mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
740 lines
22 KiB
740 lines
22 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <iostream> |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename _Tp> |
|
static int Sklansky_( Point_<_Tp>** array, int start, int end, int* stack, int nsign, int sign2 ) |
|
{ |
|
int incr = end > start ? 1 : -1; |
|
// prepare first triangle |
|
int pprev = start, pcur = pprev + incr, pnext = pcur + incr; |
|
int stacksize = 3; |
|
|
|
if( start == end || |
|
(array[start]->x == array[end]->x && |
|
array[start]->y == array[end]->y) ) |
|
{ |
|
stack[0] = start; |
|
return 1; |
|
} |
|
|
|
stack[0] = pprev; |
|
stack[1] = pcur; |
|
stack[2] = pnext; |
|
|
|
end += incr; // make end = afterend |
|
|
|
while( pnext != end ) |
|
{ |
|
// check the angle p1,p2,p3 |
|
_Tp cury = array[pcur]->y; |
|
_Tp nexty = array[pnext]->y; |
|
_Tp by = nexty - cury; |
|
|
|
if( CV_SIGN( by ) != nsign ) |
|
{ |
|
_Tp ax = array[pcur]->x - array[pprev]->x; |
|
_Tp bx = array[pnext]->x - array[pcur]->x; |
|
_Tp ay = cury - array[pprev]->y; |
|
_Tp convexity = ay*bx - ax*by; // if >0 then convex angle |
|
|
|
if( CV_SIGN( convexity ) == sign2 && (ax != 0 || ay != 0) ) |
|
{ |
|
pprev = pcur; |
|
pcur = pnext; |
|
pnext += incr; |
|
stack[stacksize] = pnext; |
|
stacksize++; |
|
} |
|
else |
|
{ |
|
if( pprev == start ) |
|
{ |
|
pcur = pnext; |
|
stack[1] = pcur; |
|
pnext += incr; |
|
stack[2] = pnext; |
|
} |
|
else |
|
{ |
|
stack[stacksize-2] = pnext; |
|
pcur = pprev; |
|
pprev = stack[stacksize-4]; |
|
stacksize--; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
pnext += incr; |
|
stack[stacksize-1] = pnext; |
|
} |
|
} |
|
|
|
return --stacksize; |
|
} |
|
|
|
|
|
template<typename _Tp> |
|
struct CHullCmpPoints |
|
{ |
|
bool operator()(const Point_<_Tp>* p1, const Point_<_Tp>* p2) const |
|
{ return p1->x < p2->x || (p1->x == p2->x && p1->y < p2->y); } |
|
}; |
|
|
|
|
|
void convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints ) |
|
{ |
|
Mat points = _points.getMat(); |
|
int i, total = points.checkVector(2), depth = points.depth(), nout = 0; |
|
int miny_ind = 0, maxy_ind = 0; |
|
CV_Assert(total >= 0 && (depth == CV_32F || depth == CV_32S)); |
|
|
|
if( total == 0 ) |
|
{ |
|
_hull.release(); |
|
return; |
|
} |
|
|
|
returnPoints = !_hull.fixedType() ? returnPoints : _hull.type() != CV_32S; |
|
|
|
bool is_float = depth == CV_32F; |
|
AutoBuffer<Point*> _pointer(total); |
|
AutoBuffer<int> _stack(total + 2), _hullbuf(total); |
|
Point** pointer = _pointer; |
|
Point2f** pointerf = (Point2f**)pointer; |
|
Point* data0 = (Point*)points.data; |
|
int* stack = _stack; |
|
int* hullbuf = _hullbuf; |
|
|
|
CV_Assert(points.isContinuous()); |
|
|
|
for( i = 0; i < total; i++ ) |
|
pointer[i] = &data0[i]; |
|
|
|
// sort the point set by x-coordinate, find min and max y |
|
if( !is_float ) |
|
{ |
|
std::sort(pointer, pointer + total, CHullCmpPoints<int>()); |
|
for( i = 1; i < total; i++ ) |
|
{ |
|
int y = pointer[i]->y; |
|
if( pointer[miny_ind]->y > y ) |
|
miny_ind = i; |
|
if( pointer[maxy_ind]->y < y ) |
|
maxy_ind = i; |
|
} |
|
} |
|
else |
|
{ |
|
std::sort(pointerf, pointerf + total, CHullCmpPoints<float>()); |
|
for( i = 1; i < total; i++ ) |
|
{ |
|
float y = pointerf[i]->y; |
|
if( pointerf[miny_ind]->y > y ) |
|
miny_ind = i; |
|
if( pointerf[maxy_ind]->y < y ) |
|
maxy_ind = i; |
|
} |
|
} |
|
|
|
if( pointer[0]->x == pointer[total-1]->x && |
|
pointer[0]->y == pointer[total-1]->y ) |
|
{ |
|
hullbuf[nout++] = 0; |
|
} |
|
else |
|
{ |
|
// upper half |
|
int *tl_stack = stack; |
|
int tl_count = !is_float ? |
|
Sklansky_( pointer, 0, maxy_ind, tl_stack, -1, 1) : |
|
Sklansky_( pointerf, 0, maxy_ind, tl_stack, -1, 1); |
|
int *tr_stack = stack + tl_count; |
|
int tr_count = !is_float ? |
|
Sklansky_( pointer, total-1, maxy_ind, tr_stack, -1, -1) : |
|
Sklansky_( pointerf, total-1, maxy_ind, tr_stack, -1, -1); |
|
|
|
// gather upper part of convex hull to output |
|
if( !clockwise ) |
|
{ |
|
std::swap( tl_stack, tr_stack ); |
|
std::swap( tl_count, tr_count ); |
|
} |
|
|
|
for( i = 0; i < tl_count-1; i++ ) |
|
hullbuf[nout++] = int(pointer[tl_stack[i]] - data0); |
|
for( i = tr_count - 1; i > 0; i-- ) |
|
hullbuf[nout++] = int(pointer[tr_stack[i]] - data0); |
|
int stop_idx = tr_count > 2 ? tr_stack[1] : tl_count > 2 ? tl_stack[tl_count - 2] : -1; |
|
|
|
// lower half |
|
int *bl_stack = stack; |
|
int bl_count = !is_float ? |
|
Sklansky_( pointer, 0, miny_ind, bl_stack, 1, -1) : |
|
Sklansky_( pointerf, 0, miny_ind, bl_stack, 1, -1); |
|
int *br_stack = stack + bl_count; |
|
int br_count = !is_float ? |
|
Sklansky_( pointer, total-1, miny_ind, br_stack, 1, 1) : |
|
Sklansky_( pointerf, total-1, miny_ind, br_stack, 1, 1); |
|
|
|
if( clockwise ) |
|
{ |
|
std::swap( bl_stack, br_stack ); |
|
std::swap( bl_count, br_count ); |
|
} |
|
|
|
if( stop_idx >= 0 ) |
|
{ |
|
int check_idx = bl_count > 2 ? bl_stack[1] : |
|
bl_count + br_count > 2 ? br_stack[2-bl_count] : -1; |
|
if( check_idx == stop_idx || (check_idx >= 0 && |
|
pointer[check_idx]->x == pointer[stop_idx]->x && |
|
pointer[check_idx]->y == pointer[stop_idx]->y) ) |
|
{ |
|
// if all the points lie on the same line, then |
|
// the bottom part of the convex hull is the mirrored top part |
|
// (except the exteme points). |
|
bl_count = MIN( bl_count, 2 ); |
|
br_count = MIN( br_count, 2 ); |
|
} |
|
} |
|
|
|
for( i = 0; i < bl_count-1; i++ ) |
|
hullbuf[nout++] = int(pointer[bl_stack[i]] - data0); |
|
for( i = br_count-1; i > 0; i-- ) |
|
hullbuf[nout++] = int(pointer[br_stack[i]] - data0); |
|
} |
|
|
|
if( !returnPoints ) |
|
Mat(nout, 1, CV_32S, hullbuf).copyTo(_hull); |
|
else |
|
{ |
|
_hull.create(nout, 1, CV_MAKETYPE(depth, 2)); |
|
Mat hull = _hull.getMat(); |
|
size_t step = !hull.isContinuous() ? hull.step[0] : sizeof(Point); |
|
for( i = 0; i < nout; i++ ) |
|
*(Point*)(hull.data + i*step) = data0[hullbuf[i]]; |
|
} |
|
} |
|
|
|
|
|
void convexityDefects( InputArray _points, InputArray _hull, OutputArray _defects ) |
|
{ |
|
Mat points = _points.getMat(); |
|
int i, j = 0, npoints = points.checkVector(2, CV_32S); |
|
CV_Assert( npoints >= 0 ); |
|
|
|
if( npoints <= 3 ) |
|
{ |
|
_defects.release(); |
|
return; |
|
} |
|
|
|
Mat hull = _hull.getMat(); |
|
int hpoints = hull.checkVector(1, CV_32S); |
|
CV_Assert( hpoints > 2 ); |
|
|
|
const Point* ptr = (const Point*)points.data; |
|
const int* hptr = hull.ptr<int>(); |
|
std::vector<Vec4i> defects; |
|
|
|
// 1. recognize co-orientation of the contour and its hull |
|
bool rev_orientation = ((hptr[1] > hptr[0]) + (hptr[2] > hptr[1]) + (hptr[0] > hptr[2])) != 2; |
|
|
|
// 2. cycle through points and hull, compute defects |
|
int hcurr = hptr[rev_orientation ? 0 : hpoints-1]; |
|
CV_Assert( 0 <= hcurr && hcurr < npoints ); |
|
|
|
for( i = 0; i < hpoints; i++ ) |
|
{ |
|
int hnext = hptr[rev_orientation ? hpoints - i - 1 : i]; |
|
CV_Assert( 0 <= hnext && hnext < npoints ); |
|
|
|
Point pt0 = ptr[hcurr], pt1 = ptr[hnext]; |
|
double dx0 = pt1.x - pt0.x; |
|
double dy0 = pt1.y - pt0.y; |
|
double scale = dx0 == 0 && dy0 == 0 ? 0. : 1./std::sqrt(dx0*dx0 + dy0*dy0); |
|
|
|
int defect_deepest_point = -1; |
|
double defect_depth = 0; |
|
bool is_defect = false; |
|
|
|
for(;;) |
|
{ |
|
// go through points to achieve next hull point |
|
j++; |
|
j &= j >= npoints ? 0 : -1; |
|
if( j == hnext ) |
|
break; |
|
|
|
// compute distance from current point to hull edge |
|
double dx = ptr[j].x - pt0.x; |
|
double dy = ptr[j].y - pt0.y; |
|
double dist = fabs(-dy0*dx + dx0*dy) * scale; |
|
|
|
if( dist > defect_depth ) |
|
{ |
|
defect_depth = dist; |
|
defect_deepest_point = j; |
|
is_defect = true; |
|
} |
|
} |
|
|
|
if( is_defect ) |
|
{ |
|
int idepth = cvRound(defect_depth*256); |
|
defects.push_back(Vec4i(hcurr, hnext, defect_deepest_point, idepth)); |
|
} |
|
|
|
hcurr = hnext; |
|
} |
|
|
|
Mat(defects).copyTo(_defects); |
|
} |
|
|
|
|
|
template<typename _Tp> |
|
static bool isContourConvex_( const Point_<_Tp>* p, int n ) |
|
{ |
|
Point_<_Tp> prev_pt = p[(n-2+n) % n]; |
|
Point_<_Tp> cur_pt = p[n-1]; |
|
|
|
_Tp dx0 = cur_pt.x - prev_pt.x; |
|
_Tp dy0 = cur_pt.y - prev_pt.y; |
|
int orientation = 0; |
|
|
|
for( int i = 0; i < n-1; i++ ) |
|
{ |
|
_Tp dxdy0, dydx0; |
|
_Tp dx, dy; |
|
|
|
prev_pt = cur_pt; |
|
cur_pt = p[i]; |
|
|
|
dx = cur_pt.x - prev_pt.x; |
|
dy = cur_pt.y - prev_pt.y; |
|
dxdy0 = dx * dy0; |
|
dydx0 = dy * dx0; |
|
|
|
// find orientation |
|
// orient = -dy0 * dx + dx0 * dy; |
|
// orientation |= (orient > 0) ? 1 : 2; |
|
orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3); |
|
if( orientation == 3 ) |
|
return false; |
|
|
|
dx0 = dx; |
|
dy0 = dy; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
bool isContourConvex( InputArray _contour ) |
|
{ |
|
Mat contour = _contour.getMat(); |
|
int total = contour.checkVector(2), depth = contour.depth(); |
|
CV_Assert(total >= 0 && (depth == CV_32F || depth == CV_32S)); |
|
|
|
if( total == 0 ) |
|
return false; |
|
|
|
return depth == CV_32S ? |
|
isContourConvex_((const Point*)contour.data, total ) : |
|
isContourConvex_((const Point2f*)contour.data, total ); |
|
} |
|
|
|
} |
|
|
|
CV_IMPL CvSeq* |
|
cvConvexHull2( const CvArr* array, void* hull_storage, |
|
int orientation, int return_points ) |
|
{ |
|
union { CvContour* c; CvSeq* s; } hull; |
|
hull.s = 0; |
|
|
|
CvMat* mat = 0; |
|
CvContour contour_header; |
|
CvSeq hull_header; |
|
CvSeqBlock block, hullblock; |
|
CvSeq* ptseq = 0; |
|
CvSeq* hullseq = 0; |
|
|
|
if( CV_IS_SEQ( array )) |
|
{ |
|
ptseq = (CvSeq*)array; |
|
if( !CV_IS_SEQ_POINT_SET( ptseq )) |
|
CV_Error( CV_StsBadArg, "Unsupported sequence type" ); |
|
if( hull_storage == 0 ) |
|
hull_storage = ptseq->storage; |
|
} |
|
else |
|
{ |
|
ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block ); |
|
} |
|
|
|
if( CV_IS_STORAGE( hull_storage )) |
|
{ |
|
if( return_points ) |
|
{ |
|
hullseq = cvCreateSeq(CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE(ptseq)| |
|
CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX, |
|
sizeof(CvContour), sizeof(CvPoint),(CvMemStorage*)hull_storage ); |
|
} |
|
else |
|
{ |
|
hullseq = cvCreateSeq( |
|
CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_PPOINT| |
|
CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX, |
|
sizeof(CvContour), sizeof(CvPoint*), (CvMemStorage*)hull_storage ); |
|
} |
|
} |
|
else |
|
{ |
|
if( !CV_IS_MAT( hull_storage )) |
|
CV_Error(CV_StsBadArg, "Destination must be valid memory storage or matrix"); |
|
|
|
mat = (CvMat*)hull_storage; |
|
|
|
if( (mat->cols != 1 && mat->rows != 1) || !CV_IS_MAT_CONT(mat->type)) |
|
CV_Error( CV_StsBadArg, |
|
"The hull matrix should be continuous and have a single row or a single column" ); |
|
|
|
if( mat->cols + mat->rows - 1 < ptseq->total ) |
|
CV_Error( CV_StsBadSize, "The hull matrix size might be not enough to fit the hull" ); |
|
|
|
if( CV_MAT_TYPE(mat->type) != CV_SEQ_ELTYPE(ptseq) && |
|
CV_MAT_TYPE(mat->type) != CV_32SC1 ) |
|
CV_Error( CV_StsUnsupportedFormat, |
|
"The hull matrix must have the same type as input or 32sC1 (integers)" ); |
|
|
|
hullseq = cvMakeSeqHeaderForArray( |
|
CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED, |
|
sizeof(hull_header), CV_ELEM_SIZE(mat->type), mat->data.ptr, |
|
mat->cols + mat->rows - 1, &hull_header, &hullblock ); |
|
cvClearSeq( hullseq ); |
|
} |
|
|
|
int hulltype = CV_SEQ_ELTYPE(hullseq); |
|
int total = ptseq->total; |
|
if( total == 0 ) |
|
{ |
|
if( mat ) |
|
CV_Error( CV_StsBadSize, |
|
"Point sequence can not be empty if the output is matrix" ); |
|
return hull.s; |
|
} |
|
|
|
cv::AutoBuffer<double> _ptbuf; |
|
cv::Mat h0; |
|
cv::convexHull(cv::cvarrToMat(ptseq, false, false, 0, &_ptbuf), h0, |
|
orientation == CV_CLOCKWISE, CV_MAT_CN(hulltype) == 2); |
|
|
|
|
|
if( hulltype == CV_SEQ_ELTYPE_PPOINT ) |
|
{ |
|
const int* idx = h0.ptr<int>(); |
|
int ctotal = (int)h0.total(); |
|
for( int i = 0; i < ctotal; i++ ) |
|
{ |
|
void* ptr = cvGetSeqElem(ptseq, idx[i]); |
|
cvSeqPush( hullseq, &ptr ); |
|
} |
|
} |
|
else |
|
cvSeqPushMulti(hullseq, h0.data, (int)h0.total()); |
|
|
|
if( mat ) |
|
{ |
|
if( mat->rows > mat->cols ) |
|
mat->rows = hullseq->total; |
|
else |
|
mat->cols = hullseq->total; |
|
} |
|
else |
|
{ |
|
hull.s = hullseq; |
|
hull.c->rect = cvBoundingRect( ptseq, |
|
ptseq->header_size < (int)sizeof(CvContour) || |
|
&ptseq->flags == &contour_header.flags ); |
|
} |
|
|
|
return hull.s; |
|
} |
|
|
|
|
|
/* contour must be a simple polygon */ |
|
/* it must have more than 3 points */ |
|
CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array, |
|
const CvArr* hullarray, |
|
CvMemStorage* storage ) |
|
{ |
|
CvSeq* defects = 0; |
|
|
|
int i, index; |
|
CvPoint* hull_cur; |
|
|
|
/* is orientation of hull different from contour one */ |
|
int rev_orientation; |
|
|
|
CvContour contour_header; |
|
CvSeq hull_header; |
|
CvSeqBlock block, hullblock; |
|
CvSeq *ptseq = (CvSeq*)array, *hull = (CvSeq*)hullarray; |
|
|
|
CvSeqReader hull_reader; |
|
CvSeqReader ptseq_reader; |
|
CvSeqWriter writer; |
|
int is_index; |
|
|
|
if( CV_IS_SEQ( ptseq )) |
|
{ |
|
if( !CV_IS_SEQ_POINT_SET( ptseq )) |
|
CV_Error( CV_StsUnsupportedFormat, |
|
"Input sequence is not a sequence of points" ); |
|
if( !storage ) |
|
storage = ptseq->storage; |
|
} |
|
else |
|
{ |
|
ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block ); |
|
} |
|
|
|
if( CV_SEQ_ELTYPE( ptseq ) != CV_32SC2 ) |
|
CV_Error( CV_StsUnsupportedFormat, "Floating-point coordinates are not supported here" ); |
|
|
|
if( CV_IS_SEQ( hull )) |
|
{ |
|
int hulltype = CV_SEQ_ELTYPE( hull ); |
|
if( hulltype != CV_SEQ_ELTYPE_PPOINT && hulltype != CV_SEQ_ELTYPE_INDEX ) |
|
CV_Error( CV_StsUnsupportedFormat, |
|
"Convex hull must represented as a sequence " |
|
"of indices or sequence of pointers" ); |
|
if( !storage ) |
|
storage = hull->storage; |
|
} |
|
else |
|
{ |
|
CvMat* mat = (CvMat*)hull; |
|
|
|
if( !CV_IS_MAT( hull )) |
|
CV_Error(CV_StsBadArg, "Convex hull is neither sequence nor matrix"); |
|
|
|
if( (mat->cols != 1 && mat->rows != 1) || |
|
!CV_IS_MAT_CONT(mat->type) || CV_MAT_TYPE(mat->type) != CV_32SC1 ) |
|
CV_Error( CV_StsBadArg, |
|
"The matrix should be 1-dimensional and continuous array of int's" ); |
|
|
|
if( mat->cols + mat->rows - 1 > ptseq->total ) |
|
CV_Error( CV_StsBadSize, "Convex hull is larger than the point sequence" ); |
|
|
|
hull = cvMakeSeqHeaderForArray( |
|
CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED, |
|
sizeof(CvContour), CV_ELEM_SIZE(mat->type), mat->data.ptr, |
|
mat->cols + mat->rows - 1, &hull_header, &hullblock ); |
|
} |
|
|
|
is_index = CV_SEQ_ELTYPE(hull) == CV_SEQ_ELTYPE_INDEX; |
|
|
|
if( !storage ) |
|
CV_Error( CV_StsNullPtr, "NULL storage pointer" ); |
|
|
|
defects = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq), sizeof(CvConvexityDefect), storage ); |
|
|
|
if( ptseq->total < 4 || hull->total < 3) |
|
{ |
|
//CV_ERROR( CV_StsBadSize, |
|
// "point seq size must be >= 4, convex hull size must be >= 3" ); |
|
return defects; |
|
} |
|
|
|
/* recognize co-orientation of ptseq and its hull */ |
|
{ |
|
int sign = 0; |
|
int index1, index2, index3; |
|
|
|
if( !is_index ) |
|
{ |
|
CvPoint* pos = *CV_SEQ_ELEM( hull, CvPoint*, 0 ); |
|
index1 = cvSeqElemIdx( ptseq, pos ); |
|
|
|
pos = *CV_SEQ_ELEM( hull, CvPoint*, 1 ); |
|
index2 = cvSeqElemIdx( ptseq, pos ); |
|
|
|
pos = *CV_SEQ_ELEM( hull, CvPoint*, 2 ); |
|
index3 = cvSeqElemIdx( ptseq, pos ); |
|
} |
|
else |
|
{ |
|
index1 = *CV_SEQ_ELEM( hull, int, 0 ); |
|
index2 = *CV_SEQ_ELEM( hull, int, 1 ); |
|
index3 = *CV_SEQ_ELEM( hull, int, 2 ); |
|
} |
|
|
|
sign += (index2 > index1) ? 1 : 0; |
|
sign += (index3 > index2) ? 1 : 0; |
|
sign += (index1 > index3) ? 1 : 0; |
|
|
|
rev_orientation = (sign == 2) ? 0 : 1; |
|
} |
|
|
|
cvStartReadSeq( ptseq, &ptseq_reader, 0 ); |
|
cvStartReadSeq( hull, &hull_reader, rev_orientation ); |
|
|
|
if( !is_index ) |
|
{ |
|
hull_cur = *(CvPoint**)hull_reader.prev_elem; |
|
index = cvSeqElemIdx( ptseq, (char*)hull_cur, 0 ); |
|
} |
|
else |
|
{ |
|
index = *(int*)hull_reader.prev_elem; |
|
hull_cur = CV_GET_SEQ_ELEM( CvPoint, ptseq, index ); |
|
} |
|
cvSetSeqReaderPos( &ptseq_reader, index ); |
|
cvStartAppendToSeq( defects, &writer ); |
|
|
|
/* cycle through ptseq and hull with computing defects */ |
|
for( i = 0; i < hull->total; i++ ) |
|
{ |
|
CvConvexityDefect defect; |
|
int is_defect = 0; |
|
double dx0, dy0; |
|
double depth = 0, scale; |
|
CvPoint* hull_next; |
|
|
|
if( !is_index ) |
|
hull_next = *(CvPoint**)hull_reader.ptr; |
|
else |
|
{ |
|
int t = *(int*)hull_reader.ptr; |
|
hull_next = CV_GET_SEQ_ELEM( CvPoint, ptseq, t ); |
|
} |
|
|
|
dx0 = (double)hull_next->x - (double)hull_cur->x; |
|
dy0 = (double)hull_next->y - (double)hull_cur->y; |
|
assert( dx0 != 0 || dy0 != 0 ); |
|
scale = 1./std::sqrt(dx0*dx0 + dy0*dy0); |
|
|
|
defect.start = hull_cur; |
|
defect.end = hull_next; |
|
|
|
for(;;) |
|
{ |
|
/* go through ptseq to achieve next hull point */ |
|
CV_NEXT_SEQ_ELEM( sizeof(CvPoint), ptseq_reader ); |
|
|
|
if( ptseq_reader.ptr == (schar*)hull_next ) |
|
break; |
|
else |
|
{ |
|
CvPoint* cur = (CvPoint*)ptseq_reader.ptr; |
|
|
|
/* compute distance from current point to hull edge */ |
|
double dx = (double)cur->x - (double)hull_cur->x; |
|
double dy = (double)cur->y - (double)hull_cur->y; |
|
|
|
/* compute depth */ |
|
double dist = fabs(-dy0*dx + dx0*dy) * scale; |
|
|
|
if( dist > depth ) |
|
{ |
|
depth = dist; |
|
defect.depth_point = cur; |
|
defect.depth = (float)depth; |
|
is_defect = 1; |
|
} |
|
} |
|
} |
|
if( is_defect ) |
|
{ |
|
CV_WRITE_SEQ_ELEM( defect, writer ); |
|
} |
|
|
|
hull_cur = hull_next; |
|
if( rev_orientation ) |
|
{ |
|
CV_PREV_SEQ_ELEM( hull->elem_size, hull_reader ); |
|
} |
|
else |
|
{ |
|
CV_NEXT_SEQ_ELEM( hull->elem_size, hull_reader ); |
|
} |
|
} |
|
|
|
return cvEndWriteSeq( &writer ); |
|
} |
|
|
|
|
|
CV_IMPL int |
|
cvCheckContourConvexity( const CvArr* array ) |
|
{ |
|
CvContour contour_header; |
|
CvSeqBlock block; |
|
CvSeq* contour = (CvSeq*)array; |
|
|
|
if( CV_IS_SEQ(contour) ) |
|
{ |
|
if( !CV_IS_SEQ_POINT_SET(contour)) |
|
CV_Error( CV_StsUnsupportedFormat, |
|
"Input sequence must be polygon (closed 2d curve)" ); |
|
} |
|
else |
|
{ |
|
contour = cvPointSeqFromMat(CV_SEQ_KIND_CURVE| |
|
CV_SEQ_FLAG_CLOSED, array, &contour_header, &block ); |
|
} |
|
|
|
if( contour->total == 0 ) |
|
return -1; |
|
|
|
cv::AutoBuffer<double> _buf; |
|
return cv::isContourConvex(cv::cvarrToMat(contour, false, false, 0, &_buf)) ? 1 : 0; |
|
} |
|
|
|
/* End of file. */
|
|
|