mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
331 lines
11 KiB
331 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
static void Canny_reference_follow( int x, int y, float lowThreshold, const Mat& mag, Mat& dst ) |
|
{ |
|
static const int ofs[][2] = {{1,0},{1,-1},{0,-1},{-1,-1},{-1,0},{-1,1},{0,1},{1,1}}; |
|
int i; |
|
|
|
dst.at<uchar>(y, x) = (uchar)255; |
|
|
|
for( i = 0; i < 8; i++ ) |
|
{ |
|
int x1 = x + ofs[i][0]; |
|
int y1 = y + ofs[i][1]; |
|
if( (unsigned)x1 < (unsigned)mag.cols && |
|
(unsigned)y1 < (unsigned)mag.rows && |
|
mag.at<float>(y1, x1) > lowThreshold && |
|
!dst.at<uchar>(y1, x1) ) |
|
Canny_reference_follow( x1, y1, lowThreshold, mag, dst ); |
|
} |
|
} |
|
|
|
static void Canny_reference( const Mat& src, Mat& dst, |
|
double threshold1, double threshold2, |
|
int aperture_size, bool use_true_gradient ) |
|
{ |
|
dst.create(src.size(), src.type()); |
|
int m = aperture_size; |
|
Point anchor(m/2, m/2); |
|
const double tan_pi_8 = tan(CV_PI/8.); |
|
const double tan_3pi_8 = tan(CV_PI*3/8); |
|
float lowThreshold = (float)MIN(threshold1, threshold2); |
|
float highThreshold = (float)MAX(threshold1, threshold2); |
|
|
|
int x, y, width = src.cols, height = src.rows; |
|
|
|
Mat dxkernel = cvtest::calcSobelKernel2D( 1, 0, m, 0 ); |
|
Mat dykernel = cvtest::calcSobelKernel2D( 0, 1, m, 0 ); |
|
Mat dx, dy, mag(height, width, CV_32F); |
|
cvtest::filter2D(src, dx, CV_32S, dxkernel, anchor, 0, BORDER_REPLICATE); |
|
cvtest::filter2D(src, dy, CV_32S, dykernel, anchor, 0, BORDER_REPLICATE); |
|
|
|
// calc gradient magnitude |
|
for( y = 0; y < height; y++ ) |
|
{ |
|
for( x = 0; x < width; x++ ) |
|
{ |
|
int dxval = dx.at<int>(y, x), dyval = dy.at<int>(y, x); |
|
mag.at<float>(y, x) = use_true_gradient ? |
|
(float)sqrt((double)(dxval*dxval + dyval*dyval)) : |
|
(float)(fabs((double)dxval) + fabs((double)dyval)); |
|
} |
|
} |
|
|
|
// calc gradient direction, do nonmaxima suppression |
|
for( y = 0; y < height; y++ ) |
|
{ |
|
for( x = 0; x < width; x++ ) |
|
{ |
|
|
|
float a = mag.at<float>(y, x), b = 0, c = 0; |
|
int y1 = 0, y2 = 0, x1 = 0, x2 = 0; |
|
|
|
if( a <= lowThreshold ) |
|
continue; |
|
|
|
int dxval = dx.at<int>(y, x); |
|
int dyval = dy.at<int>(y, x); |
|
|
|
double tg = dxval ? (double)dyval/dxval : DBL_MAX*CV_SIGN(dyval); |
|
|
|
if( fabs(tg) < tan_pi_8 ) |
|
{ |
|
y1 = y2 = y; x1 = x + 1; x2 = x - 1; |
|
} |
|
else if( tan_pi_8 <= tg && tg <= tan_3pi_8 ) |
|
{ |
|
y1 = y + 1; y2 = y - 1; x1 = x + 1; x2 = x - 1; |
|
} |
|
else if( -tan_3pi_8 <= tg && tg <= -tan_pi_8 ) |
|
{ |
|
y1 = y - 1; y2 = y + 1; x1 = x + 1; x2 = x - 1; |
|
} |
|
else |
|
{ |
|
CV_Assert( fabs(tg) > tan_3pi_8 ); |
|
x1 = x2 = x; y1 = y + 1; y2 = y - 1; |
|
} |
|
|
|
if( (unsigned)y1 < (unsigned)height && (unsigned)x1 < (unsigned)width ) |
|
b = (float)fabs(mag.at<float>(y1, x1)); |
|
|
|
if( (unsigned)y2 < (unsigned)height && (unsigned)x2 < (unsigned)width ) |
|
c = (float)fabs(mag.at<float>(y2, x2)); |
|
|
|
if( (a > b || (a == b && ((x1 == x+1 && y1 == y) || (x1 == x && y1 == y+1)))) && a > c ) |
|
; |
|
else |
|
mag.at<float>(y, x) = -a; |
|
} |
|
} |
|
|
|
dst = Scalar::all(0); |
|
|
|
// hysteresis threshold |
|
for( y = 0; y < height; y++ ) |
|
{ |
|
for( x = 0; x < width; x++ ) |
|
if( mag.at<float>(y, x) > highThreshold && !dst.at<uchar>(y, x) ) |
|
Canny_reference_follow( x, y, lowThreshold, mag, dst ); |
|
} |
|
} |
|
|
|
//============================================================================== |
|
|
|
// aperture, true gradient |
|
typedef testing::TestWithParam<testing::tuple<int, bool>> Canny_Modes; |
|
|
|
TEST_P(Canny_Modes, accuracy) |
|
{ |
|
const int aperture = get<0>(GetParam()); |
|
const bool trueGradient = get<1>(GetParam()); |
|
const double range = aperture == 3 ? 300. : 1000.; |
|
RNG & rng = TS::ptr()->get_rng(); |
|
|
|
for (int ITER = 0; ITER < 20; ++ITER) |
|
{ |
|
SCOPED_TRACE(cv::format("iteration %d", ITER)); |
|
|
|
const std::string fname = cvtest::findDataFile("shared/fruits.png"); |
|
const Mat original = cv::imread(fname, IMREAD_GRAYSCALE); |
|
|
|
const double thresh1 = rng.uniform(0., range); |
|
const double thresh2 = rng.uniform(0., range * 0.3); |
|
const Size sz(rng.uniform(127, 800), rng.uniform(127, 600)); |
|
const Size osz = original.size(); |
|
|
|
// preparation |
|
Mat img; |
|
if (sz.width >= osz.width || sz.height >= osz.height) |
|
{ |
|
// larger image -> scale |
|
resize(original, img, sz, 0, 0, INTER_LINEAR_EXACT); |
|
} |
|
else |
|
{ |
|
// smaller image -> crop |
|
Point origin(rng.uniform(0, osz.width - sz.width), rng.uniform(0, osz.height - sz.height)); |
|
Rect roi(origin, sz); |
|
original(roi).copyTo(img); |
|
} |
|
GaussianBlur(img, img, Size(5, 5), 0); |
|
|
|
// regular function |
|
Mat result; |
|
{ |
|
cv::Canny(img, result, thresh1, thresh2, aperture, trueGradient); |
|
} |
|
|
|
// custom derivatives |
|
Mat customResult; |
|
{ |
|
Mat dxkernel = cvtest::calcSobelKernel2D(1, 0, aperture, 0); |
|
Mat dykernel = cvtest::calcSobelKernel2D(0, 1, aperture, 0); |
|
Point anchor(aperture / 2, aperture / 2); |
|
cv::Mat dx, dy; |
|
cvtest::filter2D(img, dx, CV_16S, dxkernel, anchor, 0, BORDER_REPLICATE); |
|
cvtest::filter2D(img, dy, CV_16S, dykernel, anchor, 0, BORDER_REPLICATE); |
|
cv::Canny(dx, dy, customResult, thresh1, thresh2, trueGradient); |
|
} |
|
|
|
Mat reference; |
|
Canny_reference(img, reference, thresh1, thresh2, aperture, trueGradient); |
|
|
|
EXPECT_MAT_NEAR(result, reference, 0); |
|
EXPECT_MAT_NEAR(customResult, reference, 0); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Canny_Modes, |
|
testing::Combine( |
|
testing::Values(3, 5), |
|
testing::Values(true, false))); |
|
|
|
|
|
/* |
|
* Comparing OpenVX based implementation with the main one |
|
*/ |
|
|
|
#ifndef IMPLEMENT_PARAM_CLASS |
|
#define IMPLEMENT_PARAM_CLASS(name, type) \ |
|
class name \ |
|
{ \ |
|
public: \ |
|
name ( type arg = type ()) : val_(arg) {} \ |
|
operator type () const {return val_;} \ |
|
private: \ |
|
type val_; \ |
|
}; \ |
|
inline void PrintTo( name param, std::ostream* os) \ |
|
{ \ |
|
*os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \ |
|
} |
|
#endif // IMPLEMENT_PARAM_CLASS |
|
|
|
IMPLEMENT_PARAM_CLASS(ImagePath, string) |
|
IMPLEMENT_PARAM_CLASS(ApertureSize, int) |
|
IMPLEMENT_PARAM_CLASS(L2gradient, bool) |
|
|
|
PARAM_TEST_CASE(CannyVX, ImagePath, ApertureSize, L2gradient) |
|
{ |
|
string imgPath; |
|
int kSize; |
|
bool useL2; |
|
Mat src, dst; |
|
|
|
virtual void SetUp() |
|
{ |
|
imgPath = GET_PARAM(0); |
|
kSize = GET_PARAM(1); |
|
useL2 = GET_PARAM(2); |
|
} |
|
|
|
void loadImage() |
|
{ |
|
src = cv::imread(cvtest::TS::ptr()->get_data_path() + imgPath, IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(src.empty()) << "can't load image: " << imgPath; |
|
} |
|
}; |
|
|
|
TEST_P(CannyVX, Accuracy) |
|
{ |
|
if(haveOpenVX()) |
|
{ |
|
loadImage(); |
|
|
|
setUseOpenVX(false); |
|
Mat canny; |
|
cv::Canny(src, canny, 100, 150, 3); |
|
|
|
setUseOpenVX(true); |
|
Mat cannyVX; |
|
cv::Canny(src, cannyVX, 100, 150, 3); |
|
|
|
// 'smart' diff check (excluding isolated pixels) |
|
Mat diff, diff1; |
|
absdiff(canny, cannyVX, diff); |
|
boxFilter(diff, diff1, -1, Size(3,3)); |
|
const int minPixelsAroud = 3; // empirical number |
|
diff1 = diff1 > 255/9 * minPixelsAroud; |
|
erode(diff1, diff1, Mat()); |
|
double error = cv::norm(diff1, NORM_L1) / 255; |
|
const int maxError = std::min(10, diff.size().area()/100); // empirical number |
|
if(error > maxError) |
|
{ |
|
string outPath = |
|
string("CannyVX-diff-") + |
|
imgPath + '-' + |
|
'k' + char(kSize+'0') + '-' + |
|
(useL2 ? "l2" : "l1"); |
|
std::replace(outPath.begin(), outPath.end(), '/', '_'); |
|
std::replace(outPath.begin(), outPath.end(), '\\', '_'); |
|
std::replace(outPath.begin(), outPath.end(), '.', '_'); |
|
imwrite(outPath+".png", diff); |
|
} |
|
ASSERT_LE(error, maxError); |
|
|
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P( |
|
ImgProc, CannyVX, |
|
testing::Combine( |
|
testing::Values( |
|
string("shared/baboon.png"), |
|
string("shared/fruits.png"), |
|
string("shared/lena.png"), |
|
string("shared/pic1.png"), |
|
string("shared/pic3.png"), |
|
string("shared/pic5.png"), |
|
string("shared/pic6.png") |
|
), |
|
testing::Values(ApertureSize(3), ApertureSize(5)), |
|
testing::Values(L2gradient(false), L2gradient(true)) |
|
) |
|
); |
|
|
|
}} // namespace |
|
/* End of file. */
|
|
|