cacheIdx.y, cacheIdx.x); |
|
if( computedFlag != 0 ) |
|
return blockHist; |
|
computedFlag = (uchar)1; // set it at once, before actual computing |
|
} |
|
|
|
int k, C1 = count1, C2 = count2, C4 = count4; |
|
const float* gradPtr = grad.ptr<float>(pt.y) + pt.x*2; |
|
const uchar* qanglePtr = qangle.ptr(pt.y) + pt.x*2; |
|
|
|
CV_Assert( blockHist != 0 ); |
|
for( k = 0; k < blockHistogramSize; k++ ) |
|
blockHist[k] = 0.f; |
|
|
|
const PixData* _pixData = &pixData[0]; |
|
|
|
for( k = 0; k < C1; k++ ) |
|
{ |
|
const PixData& pk = _pixData[k]; |
|
const float* a = gradPtr + pk.gradOfs; |
|
float w = pk.gradWeight*pk.histWeights[0]; |
|
const uchar* h = qanglePtr + pk.qangleOfs; |
|
int h0 = h[0], h1 = h[1]; |
|
float* hist = blockHist + pk.histOfs[0]; |
|
float t0 = hist[h0] + a[0]*w; |
|
float t1 = hist[h1] + a[1]*w; |
|
hist[h0] = t0; hist[h1] = t1; |
|
} |
|
|
|
for( ; k < C2; k++ ) |
|
{ |
|
const PixData& pk = _pixData[k]; |
|
const float* a = gradPtr + pk.gradOfs; |
|
float w, t0, t1, a0 = a[0], a1 = a[1]; |
|
const uchar* h = qanglePtr + pk.qangleOfs; |
|
int h0 = h[0], h1 = h[1]; |
|
|
|
float* hist = blockHist + pk.histOfs[0]; |
|
w = pk.gradWeight*pk.histWeights[0]; |
|
t0 = hist[h0] + a0*w; |
|
t1 = hist[h1] + a1*w; |
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
hist = blockHist + pk.histOfs[1]; |
|
w = pk.gradWeight*pk.histWeights[1]; |
|
t0 = hist[h0] + a0*w; |
|
t1 = hist[h1] + a1*w; |
|
hist[h0] = t0; hist[h1] = t1; |
|
} |
|
|
|
for( ; k < C4; k++ ) |
|
{ |
|
const PixData& pk = _pixData[k]; |
|
const float* a = gradPtr + pk.gradOfs; |
|
float w, t0, t1, a0 = a[0], a1 = a[1]; |
|
const uchar* h = qanglePtr + pk.qangleOfs; |
|
int h0 = h[0], h1 = h[1]; |
|
|
|
float* hist = blockHist + pk.histOfs[0]; |
|
w = pk.gradWeight*pk.histWeights[0]; |
|
t0 = hist[h0] + a0*w; |
|
t1 = hist[h1] + a1*w; |
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
hist = blockHist + pk.histOfs[1]; |
|
w = pk.gradWeight*pk.histWeights[1]; |
|
t0 = hist[h0] + a0*w; |
|
t1 = hist[h1] + a1*w; |
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
hist = blockHist + pk.histOfs[2]; |
|
w = pk.gradWeight*pk.histWeights[2]; |
|
t0 = hist[h0] + a0*w; |
|
t1 = hist[h1] + a1*w; |
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
hist = blockHist + pk.histOfs[3]; |
|
w = pk.gradWeight*pk.histWeights[3]; |
|
t0 = hist[h0] + a0*w; |
|
t1 = hist[h1] + a1*w; |
|
hist[h0] = t0; hist[h1] = t1; |
|
} |
|
|
|
normalizeBlockHistogram(blockHist); |
|
|
|
return blockHist; |
|
} |
|
|
|
void HOGCacheTester::normalizeBlockHistogram(float* _hist) const |
|
{ |
|
float* hist = &_hist[0], partSum[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; |
|
size_t i, sz = blockHistogramSize; |
|
|
|
for (i = 0; i <= sz - 4; i += 4) |
|
{ |
|
partSum[0] += hist[i] * hist[i]; |
|
partSum[1] += hist[i+1] * hist[i+1]; |
|
partSum[2] += hist[i+2] * hist[i+2]; |
|
partSum[3] += hist[i+3] * hist[i+3]; |
|
} |
|
float t0 = partSum[0] + partSum[1]; |
|
float t1 = partSum[2] + partSum[3]; |
|
float sum = t0 + t1; |
|
for( ; i < sz; i++ ) |
|
sum += hist[i]*hist[i]; |
|
|
|
float scale = 1.f/(std::sqrt(sum)+sz*0.1f), thresh = (float)descriptor->L2HysThreshold; |
|
partSum[0] = partSum[1] = partSum[2] = partSum[3] = 0.0f; |
|
for(i = 0; i <= sz - 4; i += 4) |
|
{ |
|
hist[i] = std::min(hist[i]*scale, thresh); |
|
hist[i+1] = std::min(hist[i+1]*scale, thresh); |
|
hist[i+2] = std::min(hist[i+2]*scale, thresh); |
|
hist[i+3] = std::min(hist[i+3]*scale, thresh); |
|
partSum[0] += hist[i]*hist[i]; |
|
partSum[1] += hist[i+1]*hist[i+1]; |
|
partSum[2] += hist[i+2]*hist[i+2]; |
|
partSum[3] += hist[i+3]*hist[i+3]; |
|
} |
|
t0 = partSum[0] + partSum[1]; |
|
t1 = partSum[2] + partSum[3]; |
|
sum = t0 + t1; |
|
for( ; i < sz; i++ ) |
|
{ |
|
hist[i] = std::min(hist[i]*scale, thresh); |
|
sum += hist[i]*hist[i]; |
|
} |
|
|
|
scale = 1.f/(std::sqrt(sum)+1e-3f); |
|
for( i = 0; i < sz; i++ ) |
|
hist[i] *= scale; |
|
} |
|
|
|
Size HOGCacheTester::windowsInImage(Size imageSize, Size winStride) const |
|
{ |
|
return Size((imageSize.width - winSize.width)/winStride.width + 1, |
|
(imageSize.height - winSize.height)/winStride.height + 1); |
|
} |
|
|
|
Rect HOGCacheTester::getWindow(Size imageSize, Size winStride, int idx) const |
|
{ |
|
int nwindowsX = (imageSize.width - winSize.width)/winStride.width + 1; |
|
int y = idx / nwindowsX; |
|
int x = idx - nwindowsX*y; |
|
return Rect( x*winStride.width, y*winStride.height, winSize.width, winSize.height ); |
|
} |
|
|
|
inline bool HOGDescriptorTester::is_failed() const |
|
{ |
|
return failed; |
|
} |
|
|
|
static inline int gcd(int a, int b) { return (a % b == 0) ? b : gcd (b, a % b); } |
|
|
|
void HOGDescriptorTester::detect(const Mat& img, |
|
vector<Point>& hits, vector<double>& weights, double hitThreshold, |
|
Size winStride, Size padding, const vector<Point>& locations) const |
|
{ |
|
if (failed) |
|
return; |
|
|
|
hits.clear(); |
|
if( svmDetector.empty() ) |
|
return; |
|
|
|
if( winStride == Size() ) |
|
winStride = cellSize; |
|
Size cacheStride(gcd(winStride.width, blockStride.width), |
|
gcd(winStride.height, blockStride.height)); |
|
size_t nwindows = locations.size(); |
|
padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width); |
|
padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height); |
|
Size paddedImgSize(img.cols + padding.width*2, img.rows + padding.height*2); |
|
|
|
HOGCacheTester cache(this, img, padding, padding, nwindows == 0, cacheStride); |
|
|
|
if( !nwindows ) |
|
nwindows = cache.windowsInImage(paddedImgSize, winStride).area(); |
|
|
|
const HOGCacheTester::BlockData* blockData = &cache.blockData[0]; |
|
|
|
int nblocks = cache.nblocks.area(); |
|
int blockHistogramSize = cache.blockHistogramSize; |
|
size_t dsize = getDescriptorSize(); |
|
|
|
double rho = svmDetector.size() > dsize ? svmDetector[dsize] : 0; |
|
vector<float> blockHist(blockHistogramSize); |
|
|
|
for( size_t i = 0; i < nwindows; i++ ) |
|
{ |
|
Point pt0; |
|
if( !locations.empty() ) |
|
{ |
|
pt0 = locations[i]; |
|
if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width || |
|
pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height ) |
|
continue; |
|
} |
|
else |
|
{ |
|
pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding); |
|
CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0); |
|
} |
|
double s = rho; |
|
const float* svmVec = &svmDetector[0]; |
|
int j, k; |
|
for( j = 0; j < nblocks; j++, svmVec += blockHistogramSize ) |
|
{ |
|
const HOGCacheTester::BlockData& bj = blockData[j]; |
|
Point pt = pt0 + bj.imgOffset; |
|
|
|
const float* vec = cache.getBlock(pt, &blockHist[0]); |
|
for( k = 0; k <= blockHistogramSize - 4; k += 4 ) |
|
s += vec[k]*svmVec[k] + vec[k+1]*svmVec[k+1] + |
|
vec[k+2]*svmVec[k+2] + vec[k+3]*svmVec[k+3]; |
|
for( ; k < blockHistogramSize; k++ ) |
|
s += vec[k]*svmVec[k]; |
|
} |
|
if( s >= hitThreshold ) |
|
{ |
|
hits.push_back(pt0); |
|
weights.push_back(s); |
|
} |
|
} |
|
|
|
// validation |
|
std::vector<Point> actual_find_locations; |
|
std::vector<double> actual_weights; |
|
actual_hog->detect(img, actual_find_locations, actual_weights, |
|
hitThreshold, winStride, padding, locations); |
|
|
|
if (!std::equal(hits.begin(), hits.end(), |
|
actual_find_locations.begin())) |
|
{ |
|
ts->printf(cvtest::TS::SUMMARY, "Found locations are not equal (see detect function)\n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->set_gtest_status(); |
|
failed = true; |
|
return; |
|
} |
|
|
|
const double eps = FLT_EPSILON * 100; |
|
double diff_norm = cvtest::norm(actual_weights, weights, NORM_L2 + NORM_RELATIVE); |
|
if (diff_norm > eps) |
|
{ |
|
ts->printf(cvtest::TS::SUMMARY, "Weights for found locations aren't equal.\n" |
|
"Norm of the difference is %lf\n", diff_norm); |
|
ts->printf(cvtest::TS::LOG, "Channels: %d\n", img.channels()); |
|
failed = true; |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->set_gtest_status(); |
|
} |
|
} |
|
|
|
void HOGDescriptorTester::detect(const Mat& img, vector<Point>& hits, double hitThreshold, |
|
Size winStride, Size padding, const vector<Point>& locations) const |
|
{ |
|
vector<double> weightsV; |
|
detect(img, hits, weightsV, hitThreshold, winStride, padding, locations); |
|
} |
|
|
|
void HOGDescriptorTester::compute(InputArray _img, vector<float>& descriptors, |
|
Size winStride, Size padding, const vector<Point>& locations) const |
|
{ |
|
Mat img = _img.getMat(); |
|
|
|
if( winStride == Size() ) |
|
winStride = cellSize; |
|
Size cacheStride(gcd(winStride.width, blockStride.width), |
|
gcd(winStride.height, blockStride.height)); |
|
size_t nwindows = locations.size(); |
|
padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width); |
|
padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height); |
|
Size paddedImgSize(img.cols + padding.width*2, img.rows + padding.height*2); |
|
|
|
HOGCacheTester cache(this, img, padding, padding, nwindows == 0, cacheStride); |
|
|
|
if( !nwindows ) |
|
nwindows = cache.windowsInImage(paddedImgSize, winStride).area(); |
|
|
|
const HOGCacheTester::BlockData* blockData = &cache.blockData[0]; |
|
|
|
int nblocks = cache.nblocks.area(); |
|
int blockHistogramSize = cache.blockHistogramSize; |
|
size_t dsize = getDescriptorSize(); |
|
descriptors.resize(dsize*nwindows); |
|
|
|
for( size_t i = 0; i < nwindows; i++ ) |
|
{ |
|
float* descriptor = &descriptors[i*dsize]; |
|
|
|
Point pt0; |
|
if( !locations.empty() ) |
|
{ |
|
pt0 = locations[i]; |
|
if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width || |
|
pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height ) |
|
continue; |
|
} |
|
else |
|
{ |
|
pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding); |
|
CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0); |
|
} |
|
|
|
for( int j = 0; j < nblocks; j++ ) |
|
{ |
|
const HOGCacheTester::BlockData& bj = blockData[j]; |
|
Point pt = pt0 + bj.imgOffset; |
|
|
|
float* dst = descriptor + bj.histOfs; |
|
const float* src = cache.getBlock(pt, dst); |
|
if( src != dst ) |
|
for( int k = 0; k < blockHistogramSize; k++ ) |
|
dst[k] = src[k]; |
|
} |
|
} |
|
|
|
// validation |
|
std::vector<float> actual_descriptors; |
|
actual_hog->compute(img, actual_descriptors, winStride, padding, locations); |
|
|
|
double diff_norm = cvtest::norm(actual_descriptors, descriptors, NORM_L2 + NORM_RELATIVE); |
|
const double eps = 2.0e-3; |
|
if (diff_norm > eps) |
|
{ |
|
ts->printf(cvtest::TS::SUMMARY, "Norm of the difference: %lf\n", diff_norm); |
|
ts->printf(cvtest::TS::SUMMARY, "Found descriptors are not equal (see compute function)\n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->printf(cvtest::TS::LOG, "Channels: %d\n", img.channels()); |
|
ts->set_gtest_status(); |
|
failed = true; |
|
} |
|
} |
|
|
|
void HOGDescriptorTester::computeGradient(const Mat& img, Mat& grad, Mat& qangle, |
|
Size paddingTL, Size paddingBR) const |
|
{ |
|
CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 ); |
|
|
|
Size gradsize(img.cols + paddingTL.width + paddingBR.width, |
|
img.rows + paddingTL.height + paddingBR.height); |
|
grad.create(gradsize, CV_32FC2); // <magnitude*(1-alpha), magnitude*alpha> |
|
qangle.create(gradsize, CV_8UC2); // [0..nbins-1] - quantized gradient orientation |
|
Size wholeSize; |
|
Point roiofs; |
|
img.locateROI(wholeSize, roiofs); |
|
|
|
int i, x, y; |
|
int cn = img.channels(); |
|
|
|
Mat_<float> _lut(1, 256); |
|
const float* lut = &_lut(0,0); |
|
|
|
if( gammaCorrection ) |
|
for( i = 0; i < 256; i++ ) |
|
_lut(0,i) = std::sqrt((float)i); |
|
else |
|
for( i = 0; i < 256; i++ ) |
|
_lut(0,i) = (float)i; |
|
|
|
AutoBuffer<int> mapbuf(gradsize.width + gradsize.height + 4); |
|
int* xmap = mapbuf.data() + 1; |
|
int* ymap = xmap + gradsize.width + 2; |
|
|
|
const int borderType = (int)BORDER_REFLECT_101; |
|
|
|
for( x = -1; x < gradsize.width + 1; x++ ) |
|
xmap[x] = borderInterpolate(x - paddingTL.width + roiofs.x, |
|
wholeSize.width, borderType) - roiofs.x; |
|
for( y = -1; y < gradsize.height + 1; y++ ) |
|
ymap[y] = borderInterpolate(y - paddingTL.height + roiofs.y, |
|
wholeSize.height, borderType) - roiofs.y; |
|
|
|
// x- & y- derivatives for the whole row |
|
int width = gradsize.width; |
|
AutoBuffer<float> _dbuf(width*4); |
|
float* dbuf = _dbuf.data(); |
|
Mat Dx(1, width, CV_32F, dbuf); |
|
Mat Dy(1, width, CV_32F, dbuf + width); |
|
Mat Mag(1, width, CV_32F, dbuf + width*2); |
|
Mat Angle(1, width, CV_32F, dbuf + width*3); |
|
|
|
int _nbins = nbins; |
|
float angleScale = (float)(_nbins/CV_PI); |
|
for( y = 0; y < gradsize.height; y++ ) |
|
{ |
|
const uchar* imgPtr = img.ptr(ymap[y]); |
|
const uchar* prevPtr = img.ptr(ymap[y-1]); |
|
const uchar* nextPtr = img.ptr(ymap[y+1]); |
|
float* gradPtr = (float*)grad.ptr(y); |
|
uchar* qanglePtr = (uchar*)qangle.ptr(y); |
|
|
|
if( cn == 1 ) |
|
{ |
|
for( x = 0; x < width; x++ ) |
|
{ |
|
int x1 = xmap[x]; |
|
dbuf[x] = (float)(lut[imgPtr[xmap[x+1]]] - lut[imgPtr[xmap[x-1]]]); |
|
dbuf[width + x] = (float)(lut[nextPtr[x1]] - lut[prevPtr[x1]]); |
|
} |
|
} |
|
else |
|
{ |
|
for( x = 0; x < width; x++ ) |
|
{ |
|
int x1 = xmap[x]*3; |
|
float dx0, dy0, dx, dy, mag0, mag; |
|
const uchar* p2 = imgPtr + xmap[x+1]*3; |
|
const uchar* p0 = imgPtr + xmap[x-1]*3; |
|
|
|
dx0 = lut[p2[2]] - lut[p0[2]]; |
|
dy0 = lut[nextPtr[x1+2]] - lut[prevPtr[x1+2]]; |
|
mag0 = dx0*dx0 + dy0*dy0; |
|
|
|
dx = lut[p2[1]] - lut[p0[1]]; |
|
dy = lut[nextPtr[x1+1]] - lut[prevPtr[x1+1]]; |
|
mag = dx*dx + dy*dy; |
|
|
|
if( mag0 < mag ) |
|
{ |
|
dx0 = dx; |
|
dy0 = dy; |
|
mag0 = mag; |
|
} |
|
|
|
dx = lut[p2[0]] - lut[p0[0]]; |
|
dy = lut[nextPtr[x1]] - lut[prevPtr[x1]]; |
|
mag = dx*dx + dy*dy; |
|
|
|
if( mag0 < mag ) |
|
{ |
|
dx0 = dx; |
|
dy0 = dy; |
|
mag0 = mag; |
|
} |
|
|
|
dbuf[x] = dx0; |
|
dbuf[x+width] = dy0; |
|
} |
|
} |
|
|
|
cartToPolar( Dx, Dy, Mag, Angle, false ); |
|
for( x = 0; x < width; x++ ) |
|
{ |
|
float mag = dbuf[x+width*2], angle = dbuf[x+width*3]*angleScale - 0.5f; |
|
int hidx = cvFloor(angle); |
|
angle -= hidx; |
|
gradPtr[x*2] = mag*(1.f - angle); |
|
gradPtr[x*2+1] = mag*angle; |
|
if( hidx < 0 ) |
|
hidx += _nbins; |
|
else if( hidx >= _nbins ) |
|
hidx -= _nbins; |
|
CV_Assert( (unsigned)hidx < (unsigned)_nbins ); |
|
|
|
qanglePtr[x*2] = (uchar)hidx; |
|
hidx++; |
|
hidx &= hidx < _nbins ? -1 : 0; |
|
qanglePtr[x*2+1] = (uchar)hidx; |
|
} |
|
} |
|
|
|
// validation |
|
Mat actual_mats[2], reference_mats[2] = { grad, qangle }; |
|
const char* args[] = { "Gradient's", "Qangles's" }; |
|
actual_hog->computeGradient(img, actual_mats[0], actual_mats[1], paddingTL, paddingBR); |
|
|
|
const double eps = 8.0e-3; |
|
for (i = 0; i < 2; ++i) |
|
{ |
|
double diff_norm = cvtest::norm(actual_mats[i], reference_mats[i], NORM_L2 + NORM_RELATIVE); |
|
if (diff_norm > eps) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "%s matrices are not equal\n" |
|
"Norm of the difference is %lf\n", args[i], diff_norm); |
|
ts->printf(cvtest::TS::LOG, "Channels: %d\n", img.channels()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->set_gtest_status(); |
|
failed = true; |
|
} |
|
} |
|
} |
|
|
|
TEST(Objdetect_HOGDetector_Strict, accuracy) |
|
{ |
|
cvtest::TS* ts = cvtest::TS::ptr(); |
|
RNG& rng = ts->get_rng(); |
|
|
|
HOGDescriptor actual_hog; |
|
actual_hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector()); |
|
HOGDescriptorTester reference_hog(actual_hog); |
|
|
|
const unsigned int test_case_count = 5; |
|
for (unsigned int i = 0; i < test_case_count && !reference_hog.is_failed(); ++i) |
|
{ |
|
// creating a matrix |
|
Size ssize(rng.uniform(1, 10) * actual_hog.winSize.width, |
|
rng.uniform(1, 10) * actual_hog.winSize.height); |
|
int type = rng.uniform(0, 1) > 0 ? CV_8UC1 : CV_8UC3; |
|
Mat image(ssize, type); |
|
rng.fill(image, RNG::UNIFORM, 0, 256, true); |
|
|
|
// checking detect |
|
std::vector<Point> hits; |
|
std::vector<double> weights; |
|
reference_hog.detect(image, hits, weights); |
|
|
|
// checking compute |
|
std::vector<float> descriptors; |
|
reference_hog.compute(image, descriptors); |
|
} |
|
} |
|
|
|
TEST(Objdetect_CascadeDetector, small_img) |
|
{ |
|
String root = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/"; |
|
String cascades[] = |
|
{ |
|
root + "haarcascade_frontalface_alt.xml", |
|
root + "lbpcascade_frontalface.xml", |
|
String() |
|
}; |
|
|
|
vector<Rect> objects; |
|
RNG rng((uint64)-1); |
|
|
|
for( int i = 0; !cascades[i].empty(); i++ ) |
|
{ |
|
printf("%d. %s\n", i, cascades[i].c_str()); |
|
CascadeClassifier cascade(cascades[i]); |
|
for( int j = 0; j < 100; j++ ) |
|
{ |
|
int width = rng.uniform(1, 100); |
|
int height = rng.uniform(1, 100); |
|
Mat img(height, width, CV_8U); |
|
randu(img, 0, 256); |
|
cascade.detectMultiScale(img, objects); |
|
} |
|
} |
|
} |
|
|
|
}} // namespace
|
|
|