mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
73 lines
2.0 KiB
73 lines
2.0 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
K-means clusterization test |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 |
|
from numpy import random |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
|
|
def make_gaussians(cluster_n, img_size): |
|
points = [] |
|
ref_distrs = [] |
|
sizes = [] |
|
for i in xrange(cluster_n): |
|
mean = (0.1 + 0.8*random.rand(2)) * img_size |
|
a = (random.rand(2, 2)-0.5)*img_size*0.1 |
|
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2) |
|
n = 100 + random.randint(900) |
|
pts = random.multivariate_normal(mean, cov, n) |
|
points.append( pts ) |
|
ref_distrs.append( (mean, cov) ) |
|
sizes.append(n) |
|
points = np.float32( np.vstack(points) ) |
|
return points, ref_distrs, sizes |
|
|
|
def getMainLabelConfidence(labels, nLabels): |
|
|
|
n = len(labels) |
|
labelsDict = dict.fromkeys(range(nLabels), 0) |
|
labelsConfDict = dict.fromkeys(range(nLabels)) |
|
|
|
for i in range(n): |
|
labelsDict[labels[i][0]] += 1 |
|
|
|
for i in range(nLabels): |
|
labelsConfDict[i] = float(labelsDict[i]) / n |
|
|
|
return max(labelsConfDict.values()) |
|
|
|
class kmeans_test(NewOpenCVTests): |
|
|
|
def test_kmeans(self): |
|
|
|
np.random.seed(10) |
|
|
|
cluster_n = 5 |
|
img_size = 512 |
|
|
|
# generating bright palette |
|
colors = np.zeros((1, cluster_n, 3), np.uint8) |
|
colors[0,:] = 255 |
|
colors[0,:,0] = np.arange(0, 180, 180.0/cluster_n) |
|
colors = cv2.cvtColor(colors, cv2.COLOR_HSV2BGR)[0] |
|
|
|
points, _, clusterSizes = make_gaussians(cluster_n, img_size) |
|
|
|
term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1) |
|
ret, labels, centers = cv2.kmeans(points, cluster_n, None, term_crit, 10, 0) |
|
|
|
self.assertEqual(len(centers), cluster_n) |
|
|
|
offset = 0 |
|
for i in range(cluster_n): |
|
confidence = getMainLabelConfidence(labels[offset : (offset + clusterSizes[i])], cluster_n) |
|
offset += clusterSizes[i] |
|
self.assertGreater(confidence, 0.9) |