Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
565 lines
21 KiB
565 lines
21 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
void cv::gpu::gemm(const GpuMat&, const GpuMat&, double, const GpuMat&, double, GpuMat&, int, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::transpose(const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::flip(const GpuMat&, GpuMat&, int, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::LUT(const GpuMat&, const Mat&, GpuMat&, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::magnitude(const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::magnitudeSqr(const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::magnitudeSqr(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::phase(const GpuMat&, const GpuMat&, GpuMat&, bool, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::normalize(const GpuMat&, GpuMat&, double, double, int, int, const GpuMat&) { throw_no_cuda(); } |
|
void cv::gpu::normalize(const GpuMat&, GpuMat&, double, double, int, int, const GpuMat&, GpuMat&, GpuMat&) { throw_no_cuda(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// gemm |
|
|
|
void cv::gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const GpuMat& src3, double beta, GpuMat& dst, int flags, Stream& stream) |
|
{ |
|
#ifndef HAVE_CUBLAS |
|
(void)src1; |
|
(void)src2; |
|
(void)alpha; |
|
(void)src3; |
|
(void)beta; |
|
(void)dst; |
|
(void)flags; |
|
(void)stream; |
|
CV_Error(cv::Error::StsNotImplemented, "The library was build without CUBLAS"); |
|
#else |
|
// CUBLAS works with column-major matrices |
|
|
|
CV_Assert(src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2); |
|
CV_Assert(src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type())); |
|
|
|
if (src1.depth() == CV_64F) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
bool tr1 = (flags & GEMM_1_T) != 0; |
|
bool tr2 = (flags & GEMM_2_T) != 0; |
|
bool tr3 = (flags & GEMM_3_T) != 0; |
|
|
|
if (src1.type() == CV_64FC2) |
|
{ |
|
if (tr1 || tr2 || tr3) |
|
CV_Error(cv::Error::StsNotImplemented, "transpose operation doesn't implemented for CV_64FC2 type"); |
|
} |
|
|
|
Size src1Size = tr1 ? Size(src1.rows, src1.cols) : src1.size(); |
|
Size src2Size = tr2 ? Size(src2.rows, src2.cols) : src2.size(); |
|
Size src3Size = tr3 ? Size(src3.rows, src3.cols) : src3.size(); |
|
Size dstSize(src2Size.width, src1Size.height); |
|
|
|
CV_Assert(src1Size.width == src2Size.height); |
|
CV_Assert(src3.empty() || src3Size == dstSize); |
|
|
|
dst.create(dstSize, src1.type()); |
|
|
|
if (beta != 0) |
|
{ |
|
if (src3.empty()) |
|
{ |
|
if (stream) |
|
stream.enqueueMemSet(dst, Scalar::all(0)); |
|
else |
|
dst.setTo(Scalar::all(0)); |
|
} |
|
else |
|
{ |
|
if (tr3) |
|
{ |
|
transpose(src3, dst, stream); |
|
} |
|
else |
|
{ |
|
if (stream) |
|
stream.enqueueCopy(src3, dst); |
|
else |
|
src3.copyTo(dst); |
|
} |
|
} |
|
} |
|
|
|
cublasHandle_t handle; |
|
cublasSafeCall( cublasCreate_v2(&handle) ); |
|
|
|
cublasSafeCall( cublasSetStream_v2(handle, StreamAccessor::getStream(stream)) ); |
|
|
|
cublasSafeCall( cublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_HOST) ); |
|
|
|
const float alphaf = static_cast<float>(alpha); |
|
const float betaf = static_cast<float>(beta); |
|
|
|
const cuComplex alphacf = make_cuComplex(alphaf, 0); |
|
const cuComplex betacf = make_cuComplex(betaf, 0); |
|
|
|
const cuDoubleComplex alphac = make_cuDoubleComplex(alpha, 0); |
|
const cuDoubleComplex betac = make_cuDoubleComplex(beta, 0); |
|
|
|
cublasOperation_t transa = tr2 ? CUBLAS_OP_T : CUBLAS_OP_N; |
|
cublasOperation_t transb = tr1 ? CUBLAS_OP_T : CUBLAS_OP_N; |
|
|
|
switch (src1.type()) |
|
{ |
|
case CV_32FC1: |
|
cublasSafeCall( cublasSgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, |
|
&alphaf, |
|
src2.ptr<float>(), static_cast<int>(src2.step / sizeof(float)), |
|
src1.ptr<float>(), static_cast<int>(src1.step / sizeof(float)), |
|
&betaf, |
|
dst.ptr<float>(), static_cast<int>(dst.step / sizeof(float))) ); |
|
break; |
|
|
|
case CV_64FC1: |
|
cublasSafeCall( cublasDgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, |
|
&alpha, |
|
src2.ptr<double>(), static_cast<int>(src2.step / sizeof(double)), |
|
src1.ptr<double>(), static_cast<int>(src1.step / sizeof(double)), |
|
&beta, |
|
dst.ptr<double>(), static_cast<int>(dst.step / sizeof(double))) ); |
|
break; |
|
|
|
case CV_32FC2: |
|
cublasSafeCall( cublasCgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, |
|
&alphacf, |
|
src2.ptr<cuComplex>(), static_cast<int>(src2.step / sizeof(cuComplex)), |
|
src1.ptr<cuComplex>(), static_cast<int>(src1.step / sizeof(cuComplex)), |
|
&betacf, |
|
dst.ptr<cuComplex>(), static_cast<int>(dst.step / sizeof(cuComplex))) ); |
|
break; |
|
|
|
case CV_64FC2: |
|
cublasSafeCall( cublasZgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, |
|
&alphac, |
|
src2.ptr<cuDoubleComplex>(), static_cast<int>(src2.step / sizeof(cuDoubleComplex)), |
|
src1.ptr<cuDoubleComplex>(), static_cast<int>(src1.step / sizeof(cuDoubleComplex)), |
|
&betac, |
|
dst.ptr<cuDoubleComplex>(), static_cast<int>(dst.step / sizeof(cuDoubleComplex))) ); |
|
break; |
|
} |
|
|
|
cublasSafeCall( cublasDestroy_v2(handle) ); |
|
#endif |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// transpose |
|
|
|
void cv::gpu::transpose(const GpuMat& src, GpuMat& dst, Stream& s) |
|
{ |
|
CV_Assert(src.elemSize() == 1 || src.elemSize() == 4 || src.elemSize() == 8); |
|
|
|
dst.create( src.cols, src.rows, src.type() ); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
|
|
if (src.elemSize() == 1) |
|
{ |
|
NppStreamHandler h(stream); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( nppiTranspose_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz) ); |
|
} |
|
else if (src.elemSize() == 4) |
|
{ |
|
NppStStreamHandler h(stream); |
|
|
|
NcvSize32u sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
ncvSafeCall( nppiStTranspose_32u_C1R(const_cast<Ncv32u*>(src.ptr<Ncv32u>()), static_cast<int>(src.step), |
|
dst.ptr<Ncv32u>(), static_cast<int>(dst.step), sz) ); |
|
} |
|
else // if (src.elemSize() == 8) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
|
|
NppStStreamHandler h(stream); |
|
|
|
NcvSize32u sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
ncvSafeCall( nppiStTranspose_64u_C1R(const_cast<Ncv64u*>(src.ptr<Ncv64u>()), static_cast<int>(src.step), |
|
dst.ptr<Ncv64u>(), static_cast<int>(dst.step), sz) ); |
|
} |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// flip |
|
|
|
namespace |
|
{ |
|
template<int DEPTH> struct NppTypeTraits; |
|
template<> struct NppTypeTraits<CV_8U> { typedef Npp8u npp_t; }; |
|
template<> struct NppTypeTraits<CV_8S> { typedef Npp8s npp_t; }; |
|
template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; }; |
|
template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; }; |
|
template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; }; |
|
template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; }; |
|
template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; }; |
|
|
|
template <int DEPTH> struct NppMirrorFunc |
|
{ |
|
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t; |
|
|
|
typedef NppStatus (*func_t)(const npp_t* pSrc, int nSrcStep, npp_t* pDst, int nDstStep, NppiSize oROI, NppiAxis flip); |
|
}; |
|
|
|
template <int DEPTH, typename NppMirrorFunc<DEPTH>::func_t func> struct NppMirror |
|
{ |
|
typedef typename NppMirrorFunc<DEPTH>::npp_t npp_t; |
|
|
|
static void call(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream) |
|
{ |
|
NppStreamHandler h(stream); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( func(src.ptr<npp_t>(), static_cast<int>(src.step), |
|
dst.ptr<npp_t>(), static_cast<int>(dst.step), sz, |
|
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
} |
|
|
|
void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode, Stream& stream) |
|
{ |
|
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream); |
|
static const func_t funcs[6][4] = |
|
{ |
|
{NppMirror<CV_8U, nppiMirror_8u_C1R>::call, 0, NppMirror<CV_8U, nppiMirror_8u_C3R>::call, NppMirror<CV_8U, nppiMirror_8u_C4R>::call}, |
|
{0,0,0,0}, |
|
{NppMirror<CV_16U, nppiMirror_16u_C1R>::call, 0, NppMirror<CV_16U, nppiMirror_16u_C3R>::call, NppMirror<CV_16U, nppiMirror_16u_C4R>::call}, |
|
{0,0,0,0}, |
|
{NppMirror<CV_32S, nppiMirror_32s_C1R>::call, 0, NppMirror<CV_32S, nppiMirror_32s_C3R>::call, NppMirror<CV_32S, nppiMirror_32s_C4R>::call}, |
|
{NppMirror<CV_32F, nppiMirror_32f_C1R>::call, 0, NppMirror<CV_32F, nppiMirror_32f_C3R>::call, NppMirror<CV_32F, nppiMirror_32f_C4R>::call} |
|
}; |
|
|
|
CV_Assert(src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S || src.depth() == CV_32F); |
|
CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4); |
|
|
|
dst.create(src.size(), src.type()); |
|
|
|
funcs[src.depth()][src.channels() - 1](src, dst, flipCode, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// LUT |
|
|
|
void cv::gpu::LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& s) |
|
{ |
|
const int cn = src.channels(); |
|
|
|
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_8UC3 ); |
|
CV_Assert( lut.depth() == CV_8U ); |
|
CV_Assert( lut.channels() == 1 || lut.channels() == cn ); |
|
CV_Assert( lut.rows * lut.cols == 256 && lut.isContinuous() ); |
|
|
|
dst.create(src.size(), CV_MAKE_TYPE(lut.depth(), cn)); |
|
|
|
NppiSize sz; |
|
sz.height = src.rows; |
|
sz.width = src.cols; |
|
|
|
Mat nppLut; |
|
lut.convertTo(nppLut, CV_32S); |
|
|
|
int nValues3[] = {256, 256, 256}; |
|
|
|
Npp32s pLevels[256]; |
|
for (int i = 0; i < 256; ++i) |
|
pLevels[i] = i; |
|
|
|
const Npp32s* pLevels3[3]; |
|
|
|
#if (CUDA_VERSION <= 4020) |
|
pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels; |
|
#else |
|
GpuMat d_pLevels; |
|
d_pLevels.upload(Mat(1, 256, CV_32S, pLevels)); |
|
pLevels3[0] = pLevels3[1] = pLevels3[2] = d_pLevels.ptr<Npp32s>(); |
|
#endif |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
NppStreamHandler h(stream); |
|
|
|
if (src.type() == CV_8UC1) |
|
{ |
|
#if (CUDA_VERSION <= 4020) |
|
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, nppLut.ptr<Npp32s>(), pLevels, 256) ); |
|
#else |
|
GpuMat d_nppLut(Mat(1, 256, CV_32S, nppLut.data)); |
|
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, d_nppLut.ptr<Npp32s>(), d_pLevels.ptr<Npp32s>(), 256) ); |
|
#endif |
|
} |
|
else |
|
{ |
|
const Npp32s* pValues3[3]; |
|
|
|
Mat nppLut3[3]; |
|
if (nppLut.channels() == 1) |
|
{ |
|
#if (CUDA_VERSION <= 4020) |
|
pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>(); |
|
#else |
|
GpuMat d_nppLut(Mat(1, 256, CV_32S, nppLut.data)); |
|
pValues3[0] = pValues3[1] = pValues3[2] = d_nppLut.ptr<Npp32s>(); |
|
#endif |
|
} |
|
else |
|
{ |
|
cv::split(nppLut, nppLut3); |
|
|
|
#if (CUDA_VERSION <= 4020) |
|
pValues3[0] = nppLut3[0].ptr<Npp32s>(); |
|
pValues3[1] = nppLut3[1].ptr<Npp32s>(); |
|
pValues3[2] = nppLut3[2].ptr<Npp32s>(); |
|
#else |
|
GpuMat d_nppLut0(Mat(1, 256, CV_32S, nppLut3[0].data)); |
|
GpuMat d_nppLut1(Mat(1, 256, CV_32S, nppLut3[1].data)); |
|
GpuMat d_nppLut2(Mat(1, 256, CV_32S, nppLut3[2].data)); |
|
|
|
pValues3[0] = d_nppLut0.ptr<Npp32s>(); |
|
pValues3[1] = d_nppLut1.ptr<Npp32s>(); |
|
pValues3[2] = d_nppLut2.ptr<Npp32s>(); |
|
#endif |
|
} |
|
|
|
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step), |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, pLevels3, nValues3) ); |
|
} |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// NPP magnitide |
|
|
|
namespace |
|
{ |
|
typedef NppStatus (*nppMagnitude_t)(const Npp32fc* pSrc, int nSrcStep, Npp32f* pDst, int nDstStep, NppiSize oSizeROI); |
|
|
|
inline void npp_magnitude(const GpuMat& src, GpuMat& dst, nppMagnitude_t func, cudaStream_t stream) |
|
{ |
|
CV_Assert(src.type() == CV_32FC2); |
|
|
|
dst.create(src.size(), CV_32FC1); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
NppStreamHandler h(stream); |
|
|
|
nppSafeCall( func(src.ptr<Npp32fc>(), static_cast<int>(src.step), dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
} |
|
|
|
void cv::gpu::magnitude(const GpuMat& src, GpuMat& dst, Stream& stream) |
|
{ |
|
npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::magnitudeSqr(const GpuMat& src, GpuMat& dst, Stream& stream) |
|
{ |
|
npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// Polar <-> Cart |
|
|
|
namespace cv { namespace gpu { namespace cudev |
|
{ |
|
namespace mathfunc |
|
{ |
|
void cartToPolar_gpu(PtrStepSzf x, PtrStepSzf y, PtrStepSzf mag, bool magSqr, PtrStepSzf angle, bool angleInDegrees, cudaStream_t stream); |
|
void polarToCart_gpu(PtrStepSzf mag, PtrStepSzf angle, PtrStepSzf x, PtrStepSzf y, bool angleInDegrees, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
inline void cartToPolar_caller(const GpuMat& x, const GpuMat& y, GpuMat* mag, bool magSqr, GpuMat* angle, bool angleInDegrees, cudaStream_t stream) |
|
{ |
|
using namespace ::cv::gpu::cudev::mathfunc; |
|
|
|
CV_Assert(x.size() == y.size() && x.type() == y.type()); |
|
CV_Assert(x.depth() == CV_32F); |
|
|
|
if (mag) |
|
mag->create(x.size(), x.type()); |
|
if (angle) |
|
angle->create(x.size(), x.type()); |
|
|
|
GpuMat x1cn = x.reshape(1); |
|
GpuMat y1cn = y.reshape(1); |
|
GpuMat mag1cn = mag ? mag->reshape(1) : GpuMat(); |
|
GpuMat angle1cn = angle ? angle->reshape(1) : GpuMat(); |
|
|
|
cartToPolar_gpu(x1cn, y1cn, mag1cn, magSqr, angle1cn, angleInDegrees, stream); |
|
} |
|
|
|
inline void polarToCart_caller(const GpuMat& mag, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, cudaStream_t stream) |
|
{ |
|
using namespace ::cv::gpu::cudev::mathfunc; |
|
|
|
CV_Assert((mag.empty() || mag.size() == angle.size()) && mag.type() == angle.type()); |
|
CV_Assert(mag.depth() == CV_32F); |
|
|
|
x.create(mag.size(), mag.type()); |
|
y.create(mag.size(), mag.type()); |
|
|
|
GpuMat mag1cn = mag.reshape(1); |
|
GpuMat angle1cn = angle.reshape(1); |
|
GpuMat x1cn = x.reshape(1); |
|
GpuMat y1cn = y.reshape(1); |
|
|
|
polarToCart_gpu(mag1cn, angle1cn, x1cn, y1cn, angleInDegrees, stream); |
|
} |
|
} |
|
|
|
void cv::gpu::magnitude(const GpuMat& x, const GpuMat& y, GpuMat& dst, Stream& stream) |
|
{ |
|
cartToPolar_caller(x, y, &dst, false, 0, false, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& dst, Stream& stream) |
|
{ |
|
cartToPolar_caller(x, y, &dst, true, 0, false, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees, Stream& stream) |
|
{ |
|
cartToPolar_caller(x, y, 0, false, &angle, angleInDegrees, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& mag, GpuMat& angle, bool angleInDegrees, Stream& stream) |
|
{ |
|
cartToPolar_caller(x, y, &mag, false, &angle, angleInDegrees, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, Stream& stream) |
|
{ |
|
polarToCart_caller(magnitude, angle, x, y, angleInDegrees, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// normalize |
|
|
|
void cv::gpu::normalize(const GpuMat& src, GpuMat& dst, double a, double b, int norm_type, int dtype, const GpuMat& mask) |
|
{ |
|
GpuMat norm_buf; |
|
GpuMat cvt_buf; |
|
normalize(src, dst, a, b, norm_type, dtype, mask, norm_buf, cvt_buf); |
|
} |
|
|
|
void cv::gpu::normalize(const GpuMat& src, GpuMat& dst, double a, double b, int norm_type, int dtype, const GpuMat& mask, GpuMat& norm_buf, GpuMat& cvt_buf) |
|
{ |
|
double scale = 1, shift = 0; |
|
if (norm_type == NORM_MINMAX) |
|
{ |
|
double smin = 0, smax = 0; |
|
double dmin = std::min(a, b), dmax = std::max(a, b); |
|
minMax(src, &smin, &smax, mask, norm_buf); |
|
scale = (dmax - dmin) * (smax - smin > std::numeric_limits<double>::epsilon() ? 1.0 / (smax - smin) : 0.0); |
|
shift = dmin - smin * scale; |
|
} |
|
else if (norm_type == NORM_L2 || norm_type == NORM_L1 || norm_type == NORM_INF) |
|
{ |
|
scale = norm(src, norm_type, mask, norm_buf); |
|
scale = scale > std::numeric_limits<double>::epsilon() ? a / scale : 0.0; |
|
shift = 0; |
|
} |
|
else |
|
{ |
|
CV_Error(cv::Error::StsBadArg, "Unknown/unsupported norm type"); |
|
} |
|
|
|
if (mask.empty()) |
|
{ |
|
src.convertTo(dst, dtype, scale, shift); |
|
} |
|
else |
|
{ |
|
src.convertTo(cvt_buf, dtype, scale, shift); |
|
cvt_buf.copyTo(dst, mask); |
|
} |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|