mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
7.7 KiB
210 lines
7.7 KiB
#include <fstream> |
|
#include <sstream> |
|
#include <iostream> |
|
|
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
#include "common.hpp" |
|
|
|
std::string keys = |
|
"{ help h | | Print help message. }" |
|
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }" |
|
"{ zoo | models.yml | An optional path to file with preprocessing parameters }" |
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" |
|
"{ initial_width | 0 | Preprocess input image by initial resizing to a specific width.}" |
|
"{ initial_height | 0 | Preprocess input image by initial resizing to a specific height.}" |
|
"{ std | 0.0 0.0 0.0 | Preprocess input image by dividing on a standard deviation.}" |
|
"{ crop | false | Preprocess input image by center cropping.}" |
|
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }" |
|
"{ needSoftmax | false | Use Softmax to post-process the output of the net.}" |
|
"{ classes | | Optional path to a text file with names of classes. }" |
|
"{ backend | 0 | Choose one of computation backends: " |
|
"0: automatically (by default), " |
|
"1: Halide language (http://halide-lang.org/), " |
|
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
|
"3: OpenCV implementation, " |
|
"4: VKCOM, " |
|
"5: CUDA, " |
|
"6: WebNN }" |
|
"{ target | 0 | Choose one of target computation devices: " |
|
"0: CPU target (by default), " |
|
"1: OpenCL, " |
|
"2: OpenCL fp16 (half-float precision), " |
|
"3: VPU, " |
|
"4: Vulkan, " |
|
"6: CUDA, " |
|
"7: CUDA fp16 (half-float preprocess) }"; |
|
|
|
using namespace cv; |
|
using namespace dnn; |
|
|
|
std::vector<std::string> classes; |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
CommandLineParser parser(argc, argv, keys); |
|
|
|
const std::string modelName = parser.get<String>("@alias"); |
|
const std::string zooFile = parser.get<String>("zoo"); |
|
|
|
keys += genPreprocArguments(modelName, zooFile); |
|
|
|
parser = CommandLineParser(argc, argv, keys); |
|
parser.about("Use this script to run classification deep learning networks using OpenCV."); |
|
if (argc == 1 || parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
int rszWidth = parser.get<int>("initial_width"); |
|
int rszHeight = parser.get<int>("initial_height"); |
|
float scale = parser.get<float>("scale"); |
|
Scalar mean = parser.get<Scalar>("mean"); |
|
Scalar std = parser.get<Scalar>("std"); |
|
bool swapRB = parser.get<bool>("rgb"); |
|
bool crop = parser.get<bool>("crop"); |
|
int inpWidth = parser.get<int>("width"); |
|
int inpHeight = parser.get<int>("height"); |
|
String model = findFile(parser.get<String>("model")); |
|
String config = findFile(parser.get<String>("config")); |
|
String framework = parser.get<String>("framework"); |
|
int backendId = parser.get<int>("backend"); |
|
int targetId = parser.get<int>("target"); |
|
bool needSoftmax = parser.get<bool>("needSoftmax"); |
|
std::cout<<"mean: "<<mean<<std::endl; |
|
std::cout<<"std: "<<std<<std::endl; |
|
|
|
// Open file with classes names. |
|
if (parser.has("classes")) |
|
{ |
|
std::string file = parser.get<String>("classes"); |
|
std::ifstream ifs(file.c_str()); |
|
if (!ifs.is_open()) |
|
CV_Error(Error::StsError, "File " + file + " not found"); |
|
std::string line; |
|
while (std::getline(ifs, line)) |
|
{ |
|
classes.push_back(line); |
|
} |
|
} |
|
|
|
if (!parser.check()) |
|
{ |
|
parser.printErrors(); |
|
return 1; |
|
} |
|
CV_Assert(!model.empty()); |
|
|
|
//! [Read and initialize network] |
|
Net net = readNet(model, config, framework); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
//! [Read and initialize network] |
|
|
|
// Create a window |
|
static const std::string kWinName = "Deep learning image classification in OpenCV"; |
|
namedWindow(kWinName, WINDOW_NORMAL); |
|
|
|
//! [Open a video file or an image file or a camera stream] |
|
VideoCapture cap; |
|
if (parser.has("input")) |
|
cap.open(parser.get<String>("input")); |
|
else |
|
cap.open(0); |
|
//! [Open a video file or an image file or a camera stream] |
|
|
|
// Process frames. |
|
Mat frame, blob; |
|
while (waitKey(1) < 0) |
|
{ |
|
cap >> frame; |
|
if (frame.empty()) |
|
{ |
|
waitKey(); |
|
break; |
|
} |
|
|
|
if (rszWidth != 0 && rszHeight != 0) |
|
{ |
|
resize(frame, frame, Size(rszWidth, rszHeight)); |
|
} |
|
|
|
//! [Create a 4D blob from a frame] |
|
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, crop); |
|
|
|
// Check std values. |
|
if (std.val[0] != 0.0 && std.val[1] != 0.0 && std.val[2] != 0.0) |
|
{ |
|
// Divide blob by std. |
|
divide(blob, std, blob); |
|
} |
|
//! [Create a 4D blob from a frame] |
|
|
|
//! [Set input blob] |
|
net.setInput(blob); |
|
//! [Set input blob] |
|
//! [Make forward pass] |
|
// double t_sum = 0.0; |
|
// double t; |
|
int classId; |
|
double confidence; |
|
cv::TickMeter timeRecorder; |
|
timeRecorder.reset(); |
|
Mat prob = net.forward(); |
|
double t1; |
|
timeRecorder.start(); |
|
prob = net.forward(); |
|
timeRecorder.stop(); |
|
t1 = timeRecorder.getTimeMilli(); |
|
|
|
timeRecorder.reset(); |
|
for(int i = 0; i < 200; i++) { |
|
//! [Make forward pass] |
|
timeRecorder.start(); |
|
prob = net.forward(); |
|
timeRecorder.stop(); |
|
|
|
//! [Get a class with a highest score] |
|
Point classIdPoint; |
|
minMaxLoc(prob.reshape(1, 1), 0, &confidence, 0, &classIdPoint); |
|
classId = classIdPoint.x; |
|
//! [Get a class with a highest score] |
|
|
|
// Put efficiency information. |
|
// std::vector<double> layersTimes; |
|
// double freq = getTickFrequency() / 1000; |
|
// t = net.getPerfProfile(layersTimes) / freq; |
|
// t_sum += t; |
|
} |
|
if (needSoftmax == true) |
|
{ |
|
float maxProb = 0.0; |
|
float sum = 0.0; |
|
Mat softmaxProb; |
|
|
|
maxProb = *std::max_element(prob.begin<float>(), prob.end<float>()); |
|
cv::exp(prob-maxProb, softmaxProb); |
|
sum = (float)cv::sum(softmaxProb)[0]; |
|
softmaxProb /= sum; |
|
Point classIdPoint; |
|
minMaxLoc(softmaxProb.reshape(1, 1), 0, &confidence, 0, &classIdPoint); |
|
classId = classIdPoint.x; |
|
} |
|
std::string label = format("Inference time of 1 round: %.2f ms", t1); |
|
std::string label2 = format("Average time of 200 rounds: %.2f ms", timeRecorder.getTimeMilli()/200); |
|
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
|
putText(frame, label2, Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
|
|
|
// Print predicted class. |
|
label = format("%s: %.4f", (classes.empty() ? format("Class #%d", classId).c_str() : |
|
classes[classId].c_str()), |
|
confidence); |
|
putText(frame, label, Point(0, 55), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
|
|
|
imshow(kWinName, frame); |
|
} |
|
return 0; |
|
}
|
|
|