Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
514 lines
16 KiB
514 lines
16 KiB
#include "precomp.hpp" |
|
#include "_latentsvm.h" |
|
#include "_lsvm_resizeimg.h" |
|
|
|
#ifndef max |
|
#define max(a,b) (((a) > (b)) ? (a) : (b)) |
|
#endif |
|
|
|
#ifndef min |
|
#define min(a,b) (((a) < (b)) ? (a) : (b)) |
|
#endif |
|
|
|
/* |
|
// Getting feature map for the selected subimage |
|
// |
|
// API |
|
// int getFeatureMaps(const IplImage * image, const int k, featureMap **map); |
|
// INPUT |
|
// image - selected subimage |
|
// k - size of cells |
|
// OUTPUT |
|
// map - feature map |
|
// RESULT |
|
// Error status |
|
*/ |
|
int getFeatureMaps(const IplImage* image, const int k, CvLSVMFeatureMap **map) |
|
{ |
|
int sizeX, sizeY; |
|
int p, px, stringSize; |
|
int height, width, numChannels; |
|
int i, j, kk, c, ii, jj, d; |
|
float * datadx, * datady; |
|
|
|
int ch; |
|
float magnitude, x, y, tx, ty; |
|
|
|
IplImage * dx, * dy; |
|
int *nearest; |
|
float *w, a_x, b_x; |
|
|
|
float kernel[3] = {-1.f, 0.f, 1.f}; |
|
CvMat kernel_dx = cvMat(1, 3, CV_32F, kernel); |
|
CvMat kernel_dy = cvMat(3, 1, CV_32F, kernel); |
|
|
|
float * r; |
|
int * alfa; |
|
|
|
float boundary_x[NUM_SECTOR + 1]; |
|
float boundary_y[NUM_SECTOR + 1]; |
|
float max, dotProd; |
|
int maxi; |
|
|
|
height = image->height; |
|
width = image->width ; |
|
|
|
numChannels = image->nChannels; |
|
|
|
dx = cvCreateImage(cvSize(image->width, image->height), |
|
IPL_DEPTH_32F, 3); |
|
dy = cvCreateImage(cvSize(image->width, image->height), |
|
IPL_DEPTH_32F, 3); |
|
|
|
sizeX = width / k; |
|
sizeY = height / k; |
|
px = 3 * NUM_SECTOR; |
|
p = px; |
|
stringSize = sizeX * p; |
|
allocFeatureMapObject(map, sizeX, sizeY, p); |
|
|
|
cvFilter2D(image, dx, &kernel_dx, cvPoint(-1, 0)); |
|
cvFilter2D(image, dy, &kernel_dy, cvPoint(0, -1)); |
|
|
|
float arg_vector; |
|
for(i = 0; i <= NUM_SECTOR; i++) |
|
{ |
|
arg_vector = ( (float) i ) * ( (float)(PI) / (float)(NUM_SECTOR) ); |
|
boundary_x[i] = cosf(arg_vector); |
|
boundary_y[i] = sinf(arg_vector); |
|
}/*for(i = 0; i <= NUM_SECTOR; i++) */ |
|
|
|
r = (float *)malloc( sizeof(float) * (width * height)); |
|
alfa = (int *)malloc( sizeof(int ) * (width * height * 2)); |
|
|
|
for(j = 1; j < height - 1; j++) |
|
{ |
|
datadx = (float*)(dx->imageData + dx->widthStep * j); |
|
datady = (float*)(dy->imageData + dy->widthStep * j); |
|
for(i = 1; i < width - 1; i++) |
|
{ |
|
c = 0; |
|
x = (datadx[i * numChannels + c]); |
|
y = (datady[i * numChannels + c]); |
|
|
|
r[j * width + i] =sqrtf(x * x + y * y); |
|
for(ch = 1; ch < numChannels; ch++) |
|
{ |
|
tx = (datadx[i * numChannels + ch]); |
|
ty = (datady[i * numChannels + ch]); |
|
magnitude = sqrtf(tx * tx + ty * ty); |
|
if(magnitude > r[j * width + i]) |
|
{ |
|
r[j * width + i] = magnitude; |
|
c = ch; |
|
x = tx; |
|
y = ty; |
|
} |
|
}/*for(ch = 1; ch < numChannels; ch++)*/ |
|
|
|
max = boundary_x[0] * x + boundary_y[0] * y; |
|
maxi = 0; |
|
for (kk = 0; kk < NUM_SECTOR; kk++) |
|
{ |
|
dotProd = boundary_x[kk] * x + boundary_y[kk] * y; |
|
if (dotProd > max) |
|
{ |
|
max = dotProd; |
|
maxi = kk; |
|
} |
|
else |
|
{ |
|
if (-dotProd > max) |
|
{ |
|
max = -dotProd; |
|
maxi = kk + NUM_SECTOR; |
|
} |
|
} |
|
} |
|
alfa[j * width * 2 + i * 2 ] = maxi % NUM_SECTOR; |
|
alfa[j * width * 2 + i * 2 + 1] = maxi; |
|
}/*for(i = 0; i < width; i++)*/ |
|
}/*for(j = 0; j < height; j++)*/ |
|
|
|
nearest = (int *)malloc(sizeof(int ) * k); |
|
w = (float*)malloc(sizeof(float) * (k * 2)); |
|
|
|
for(i = 0; i < k / 2; i++) |
|
{ |
|
nearest[i] = -1; |
|
}/*for(i = 0; i < k / 2; i++)*/ |
|
for(i = k / 2; i < k; i++) |
|
{ |
|
nearest[i] = 1; |
|
}/*for(i = k / 2; i < k; i++)*/ |
|
|
|
for(j = 0; j < k / 2; j++) |
|
{ |
|
b_x = k / 2 + j + 0.5f; |
|
a_x = k / 2 - j - 0.5f; |
|
w[j * 2 ] = 1.0f/a_x * ((a_x * b_x) / ( a_x + b_x)); |
|
w[j * 2 + 1] = 1.0f/b_x * ((a_x * b_x) / ( a_x + b_x)); |
|
}/*for(j = 0; j < k / 2; j++)*/ |
|
for(j = k / 2; j < k; j++) |
|
{ |
|
a_x = j - k / 2 + 0.5f; |
|
b_x =-j + k / 2 - 0.5f + k; |
|
w[j * 2 ] = 1.0f/a_x * ((a_x * b_x) / ( a_x + b_x)); |
|
w[j * 2 + 1] = 1.0f/b_x * ((a_x * b_x) / ( a_x + b_x)); |
|
}/*for(j = k / 2; j < k; j++)*/ |
|
|
|
|
|
for(i = 0; i < sizeY; i++) |
|
{ |
|
for(j = 0; j < sizeX; j++) |
|
{ |
|
for(ii = 0; ii < k; ii++) |
|
{ |
|
for(jj = 0; jj < k; jj++) |
|
{ |
|
if ((i * k + ii > 0) && |
|
(i * k + ii < height - 1) && |
|
(j * k + jj > 0) && |
|
(j * k + jj < width - 1)) |
|
{ |
|
d = (k * i + ii) * width + (j * k + jj); |
|
(*map)->map[ i * stringSize + j * (*map)->numFeatures + alfa[d * 2 ]] += |
|
r[d] * w[ii * 2] * w[jj * 2]; |
|
(*map)->map[ i * stringSize + j * (*map)->numFeatures + alfa[d * 2 + 1] + NUM_SECTOR] += |
|
r[d] * w[ii * 2] * w[jj * 2]; |
|
if ((i + nearest[ii] >= 0) && |
|
(i + nearest[ii] <= sizeY - 1)) |
|
{ |
|
(*map)->map[(i + nearest[ii]) * stringSize + j * (*map)->numFeatures + alfa[d * 2 ] ] += |
|
r[d] * w[ii * 2 + 1] * w[jj * 2 ]; |
|
(*map)->map[(i + nearest[ii]) * stringSize + j * (*map)->numFeatures + alfa[d * 2 + 1] + NUM_SECTOR] += |
|
r[d] * w[ii * 2 + 1] * w[jj * 2 ]; |
|
} |
|
if ((j + nearest[jj] >= 0) && |
|
(j + nearest[jj] <= sizeX - 1)) |
|
{ |
|
(*map)->map[i * stringSize + (j + nearest[jj]) * (*map)->numFeatures + alfa[d * 2 ] ] += |
|
r[d] * w[ii * 2] * w[jj * 2 + 1]; |
|
(*map)->map[i * stringSize + (j + nearest[jj]) * (*map)->numFeatures + alfa[d * 2 + 1] + NUM_SECTOR] += |
|
r[d] * w[ii * 2] * w[jj * 2 + 1]; |
|
} |
|
if ((i + nearest[ii] >= 0) && |
|
(i + nearest[ii] <= sizeY - 1) && |
|
(j + nearest[jj] >= 0) && |
|
(j + nearest[jj] <= sizeX - 1)) |
|
{ |
|
(*map)->map[(i + nearest[ii]) * stringSize + (j + nearest[jj]) * (*map)->numFeatures + alfa[d * 2 ] ] += |
|
r[d] * w[ii * 2 + 1] * w[jj * 2 + 1]; |
|
(*map)->map[(i + nearest[ii]) * stringSize + (j + nearest[jj]) * (*map)->numFeatures + alfa[d * 2 + 1] + NUM_SECTOR] += |
|
r[d] * w[ii * 2 + 1] * w[jj * 2 + 1]; |
|
} |
|
} |
|
}/*for(jj = 0; jj < k; jj++)*/ |
|
}/*for(ii = 0; ii < k; ii++)*/ |
|
}/*for(j = 1; j < sizeX - 1; j++)*/ |
|
}/*for(i = 1; i < sizeY - 1; i++)*/ |
|
|
|
cvReleaseImage(&dx); |
|
cvReleaseImage(&dy); |
|
|
|
|
|
free(w); |
|
free(nearest); |
|
|
|
free(r); |
|
free(alfa); |
|
|
|
return LATENT_SVM_OK; |
|
} |
|
|
|
/* |
|
// Feature map Normalization and Truncation |
|
// |
|
// API |
|
// int normalizeAndTruncate(featureMap *map, const float alfa); |
|
// INPUT |
|
// map - feature map |
|
// alfa - truncation threshold |
|
// OUTPUT |
|
// map - truncated and normalized feature map |
|
// RESULT |
|
// Error status |
|
*/ |
|
int normalizeAndTruncate(CvLSVMFeatureMap *map, const float alfa) |
|
{ |
|
int i,j, ii; |
|
int sizeX, sizeY, p, pos, pp, xp, pos1, pos2; |
|
float * partOfNorm; // norm of C(i, j) |
|
float * newData; |
|
float valOfNorm; |
|
|
|
sizeX = map->sizeX; |
|
sizeY = map->sizeY; |
|
partOfNorm = (float *)malloc (sizeof(float) * (sizeX * sizeY)); |
|
|
|
p = NUM_SECTOR; |
|
xp = NUM_SECTOR * 3; |
|
pp = NUM_SECTOR * 12; |
|
|
|
for(i = 0; i < sizeX * sizeY; i++) |
|
{ |
|
valOfNorm = 0.0f; |
|
pos = i * map->numFeatures; |
|
for(j = 0; j < p; j++) |
|
{ |
|
valOfNorm += map->map[pos + j] * map->map[pos + j]; |
|
}/*for(j = 0; j < p; j++)*/ |
|
partOfNorm[i] = valOfNorm; |
|
}/*for(i = 0; i < sizeX * sizeY; i++)*/ |
|
|
|
sizeX -= 2; |
|
sizeY -= 2; |
|
|
|
newData = (float *)malloc (sizeof(float) * (sizeX * sizeY * pp)); |
|
//normalization |
|
for(i = 1; i <= sizeY; i++) |
|
{ |
|
for(j = 1; j <= sizeX; j++) |
|
{ |
|
valOfNorm = sqrtf( |
|
partOfNorm[(i )*(sizeX + 2) + (j )] + |
|
partOfNorm[(i )*(sizeX + 2) + (j + 1)] + |
|
partOfNorm[(i + 1)*(sizeX + 2) + (j )] + |
|
partOfNorm[(i + 1)*(sizeX + 2) + (j + 1)]) + FLT_EPSILON; |
|
pos1 = (i ) * (sizeX + 2) * xp + (j ) * xp; |
|
pos2 = (i-1) * (sizeX ) * pp + (j-1) * pp; |
|
for(ii = 0; ii < p; ii++) |
|
{ |
|
newData[pos2 + ii ] = map->map[pos1 + ii ] / valOfNorm; |
|
}/*for(ii = 0; ii < p; ii++)*/ |
|
for(ii = 0; ii < 2 * p; ii++) |
|
{ |
|
newData[pos2 + ii + p * 4] = map->map[pos1 + ii + p] / valOfNorm; |
|
}/*for(ii = 0; ii < 2 * p; ii++)*/ |
|
valOfNorm = sqrtf( |
|
partOfNorm[(i )*(sizeX + 2) + (j )] + |
|
partOfNorm[(i )*(sizeX + 2) + (j + 1)] + |
|
partOfNorm[(i - 1)*(sizeX + 2) + (j )] + |
|
partOfNorm[(i - 1)*(sizeX + 2) + (j + 1)]) + FLT_EPSILON; |
|
for(ii = 0; ii < p; ii++) |
|
{ |
|
newData[pos2 + ii + p ] = map->map[pos1 + ii ] / valOfNorm; |
|
}/*for(ii = 0; ii < p; ii++)*/ |
|
for(ii = 0; ii < 2 * p; ii++) |
|
{ |
|
newData[pos2 + ii + p * 6] = map->map[pos1 + ii + p] / valOfNorm; |
|
}/*for(ii = 0; ii < 2 * p; ii++)*/ |
|
valOfNorm = sqrtf( |
|
partOfNorm[(i )*(sizeX + 2) + (j )] + |
|
partOfNorm[(i )*(sizeX + 2) + (j - 1)] + |
|
partOfNorm[(i + 1)*(sizeX + 2) + (j )] + |
|
partOfNorm[(i + 1)*(sizeX + 2) + (j - 1)]) + FLT_EPSILON; |
|
for(ii = 0; ii < p; ii++) |
|
{ |
|
newData[pos2 + ii + p * 2] = map->map[pos1 + ii ] / valOfNorm; |
|
}/*for(ii = 0; ii < p; ii++)*/ |
|
for(ii = 0; ii < 2 * p; ii++) |
|
{ |
|
newData[pos2 + ii + p * 8] = map->map[pos1 + ii + p] / valOfNorm; |
|
}/*for(ii = 0; ii < 2 * p; ii++)*/ |
|
valOfNorm = sqrtf( |
|
partOfNorm[(i )*(sizeX + 2) + (j )] + |
|
partOfNorm[(i )*(sizeX + 2) + (j - 1)] + |
|
partOfNorm[(i - 1)*(sizeX + 2) + (j )] + |
|
partOfNorm[(i - 1)*(sizeX + 2) + (j - 1)]) + FLT_EPSILON; |
|
for(ii = 0; ii < p; ii++) |
|
{ |
|
newData[pos2 + ii + p * 3 ] = map->map[pos1 + ii ] / valOfNorm; |
|
}/*for(ii = 0; ii < p; ii++)*/ |
|
for(ii = 0; ii < 2 * p; ii++) |
|
{ |
|
newData[pos2 + ii + p * 10] = map->map[pos1 + ii + p] / valOfNorm; |
|
}/*for(ii = 0; ii < 2 * p; ii++)*/ |
|
}/*for(j = 1; j <= sizeX; j++)*/ |
|
}/*for(i = 1; i <= sizeY; i++)*/ |
|
//truncation |
|
for(i = 0; i < sizeX * sizeY * pp; i++) |
|
{ |
|
if(newData [i] > alfa) newData [i] = alfa; |
|
}/*for(i = 0; i < sizeX * sizeY * pp; i++)*/ |
|
//swap data |
|
|
|
map->numFeatures = pp; |
|
map->sizeX = sizeX; |
|
map->sizeY = sizeY; |
|
|
|
free (map->map); |
|
free (partOfNorm); |
|
|
|
map->map = newData; |
|
|
|
return LATENT_SVM_OK; |
|
} |
|
|
|
/* |
|
// Feature map reduction |
|
// In each cell we reduce dimension of the feature vector |
|
// according to original paper special procedure |
|
// |
|
// API |
|
// int PCAFeatureMaps(featureMap *map) |
|
// INPUT |
|
// map - feature map |
|
// OUTPUT |
|
// map - feature map |
|
// RESULT |
|
// Error status |
|
*/ |
|
int PCAFeatureMaps(CvLSVMFeatureMap *map) |
|
{ |
|
int i,j, ii, jj, k; |
|
int sizeX, sizeY, p, pp, xp, yp, pos1, pos2; |
|
float * newData; |
|
float val; |
|
float nx, ny; |
|
|
|
sizeX = map->sizeX; |
|
sizeY = map->sizeY; |
|
p = map->numFeatures; |
|
pp = NUM_SECTOR * 3 + 4; |
|
yp = 4; |
|
xp = NUM_SECTOR; |
|
|
|
nx = 1.0f / sqrtf((float)(xp * 2)); |
|
ny = 1.0f / sqrtf((float)(yp )); |
|
|
|
newData = (float *)malloc (sizeof(float) * (sizeX * sizeY * pp)); |
|
|
|
for(i = 0; i < sizeY; i++) |
|
{ |
|
for(j = 0; j < sizeX; j++) |
|
{ |
|
pos1 = ((i)*sizeX + j)*p; |
|
pos2 = ((i)*sizeX + j)*pp; |
|
k = 0; |
|
for(jj = 0; jj < xp * 2; jj++) |
|
{ |
|
val = 0; |
|
for(ii = 0; ii < yp; ii++) |
|
{ |
|
val += map->map[pos1 + yp * xp + ii * xp * 2 + jj]; |
|
}/*for(ii = 0; ii < yp; ii++)*/ |
|
newData[pos2 + k] = val * ny; |
|
k++; |
|
}/*for(jj = 0; jj < xp * 2; jj++)*/ |
|
for(jj = 0; jj < xp; jj++) |
|
{ |
|
val = 0; |
|
for(ii = 0; ii < yp; ii++) |
|
{ |
|
val += map->map[pos1 + ii * xp + jj]; |
|
}/*for(ii = 0; ii < yp; ii++)*/ |
|
newData[pos2 + k] = val * ny; |
|
k++; |
|
}/*for(jj = 0; jj < xp; jj++)*/ |
|
for(ii = 0; ii < yp; ii++) |
|
{ |
|
val = 0; |
|
for(jj = 0; jj < 2 * xp; jj++) |
|
{ |
|
val += map->map[pos1 + yp * xp + ii * xp * 2 + jj]; |
|
}/*for(jj = 0; jj < xp; jj++)*/ |
|
newData[pos2 + k] = val * nx; |
|
k++; |
|
} /*for(ii = 0; ii < yp; ii++)*/ |
|
}/*for(j = 0; j < sizeX; j++)*/ |
|
}/*for(i = 0; i < sizeY; i++)*/ |
|
//swap data |
|
|
|
map->numFeatures = pp; |
|
|
|
free (map->map); |
|
|
|
map->map = newData; |
|
|
|
return LATENT_SVM_OK; |
|
} |
|
|
|
|
|
static int getPathOfFeaturePyramid(IplImage * image, |
|
float step, int numStep, int startIndex, |
|
int sideLength, CvLSVMFeaturePyramid **maps) |
|
{ |
|
CvLSVMFeatureMap *map; |
|
IplImage *scaleTmp; |
|
float scale; |
|
int i; |
|
|
|
for(i = 0; i < numStep; i++) |
|
{ |
|
scale = 1.0f / powf(step, (float)i); |
|
scaleTmp = resize_opencv (image, scale); |
|
getFeatureMaps(scaleTmp, sideLength, &map); |
|
normalizeAndTruncate(map, VAL_OF_TRUNCATE); |
|
PCAFeatureMaps(map); |
|
(*maps)->pyramid[startIndex + i] = map; |
|
cvReleaseImage(&scaleTmp); |
|
}/*for(i = 0; i < numStep; i++)*/ |
|
return LATENT_SVM_OK; |
|
} |
|
|
|
/* |
|
// Getting feature pyramid |
|
// |
|
// API |
|
// int getFeaturePyramid(IplImage * image, const filterObject **all_F, |
|
const int n_f, |
|
const int lambda, const int k, |
|
const int startX, const int startY, |
|
const int W, const int H, featurePyramid **maps); |
|
// INPUT |
|
// image - image |
|
// OUTPUT |
|
// maps - feature maps for all levels |
|
// RESULT |
|
// Error status |
|
*/ |
|
int getFeaturePyramid(IplImage * image, CvLSVMFeaturePyramid **maps) |
|
{ |
|
IplImage *imgResize; |
|
float step; |
|
int numStep; |
|
int maxNumCells; |
|
int W, H; |
|
|
|
if(image->depth == IPL_DEPTH_32F) |
|
{ |
|
imgResize = image; |
|
} |
|
else |
|
{ |
|
imgResize = cvCreateImage(cvSize(image->width , image->height) , |
|
IPL_DEPTH_32F , 3); |
|
cvConvert(image, imgResize); |
|
} |
|
|
|
W = imgResize->width; |
|
H = imgResize->height; |
|
|
|
step = powf(2.0f, 1.0f / ((float)LAMBDA)); |
|
maxNumCells = W / SIDE_LENGTH; |
|
if( maxNumCells > H / SIDE_LENGTH ) |
|
{ |
|
maxNumCells = H / SIDE_LENGTH; |
|
} |
|
numStep = (int)(logf((float) maxNumCells / (5.0f)) / logf( step )) + 1; |
|
|
|
allocFeaturePyramidObject(maps, numStep + LAMBDA); |
|
|
|
getPathOfFeaturePyramid(imgResize, step , LAMBDA, 0, |
|
SIDE_LENGTH / 2, maps); |
|
getPathOfFeaturePyramid(imgResize, step, numStep, LAMBDA, |
|
SIDE_LENGTH , maps); |
|
|
|
if(image->depth != IPL_DEPTH_32F) |
|
{ |
|
cvReleaseImage(&imgResize); |
|
} |
|
|
|
return LATENT_SVM_OK; |
|
}
|
|
|