mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
465 lines
20 KiB
465 lines
20 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/calib3d.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
static std::string getMethodName(HandEyeCalibrationMethod method) |
|
{ |
|
std::string method_name = ""; |
|
switch (method) |
|
{ |
|
case CALIB_HAND_EYE_TSAI: |
|
method_name = "Tsai"; |
|
break; |
|
|
|
case CALIB_HAND_EYE_PARK: |
|
method_name = "Park"; |
|
break; |
|
|
|
case CALIB_HAND_EYE_HORAUD: |
|
method_name = "Horaud"; |
|
break; |
|
|
|
case CALIB_HAND_EYE_ANDREFF: |
|
method_name = "Andreff"; |
|
break; |
|
|
|
case CALIB_HAND_EYE_DANIILIDIS: |
|
method_name = "Daniilidis"; |
|
break; |
|
|
|
default: |
|
break; |
|
} |
|
|
|
return method_name; |
|
} |
|
|
|
class CV_CalibrateHandEyeTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_CalibrateHandEyeTest() { |
|
eps_rvec[CALIB_HAND_EYE_TSAI] = 1.0e-8; |
|
eps_rvec[CALIB_HAND_EYE_PARK] = 1.0e-8; |
|
eps_rvec[CALIB_HAND_EYE_HORAUD] = 1.0e-8; |
|
eps_rvec[CALIB_HAND_EYE_ANDREFF] = 1.0e-8; |
|
eps_rvec[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-8; |
|
|
|
eps_tvec[CALIB_HAND_EYE_TSAI] = 1.0e-8; |
|
eps_tvec[CALIB_HAND_EYE_PARK] = 1.0e-8; |
|
eps_tvec[CALIB_HAND_EYE_HORAUD] = 1.0e-8; |
|
eps_tvec[CALIB_HAND_EYE_ANDREFF] = 1.0e-8; |
|
eps_tvec[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-8; |
|
|
|
eps_rvec_noise[CALIB_HAND_EYE_TSAI] = 2.0e-2; |
|
eps_rvec_noise[CALIB_HAND_EYE_PARK] = 2.0e-2; |
|
eps_rvec_noise[CALIB_HAND_EYE_HORAUD] = 2.0e-2; |
|
eps_rvec_noise[CALIB_HAND_EYE_ANDREFF] = 1.0e-2; |
|
eps_rvec_noise[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-2; |
|
|
|
eps_tvec_noise[CALIB_HAND_EYE_TSAI] = 5.0e-2; |
|
eps_tvec_noise[CALIB_HAND_EYE_PARK] = 5.0e-2; |
|
eps_tvec_noise[CALIB_HAND_EYE_HORAUD] = 5.0e-2; |
|
eps_tvec_noise[CALIB_HAND_EYE_ANDREFF] = 5.0e-2; |
|
eps_tvec_noise[CALIB_HAND_EYE_DANIILIDIS] = 5.0e-2; |
|
} |
|
protected: |
|
virtual void run(int); |
|
void generatePose(RNG& rng, double min_theta, double max_theta, |
|
double min_tx, double max_tx, |
|
double min_ty, double max_ty, |
|
double min_tz, double max_tz, |
|
Mat& R, Mat& tvec, |
|
bool randSign=false); |
|
void simulateData(RNG& rng, int nPoses, |
|
std::vector<Mat> &R_gripper2base, std::vector<Mat> &t_gripper2base, |
|
std::vector<Mat> &R_target2cam, std::vector<Mat> &t_target2cam, |
|
bool noise, Mat& R_cam2gripper, Mat& t_cam2gripper); |
|
Mat homogeneousInverse(const Mat& T); |
|
double sign_double(double val); |
|
|
|
double eps_rvec[5]; |
|
double eps_tvec[5]; |
|
double eps_rvec_noise[5]; |
|
double eps_tvec_noise[5]; |
|
}; |
|
|
|
void CV_CalibrateHandEyeTest::run(int) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
|
|
RNG& rng = ts->get_rng(); |
|
|
|
std::vector<std::vector<double> > vec_rvec_diff(5); |
|
std::vector<std::vector<double> > vec_tvec_diff(5); |
|
std::vector<std::vector<double> > vec_rvec_diff_noise(5); |
|
std::vector<std::vector<double> > vec_tvec_diff_noise(5); |
|
|
|
std::vector<HandEyeCalibrationMethod> methods; |
|
methods.push_back(CALIB_HAND_EYE_TSAI); |
|
methods.push_back(CALIB_HAND_EYE_PARK); |
|
methods.push_back(CALIB_HAND_EYE_HORAUD); |
|
methods.push_back(CALIB_HAND_EYE_ANDREFF); |
|
methods.push_back(CALIB_HAND_EYE_DANIILIDIS); |
|
|
|
const int nTests = 100; |
|
for (int i = 0; i < nTests; i++) |
|
{ |
|
const int nPoses = 10; |
|
{ |
|
//No noise |
|
std::vector<Mat> R_gripper2base, t_gripper2base; |
|
std::vector<Mat> R_target2cam, t_target2cam; |
|
Mat R_cam2gripper_true, t_cam2gripper_true; |
|
|
|
const bool noise = false; |
|
simulateData(rng, nPoses, R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, noise, R_cam2gripper_true, t_cam2gripper_true); |
|
|
|
for (size_t idx = 0; idx < methods.size(); idx++) |
|
{ |
|
Mat rvec_cam2gripper_true; |
|
cv::Rodrigues(R_cam2gripper_true, rvec_cam2gripper_true); |
|
|
|
Mat R_cam2gripper_est, t_cam2gripper_est; |
|
calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]); |
|
|
|
Mat rvec_cam2gripper_est; |
|
cv::Rodrigues(R_cam2gripper_est, rvec_cam2gripper_est); |
|
|
|
double rvecDiff = cvtest::norm(rvec_cam2gripper_true, rvec_cam2gripper_est, NORM_L2); |
|
double tvecDiff = cvtest::norm(t_cam2gripper_true, t_cam2gripper_est, NORM_L2); |
|
|
|
vec_rvec_diff[idx].push_back(rvecDiff); |
|
vec_tvec_diff[idx].push_back(tvecDiff); |
|
|
|
const double epsilon_rvec = eps_rvec[idx]; |
|
const double epsilon_tvec = eps_tvec[idx]; |
|
|
|
//Maybe a better accuracy test would be to compare the mean and std errors with some thresholds? |
|
if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Invalid accuracy (no noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n", |
|
getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
} |
|
} |
|
} |
|
|
|
{ |
|
//Gaussian noise on transformations between calibration target frame and camera frame and between gripper and robot base frames |
|
std::vector<Mat> R_gripper2base, t_gripper2base; |
|
std::vector<Mat> R_target2cam, t_target2cam; |
|
Mat R_cam2gripper_true, t_cam2gripper_true; |
|
|
|
const bool noise = true; |
|
simulateData(rng, nPoses, R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, noise, R_cam2gripper_true, t_cam2gripper_true); |
|
|
|
for (size_t idx = 0; idx < methods.size(); idx++) |
|
{ |
|
Mat rvec_cam2gripper_true; |
|
cv::Rodrigues(R_cam2gripper_true, rvec_cam2gripper_true); |
|
|
|
Mat R_cam2gripper_est, t_cam2gripper_est; |
|
calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]); |
|
|
|
Mat rvec_cam2gripper_est; |
|
cv::Rodrigues(R_cam2gripper_est, rvec_cam2gripper_est); |
|
|
|
double rvecDiff = cvtest::norm(rvec_cam2gripper_true, rvec_cam2gripper_est, NORM_L2); |
|
double tvecDiff = cvtest::norm(t_cam2gripper_true, t_cam2gripper_est, NORM_L2); |
|
|
|
vec_rvec_diff_noise[idx].push_back(rvecDiff); |
|
vec_tvec_diff_noise[idx].push_back(tvecDiff); |
|
|
|
const double epsilon_rvec = eps_rvec_noise[idx]; |
|
const double epsilon_tvec = eps_tvec_noise[idx]; |
|
|
|
//Maybe a better accuracy test would be to compare the mean and std errors with some thresholds? |
|
if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Invalid accuracy (noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n", |
|
getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
} |
|
} |
|
} |
|
} |
|
|
|
for (size_t idx = 0; idx < methods.size(); idx++) |
|
{ |
|
{ |
|
double max_rvec_diff = *std::max_element(vec_rvec_diff[idx].begin(), vec_rvec_diff[idx].end()); |
|
double mean_rvec_diff = std::accumulate(vec_rvec_diff[idx].begin(), |
|
vec_rvec_diff[idx].end(), 0.0) / vec_rvec_diff[idx].size(); |
|
double sq_sum_rvec_diff = std::inner_product(vec_rvec_diff[idx].begin(), vec_rvec_diff[idx].end(), |
|
vec_rvec_diff[idx].begin(), 0.0); |
|
double std_rvec_diff = std::sqrt(sq_sum_rvec_diff / vec_rvec_diff[idx].size() - mean_rvec_diff * mean_rvec_diff); |
|
|
|
double max_tvec_diff = *std::max_element(vec_tvec_diff[idx].begin(), vec_tvec_diff[idx].end()); |
|
double mean_tvec_diff = std::accumulate(vec_tvec_diff[idx].begin(), |
|
vec_tvec_diff[idx].end(), 0.0) / vec_tvec_diff[idx].size(); |
|
double sq_sum_tvec_diff = std::inner_product(vec_tvec_diff[idx].begin(), vec_tvec_diff[idx].end(), |
|
vec_tvec_diff[idx].begin(), 0.0); |
|
double std_tvec_diff = std::sqrt(sq_sum_tvec_diff / vec_tvec_diff[idx].size() - mean_tvec_diff * mean_tvec_diff); |
|
|
|
std::cout << "\nMethod " << getMethodName(methods[idx]) << ":\n" |
|
<< "Max rvec error: " << max_rvec_diff << ", Mean rvec error: " << mean_rvec_diff |
|
<< ", Std rvec error: " << std_rvec_diff << "\n" |
|
<< "Max tvec error: " << max_tvec_diff << ", Mean tvec error: " << mean_tvec_diff |
|
<< ", Std tvec error: " << std_tvec_diff << std::endl; |
|
} |
|
{ |
|
double max_rvec_diff = *std::max_element(vec_rvec_diff_noise[idx].begin(), vec_rvec_diff_noise[idx].end()); |
|
double mean_rvec_diff = std::accumulate(vec_rvec_diff_noise[idx].begin(), |
|
vec_rvec_diff_noise[idx].end(), 0.0) / vec_rvec_diff_noise[idx].size(); |
|
double sq_sum_rvec_diff = std::inner_product(vec_rvec_diff_noise[idx].begin(), vec_rvec_diff_noise[idx].end(), |
|
vec_rvec_diff_noise[idx].begin(), 0.0); |
|
double std_rvec_diff = std::sqrt(sq_sum_rvec_diff / vec_rvec_diff_noise[idx].size() - mean_rvec_diff * mean_rvec_diff); |
|
|
|
double max_tvec_diff = *std::max_element(vec_tvec_diff_noise[idx].begin(), vec_tvec_diff_noise[idx].end()); |
|
double mean_tvec_diff = std::accumulate(vec_tvec_diff_noise[idx].begin(), |
|
vec_tvec_diff_noise[idx].end(), 0.0) / vec_tvec_diff_noise[idx].size(); |
|
double sq_sum_tvec_diff = std::inner_product(vec_tvec_diff_noise[idx].begin(), vec_tvec_diff_noise[idx].end(), |
|
vec_tvec_diff_noise[idx].begin(), 0.0); |
|
double std_tvec_diff = std::sqrt(sq_sum_tvec_diff / vec_tvec_diff_noise[idx].size() - mean_tvec_diff * mean_tvec_diff); |
|
|
|
std::cout << "Method (noise) " << getMethodName(methods[idx]) << ":\n" |
|
<< "Max rvec error: " << max_rvec_diff << ", Mean rvec error: " << mean_rvec_diff |
|
<< ", Std rvec error: " << std_rvec_diff << "\n" |
|
<< "Max tvec error: " << max_tvec_diff << ", Mean tvec error: " << mean_tvec_diff |
|
<< ", Std tvec error: " << std_tvec_diff << std::endl; |
|
} |
|
} |
|
} |
|
|
|
void CV_CalibrateHandEyeTest::generatePose(RNG& rng, double min_theta, double max_theta, |
|
double min_tx, double max_tx, |
|
double min_ty, double max_ty, |
|
double min_tz, double max_tz, |
|
Mat& R, Mat& tvec, |
|
bool random_sign) |
|
{ |
|
Mat axis(3, 1, CV_64FC1); |
|
for (int i = 0; i < 3; i++) |
|
{ |
|
axis.at<double>(i,0) = rng.uniform(-1.0, 1.0); |
|
} |
|
double theta = rng.uniform(min_theta, max_theta); |
|
if (random_sign) |
|
{ |
|
theta *= sign_double(rng.uniform(-1.0, 1.0)); |
|
} |
|
|
|
Mat rvec(3, 1, CV_64FC1); |
|
rvec.at<double>(0,0) = theta*axis.at<double>(0,0); |
|
rvec.at<double>(1,0) = theta*axis.at<double>(1,0); |
|
rvec.at<double>(2,0) = theta*axis.at<double>(2,0); |
|
|
|
tvec.create(3, 1, CV_64FC1); |
|
tvec.at<double>(0,0) = rng.uniform(min_tx, max_tx); |
|
tvec.at<double>(1,0) = rng.uniform(min_ty, max_ty); |
|
tvec.at<double>(2,0) = rng.uniform(min_tz, max_tz); |
|
|
|
if (random_sign) |
|
{ |
|
tvec.at<double>(0,0) *= sign_double(rng.uniform(-1.0, 1.0)); |
|
tvec.at<double>(1,0) *= sign_double(rng.uniform(-1.0, 1.0)); |
|
tvec.at<double>(2,0) *= sign_double(rng.uniform(-1.0, 1.0)); |
|
} |
|
|
|
cv::Rodrigues(rvec, R); |
|
} |
|
|
|
void CV_CalibrateHandEyeTest::simulateData(RNG& rng, int nPoses, |
|
std::vector<Mat> &R_gripper2base, std::vector<Mat> &t_gripper2base, |
|
std::vector<Mat> &R_target2cam, std::vector<Mat> &t_target2cam, |
|
bool noise, Mat& R_cam2gripper, Mat& t_cam2gripper) |
|
{ |
|
//to avoid generating values close to zero, |
|
//we use positive range values and randomize the sign |
|
const bool random_sign = true; |
|
generatePose(rng, 10.0*CV_PI/180.0, 50.0*CV_PI/180.0, |
|
0.05, 0.5, 0.05, 0.5, 0.05, 0.5, |
|
R_cam2gripper, t_cam2gripper, random_sign); |
|
|
|
Mat R_target2base, t_target2base; |
|
generatePose(rng, 5.0*CV_PI/180.0, 85.0*CV_PI/180.0, |
|
0.5, 3.5, 0.5, 3.5, 0.5, 3.5, |
|
R_target2base, t_target2base, random_sign); |
|
|
|
for (int i = 0; i < nPoses; i++) |
|
{ |
|
Mat R_gripper2base_, t_gripper2base_; |
|
generatePose(rng, 5.0*CV_PI/180.0, 45.0*CV_PI/180.0, |
|
0.5, 1.5, 0.5, 1.5, 0.5, 1.5, |
|
R_gripper2base_, t_gripper2base_, random_sign); |
|
|
|
R_gripper2base.push_back(R_gripper2base_); |
|
t_gripper2base.push_back(t_gripper2base_); |
|
|
|
Mat T_cam2gripper = Mat::eye(4, 4, CV_64FC1); |
|
R_cam2gripper.copyTo(T_cam2gripper(Rect(0, 0, 3, 3))); |
|
t_cam2gripper.copyTo(T_cam2gripper(Rect(3, 0, 1, 3))); |
|
|
|
Mat T_gripper2base = Mat::eye(4, 4, CV_64FC1); |
|
R_gripper2base_.copyTo(T_gripper2base(Rect(0, 0, 3, 3))); |
|
t_gripper2base_.copyTo(T_gripper2base(Rect(3, 0, 1, 3))); |
|
|
|
Mat T_base2cam = homogeneousInverse(T_cam2gripper) * homogeneousInverse(T_gripper2base); |
|
Mat T_target2base = Mat::eye(4, 4, CV_64FC1); |
|
R_target2base.copyTo(T_target2base(Rect(0, 0, 3, 3))); |
|
t_target2base.copyTo(T_target2base(Rect(3, 0, 1, 3))); |
|
Mat T_target2cam = T_base2cam * T_target2base; |
|
|
|
if (noise) |
|
{ |
|
//Add some noise for the transformation between the target and the camera |
|
Mat R_target2cam_noise = T_target2cam(Rect(0, 0, 3, 3)); |
|
Mat rvec_target2cam_noise; |
|
cv::Rodrigues(R_target2cam_noise, rvec_target2cam_noise); |
|
rvec_target2cam_noise.at<double>(0,0) += rng.gaussian(0.002); |
|
rvec_target2cam_noise.at<double>(1,0) += rng.gaussian(0.002); |
|
rvec_target2cam_noise.at<double>(2,0) += rng.gaussian(0.002); |
|
|
|
cv::Rodrigues(rvec_target2cam_noise, R_target2cam_noise); |
|
|
|
Mat t_target2cam_noise = T_target2cam(Rect(3, 0, 1, 3)); |
|
t_target2cam_noise.at<double>(0,0) += rng.gaussian(0.005); |
|
t_target2cam_noise.at<double>(1,0) += rng.gaussian(0.005); |
|
t_target2cam_noise.at<double>(2,0) += rng.gaussian(0.005); |
|
|
|
//Add some noise for the transformation between the gripper and the robot base |
|
Mat R_gripper2base_noise = T_gripper2base(Rect(0, 0, 3, 3)); |
|
Mat rvec_gripper2base_noise; |
|
cv::Rodrigues(R_gripper2base_noise, rvec_gripper2base_noise); |
|
rvec_gripper2base_noise.at<double>(0,0) += rng.gaussian(0.001); |
|
rvec_gripper2base_noise.at<double>(1,0) += rng.gaussian(0.001); |
|
rvec_gripper2base_noise.at<double>(2,0) += rng.gaussian(0.001); |
|
|
|
cv::Rodrigues(rvec_gripper2base_noise, R_gripper2base_noise); |
|
|
|
Mat t_gripper2base_noise = T_gripper2base(Rect(3, 0, 1, 3)); |
|
t_gripper2base_noise.at<double>(0,0) += rng.gaussian(0.001); |
|
t_gripper2base_noise.at<double>(1,0) += rng.gaussian(0.001); |
|
t_gripper2base_noise.at<double>(2,0) += rng.gaussian(0.001); |
|
} |
|
|
|
// test rvec represenation |
|
Mat rvec_target2cam; |
|
cv::Rodrigues(T_target2cam(Rect(0, 0, 3, 3)), rvec_target2cam); |
|
R_target2cam.push_back(rvec_target2cam); |
|
t_target2cam.push_back(T_target2cam(Rect(3, 0, 1, 3))); |
|
} |
|
} |
|
|
|
Mat CV_CalibrateHandEyeTest::homogeneousInverse(const Mat& T) |
|
{ |
|
CV_Assert( T.rows == 4 && T.cols == 4 ); |
|
|
|
Mat R = T(Rect(0, 0, 3, 3)); |
|
Mat t = T(Rect(3, 0, 1, 3)); |
|
Mat Rt = R.t(); |
|
Mat tinv = -Rt * t; |
|
Mat Tinv = Mat::eye(4, 4, T.type()); |
|
Rt.copyTo(Tinv(Rect(0, 0, 3, 3))); |
|
tinv.copyTo(Tinv(Rect(3, 0, 1, 3))); |
|
|
|
return Tinv; |
|
} |
|
|
|
double CV_CalibrateHandEyeTest::sign_double(double val) |
|
{ |
|
return (0 < val) - (val < 0); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
TEST(Calib3d_CalibrateHandEye, regression) { CV_CalibrateHandEyeTest test; test.safe_run(); } |
|
|
|
TEST(Calib3d_CalibrateHandEye, regression_17986) |
|
{ |
|
const std::string camera_poses_filename = findDataFile("cv/hand_eye_calibration/cali.txt"); |
|
const std::string end_effector_poses = findDataFile("cv/hand_eye_calibration/robot_cali.txt"); |
|
|
|
std::vector<Mat> R_target2cam; |
|
std::vector<Mat> t_target2cam; |
|
// Parse camera poses |
|
{ |
|
std::ifstream file(camera_poses_filename.c_str()); |
|
ASSERT_TRUE(file.is_open()); |
|
|
|
int ndata = 0; |
|
file >> ndata; |
|
R_target2cam.reserve(ndata); |
|
t_target2cam.reserve(ndata); |
|
|
|
std::string image_name; |
|
Matx33d cameraMatrix; |
|
Matx33d R; |
|
Matx31d t; |
|
Matx16d distCoeffs; |
|
Matx13d distCoeffs2; |
|
while (file >> image_name >> |
|
cameraMatrix(0,0) >> cameraMatrix(0,1) >> cameraMatrix(0,2) >> |
|
cameraMatrix(1,0) >> cameraMatrix(1,1) >> cameraMatrix(1,2) >> |
|
cameraMatrix(2,0) >> cameraMatrix(2,1) >> cameraMatrix(2,2) >> |
|
R(0,0) >> R(0,1) >> R(0,2) >> |
|
R(1,0) >> R(1,1) >> R(1,2) >> |
|
R(2,0) >> R(2,1) >> R(2,2) >> |
|
t(0) >> t(1) >> t(2) >> |
|
distCoeffs(0) >> distCoeffs(1) >> distCoeffs(2) >> distCoeffs(3) >> distCoeffs(4) >> |
|
distCoeffs2(0) >> distCoeffs2(1) >> distCoeffs2(2)) { |
|
R_target2cam.push_back(Mat(R)); |
|
t_target2cam.push_back(Mat(t)); |
|
} |
|
} |
|
|
|
std::vector<Mat> R_gripper2base; |
|
std::vector<Mat> t_gripper2base; |
|
// Parse end-effector poses |
|
{ |
|
std::ifstream file(end_effector_poses.c_str()); |
|
ASSERT_TRUE(file.is_open()); |
|
|
|
int ndata = 0; |
|
file >> ndata; |
|
R_gripper2base.reserve(ndata); |
|
t_gripper2base.reserve(ndata); |
|
|
|
Matx33d R; |
|
Matx31d t; |
|
Matx14d last_row; |
|
while (file >> |
|
R(0,0) >> R(0,1) >> R(0,2) >> t(0) >> |
|
R(1,0) >> R(1,1) >> R(1,2) >> t(1) >> |
|
R(2,0) >> R(2,1) >> R(2,2) >> t(2) >> |
|
last_row(0) >> last_row(1) >> last_row(2) >> last_row(3)) { |
|
R_gripper2base.push_back(Mat(R)); |
|
t_gripper2base.push_back(Mat(t)); |
|
} |
|
} |
|
|
|
std::vector<HandEyeCalibrationMethod> methods; |
|
methods.push_back(CALIB_HAND_EYE_TSAI); |
|
methods.push_back(CALIB_HAND_EYE_PARK); |
|
methods.push_back(CALIB_HAND_EYE_HORAUD); |
|
methods.push_back(CALIB_HAND_EYE_ANDREFF); |
|
methods.push_back(CALIB_HAND_EYE_DANIILIDIS); |
|
|
|
for (size_t idx = 0; idx < methods.size(); idx++) { |
|
SCOPED_TRACE(cv::format("method=%s", getMethodName(methods[idx]).c_str())); |
|
|
|
Matx33d R_cam2gripper_est; |
|
Matx31d t_cam2gripper_est; |
|
calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]); |
|
|
|
EXPECT_TRUE(checkRange(R_cam2gripper_est)); |
|
EXPECT_TRUE(checkRange(t_cam2gripper_est)); |
|
} |
|
} |
|
|
|
}} // namespace
|
|
|