mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
6.7 KiB
168 lines
6.7 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the OpenCV Foundation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
#undef ALEX_DEBUG |
|
#include "debug.hpp" |
|
#include <vector> |
|
#include <algorithm> |
|
|
|
#define ABSCLIP(val,threshold) MIN(MAX((val),-(threshold)),(threshold)) |
|
|
|
namespace cv{namespace optim{ |
|
|
|
class AddFloatToCharScaled{ |
|
public: |
|
AddFloatToCharScaled(double scale):_scale(scale){} |
|
inline double operator()(double a,uchar b){ |
|
return a+_scale*((double)b); |
|
} |
|
private: |
|
double _scale; |
|
}; |
|
|
|
#ifndef OPENCV_NOSTL |
|
using std::transform; |
|
#else |
|
template <class InputIterator, class InputIterator2, class OutputIterator, class BinaryOperator> |
|
static OutputIterator transform (InputIterator first1, InputIterator last1, InputIterator2 first2, |
|
OutputIterator result, BinaryOperator binary_op) |
|
{ |
|
while (first1 != last1) |
|
{ |
|
*result = binary_op(*first1, *first2); |
|
++result; ++first1; ++first2; |
|
} |
|
return result; |
|
} |
|
#endif |
|
void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda, int niters){ |
|
|
|
CV_Assert(observations.size()>0 && niters>0 && lambda>0); |
|
|
|
const double L2 = 8.0, tau = 0.02, sigma = 1./(L2*tau), theta = 1.0; |
|
double clambda = (double)lambda; |
|
double s=0; |
|
const int workdepth = CV_64F; |
|
|
|
int i, x, y, rows=observations[0].rows, cols=observations[0].cols,count; |
|
for(i=1;i<(int)observations.size();i++){ |
|
CV_Assert(observations[i].rows==rows && observations[i].cols==cols); |
|
} |
|
|
|
Mat X, P = Mat::zeros(rows, cols, CV_MAKETYPE(workdepth, 2)); |
|
observations[0].convertTo(X, workdepth, 1./255); |
|
std::vector< Mat_<double> > Rs(observations.size()); |
|
for(count=0;count<(int)Rs.size();count++){ |
|
Rs[count]=Mat::zeros(rows,cols,workdepth); |
|
} |
|
|
|
for( i = 0; i < niters; i++ ) |
|
{ |
|
double currsigma = i == 0 ? 1 + sigma : sigma; |
|
|
|
// P_ = P + sigma*nabla(X) |
|
// P(x,y) = P_(x,y)/max(||P(x,y)||,1) |
|
for( y = 0; y < rows; y++ ) |
|
{ |
|
const double* x_curr = X.ptr<double>(y); |
|
const double* x_next = X.ptr<double>(std::min(y+1, rows-1)); |
|
Point2d* p_curr = P.ptr<Point2d>(y); |
|
double dx, dy, m; |
|
for( x = 0; x < cols-1; x++ ) |
|
{ |
|
dx = (x_curr[x+1] - x_curr[x])*currsigma + p_curr[x].x; |
|
dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y; |
|
m = 1.0/std::max(std::sqrt(dx*dx + dy*dy), 1.0); |
|
p_curr[x].x = dx*m; |
|
p_curr[x].y = dy*m; |
|
} |
|
dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y; |
|
m = 1.0/std::max(std::abs(dy), 1.0); |
|
p_curr[x].x = 0.0; |
|
p_curr[x].y = dy*m; |
|
} |
|
|
|
|
|
//Rs = clip(Rs + sigma*(X-imgs), -clambda, clambda) |
|
for(count=0;count<(int)Rs.size();count++){ |
|
transform<MatIterator_<double>,MatConstIterator_<uchar>,MatIterator_<double>,AddFloatToCharScaled>( |
|
Rs[count].begin(),Rs[count].end(),observations[count].begin<uchar>(), |
|
Rs[count].begin(),AddFloatToCharScaled(-sigma/255.0)); |
|
Rs[count]+=sigma*X; |
|
min(Rs[count],clambda,Rs[count]); |
|
max(Rs[count],-clambda,Rs[count]); |
|
} |
|
|
|
for( y = 0; y < rows; y++ ) |
|
{ |
|
double* x_curr = X.ptr<double>(y); |
|
const Point2d* p_curr = P.ptr<Point2d>(y); |
|
const Point2d* p_prev = P.ptr<Point2d>(std::max(y - 1, 0)); |
|
|
|
// X1 = X + tau*(-nablaT(P)) |
|
x = 0; |
|
s=0.0; |
|
for(count=0;count<(int)Rs.size();count++){ |
|
s=s+Rs[count](y,x); |
|
} |
|
double x_new = x_curr[x] + tau*(p_curr[x].y - p_prev[x].y)-tau*s; |
|
// X = X2 + theta*(X2 - X) |
|
x_curr[x] = x_new + theta*(x_new - x_curr[x]); |
|
|
|
|
|
for(x = 1; x < cols; x++ ) |
|
{ |
|
s=0.0; |
|
for(count=0;count<(int)Rs.size();count++){ |
|
s+=Rs[count](y,x); |
|
} |
|
// X1 = X + tau*(-nablaT(P)) |
|
x_new = x_curr[x] + tau*(p_curr[x].x - p_curr[x-1].x + p_curr[x].y - p_prev[x].y)-tau*s; |
|
// X = X2 + theta*(X2 - X) |
|
x_curr[x] = x_new + theta*(x_new - x_curr[x]); |
|
} |
|
} |
|
} |
|
|
|
result.create(X.rows,X.cols,CV_8U); |
|
X.convertTo(result, CV_8U, 255); |
|
} |
|
}}
|
|
|