Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

165 lines
6.3 KiB

#include <iostream>
#include <fstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn/dnn.hpp>
using namespace cv;
using namespace cv::dnn;
std::string keys =
"{ help h | | Print help message. }"
"{ inputImage i | | Path to an input image. Skip this argument to capture frames from a camera. }"
"{ modelPath mp | | Path to a binary .onnx file contains trained DB detector model. "
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}"
"{ inputHeight ih |736| image height of the model input. It should be multiple by 32.}"
"{ inputWidth iw |736| image width of the model input. It should be multiple by 32.}"
"{ binaryThreshold bt |0.3| Confidence threshold of the binary map. }"
"{ polygonThreshold pt |0.5| Confidence threshold of polygons. }"
"{ maxCandidate max |200| Max candidates of polygons. }"
"{ unclipRatio ratio |2.0| unclip ratio. }"
"{ evaluate e |false| false: predict with input images; true: evaluate on benchmarks. }"
"{ evalDataPath edp | | Path to benchmarks for evaluation. "
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}";
static
void split(const std::string& s, char delimiter, std::vector<std::string>& elems)
{
elems.clear();
size_t prev_pos = 0;
size_t pos = 0;
while ((pos = s.find(delimiter, prev_pos)) != std::string::npos)
{
elems.emplace_back(s.substr(prev_pos, pos - prev_pos));
prev_pos = pos + 1;
}
if (prev_pos < s.size())
elems.emplace_back(s.substr(prev_pos, s.size() - prev_pos));
}
int main(int argc, char** argv)
{
// Parse arguments
CommandLineParser parser(argc, argv, keys);
parser.about("Use this script to run the official PyTorch implementation (https://github.com/MhLiao/DB) of "
"Real-time Scene Text Detection with Differentiable Binarization (https://arxiv.org/abs/1911.08947)\n"
"The current version of this script is a variant of the original network without deformable convolution");
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
float binThresh = parser.get<float>("binaryThreshold");
float polyThresh = parser.get<float>("polygonThreshold");
uint maxCandidates = parser.get<uint>("maxCandidate");
String modelPath = parser.get<String>("modelPath");
double unclipRatio = parser.get<double>("unclipRatio");
int height = parser.get<int>("inputHeight");
int width = parser.get<int>("inputWidth");
if (!parser.check())
{
parser.printErrors();
return 1;
}
// Load the network
CV_Assert(!modelPath.empty());
TextDetectionModel_DB detector(modelPath);
detector.setBinaryThreshold(binThresh)
.setPolygonThreshold(polyThresh)
.setUnclipRatio(unclipRatio)
.setMaxCandidates(maxCandidates);
double scale = 1.0 / 255.0;
Size inputSize = Size(width, height);
Scalar mean = Scalar(122.67891434, 116.66876762, 104.00698793);
detector.setInputParams(scale, inputSize, mean);
// Create a window
static const std::string winName = "TextDetectionModel";
if (parser.get<bool>("evaluate")) {
// for evaluation
String evalDataPath = parser.get<String>("evalDataPath");
CV_Assert(!evalDataPath.empty());
String testListPath = evalDataPath + "/test_list.txt";
std::ifstream testList;
testList.open(testListPath);
CV_Assert(testList.is_open());
// Create a window for showing groundtruth
static const std::string winNameGT = "GT";
String testImgPath;
while (std::getline(testList, testImgPath)) {
String imgPath = evalDataPath + "/test_images/" + testImgPath;
std::cout << "Image Path: " << imgPath << std::endl;
Mat frame = imread(samples::findFile(imgPath), IMREAD_COLOR);
CV_Assert(!frame.empty());
Mat src = frame.clone();
// Inference
std::vector<std::vector<Point>> results;
detector.detect(frame, results);
polylines(frame, results, true, Scalar(0, 255, 0), 2);
imshow(winName, frame);
// load groundtruth
String imgName = testImgPath.substr(0, testImgPath.length() - 4);
String gtPath = evalDataPath + "/test_gts/" + imgName + ".txt";
// std::cout << gtPath << std::endl;
std::ifstream gtFile;
gtFile.open(gtPath);
CV_Assert(gtFile.is_open());
std::vector<std::vector<Point>> gts;
String gtLine;
while (std::getline(gtFile, gtLine)) {
size_t splitLoc = gtLine.find_last_of(',');
String text = gtLine.substr(splitLoc+1);
if ( text == "###\r" || text == "1") {
// ignore difficult instances
continue;
}
gtLine = gtLine.substr(0, splitLoc);
std::vector<std::string> v;
split(gtLine, ',', v);
std::vector<int> loc;
std::vector<Point> pts;
for (auto && s : v) {
loc.push_back(atoi(s.c_str()));
}
for (size_t i = 0; i < loc.size() / 2; i++) {
pts.push_back(Point(loc[2 * i], loc[2 * i + 1]));
}
gts.push_back(pts);
}
polylines(src, gts, true, Scalar(0, 255, 0), 2);
imshow(winNameGT, src);
waitKey();
}
} else {
// Open an image file
CV_Assert(parser.has("inputImage"));
Mat frame = imread(samples::findFile(parser.get<String>("inputImage")));
CV_Assert(!frame.empty());
// Detect
std::vector<std::vector<Point>> results;
detector.detect(frame, results);
polylines(frame, results, true, Scalar(0, 255, 0), 2);
imshow(winName, frame);
waitKey();
}
return 0;
}