Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

692 lines
26 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "test_aruco_utils.hpp"
namespace opencv_test { namespace {
/**
* @brief Get a synthetic image of Chessboard in perspective
*/
static Mat projectChessboard(int squaresX, int squaresY, float squareSize, Size imageSize,
Mat cameraMatrix, Mat rvec, Mat tvec, bool legacyPattern) {
Mat img(imageSize, CV_8UC1, Scalar::all(255));
Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
for(int y = 0; y < squaresY; y++) {
float startY = float(y) * squareSize;
for(int x = 0; x < squaresX; x++) {
if(legacyPattern && (squaresY % 2 == 0)) {
if((y + 1) % 2 != x % 2) continue;
} else {
if(y % 2 != x % 2) continue;
}
float startX = float(x) * squareSize;
vector< Point3f > squareCorners;
squareCorners.push_back(Point3f(startX, startY, 0) - Point3f(squaresX*squareSize/2.f, squaresY*squareSize/2.f, 0.f));
squareCorners.push_back(squareCorners[0] + Point3f(squareSize, 0, 0));
squareCorners.push_back(squareCorners[0] + Point3f(squareSize, squareSize, 0));
squareCorners.push_back(squareCorners[0] + Point3f(0, squareSize, 0));
vector< vector< Point2f > > projectedCorners;
projectedCorners.push_back(vector< Point2f >());
projectPoints(squareCorners, rvec, tvec, cameraMatrix, distCoeffs, projectedCorners[0]);
vector< vector< Point > > projectedCornersInt;
projectedCornersInt.push_back(vector< Point >());
for(int k = 0; k < 4; k++)
projectedCornersInt[0]
.push_back(Point((int)projectedCorners[0][k].x, (int)projectedCorners[0][k].y));
fillPoly(img, projectedCornersInt, Scalar::all(0));
}
}
return img;
}
/**
* @brief Check pose estimation of charuco board
*/
static Mat projectCharucoBoard(aruco::CharucoBoard& board, Mat cameraMatrix, double yaw,
double pitch, double distance, Size imageSize, int markerBorder,
Mat &rvec, Mat &tvec) {
getSyntheticRT(yaw, pitch, distance, rvec, tvec);
// project markers
Mat img = Mat(imageSize, CV_8UC1, Scalar::all(255));
for(unsigned int indexMarker = 0; indexMarker < board.getIds().size(); indexMarker++) {
projectMarker(img, board, indexMarker, cameraMatrix, rvec, tvec, markerBorder);
}
// project chessboard
Mat chessboard =
projectChessboard(board.getChessboardSize().width, board.getChessboardSize().height,
board.getSquareLength(), imageSize, cameraMatrix, rvec, tvec, board.getLegacyPattern());
for(unsigned int i = 0; i < chessboard.total(); i++) {
if(chessboard.ptr< unsigned char >()[i] == 0) {
img.ptr< unsigned char >()[i] = 0;
}
}
return img;
}
/**
* @brief Check Charuco detection
*/
class CV_CharucoDetection : public cvtest::BaseTest {
public:
CV_CharucoDetection(bool _legacyPattern) : legacyPattern(_legacyPattern) {}
protected:
void run(int);
bool legacyPattern;
};
void CV_CharucoDetection::run(int) {
int iter = 0;
Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1);
Size imgSize(500, 500);
aruco::DetectorParameters params;
params.minDistanceToBorder = 3;
aruco::CharucoBoard board(Size(4, 4), 0.03f, 0.015f, aruco::getPredefinedDictionary(aruco::DICT_6X6_250));
board.setLegacyPattern(legacyPattern);
aruco::CharucoDetector detector(board, aruco::CharucoParameters(), params);
cameraMatrix.at<double>(0, 0) = cameraMatrix.at<double>(1, 1) = 600;
cameraMatrix.at<double>(0, 2) = imgSize.width / 2;
cameraMatrix.at<double>(1, 2) = imgSize.height / 2;
Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
// for different perspectives
for(double distance : {0.2, 0.4}) {
for(int yaw = -55; yaw <= 50; yaw += 25) {
for(int pitch = -55; pitch <= 50; pitch += 25) {
int markerBorder = iter % 2 + 1;
iter++;
// create synthetic image
Mat rvec, tvec;
Mat img = projectCharucoBoard(board, cameraMatrix, deg2rad(yaw), deg2rad(pitch),
distance, imgSize, markerBorder, rvec, tvec);
// detect markers and interpolate charuco corners
vector<vector<Point2f> > corners;
vector<Point2f> charucoCorners;
vector<int> ids, charucoIds;
params.markerBorderBits = markerBorder;
detector.setDetectorParameters(params);
//detector.detectMarkers(img, corners, ids);
if(iter % 2 == 0) {
detector.detectBoard(img, charucoCorners, charucoIds, corners, ids);
} else {
aruco::CharucoParameters charucoParameters;
charucoParameters.cameraMatrix = cameraMatrix;
charucoParameters.distCoeffs = distCoeffs;
detector.setCharucoParameters(charucoParameters);
detector.detectBoard(img, charucoCorners, charucoIds, corners, ids);
}
ASSERT_GT(ids.size(), std::vector< int >::size_type(0)) << "Marker detection failed";
// check results
vector< Point2f > projectedCharucoCorners;
// copy chessboardCorners
vector<Point3f> copyChessboardCorners = board.getChessboardCorners();
// move copyChessboardCorners points
for (size_t i = 0; i < copyChessboardCorners.size(); i++)
copyChessboardCorners[i] -= board.getRightBottomCorner() / 2.f;
projectPoints(copyChessboardCorners, rvec, tvec, cameraMatrix, distCoeffs,
projectedCharucoCorners);
for(unsigned int i = 0; i < charucoIds.size(); i++) {
int currentId = charucoIds[i];
ASSERT_LT(currentId, (int)board.getChessboardCorners().size()) << "Invalid Charuco corner id";
double repError = cv::norm(charucoCorners[i] - projectedCharucoCorners[currentId]); // TODO cvtest
ASSERT_LE(repError, 5.) << "Charuco corner reprojection error too high";
}
}
}
}
}
/**
* @brief Check charuco pose estimation
*/
class CV_CharucoPoseEstimation : public cvtest::BaseTest {
public:
CV_CharucoPoseEstimation(bool _legacyPattern) : legacyPattern(_legacyPattern) {}
protected:
void run(int);
bool legacyPattern;
};
void CV_CharucoPoseEstimation::run(int) {
int iter = 0;
Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1);
Size imgSize(750, 750);
aruco::DetectorParameters params;
params.minDistanceToBorder = 3;
aruco::CharucoBoard board(Size(4, 4), 0.03f, 0.015f, aruco::getPredefinedDictionary(aruco::DICT_6X6_250));
board.setLegacyPattern(legacyPattern);
aruco::CharucoDetector detector(board, aruco::CharucoParameters(), params);
cameraMatrix.at<double>(0, 0) = cameraMatrix.at< double >(1, 1) = 1000;
cameraMatrix.at<double>(0, 2) = imgSize.width / 2;
cameraMatrix.at<double>(1, 2) = imgSize.height / 2;
Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
// for different perspectives
for(double distance : {0.2, 0.25}) {
for(int yaw = -55; yaw <= 50; yaw += 25) {
for(int pitch = -55; pitch <= 50; pitch += 25) {
int markerBorder = iter % 2 + 1;
iter++;
// get synthetic image
Mat rvec, tvec;
Mat img = projectCharucoBoard(board, cameraMatrix, deg2rad(yaw), deg2rad(pitch),
distance, imgSize, markerBorder, rvec, tvec);
// detect markers
vector<vector<Point2f> > corners;
vector<int> ids;
params.markerBorderBits = markerBorder;
detector.setDetectorParameters(params);
// detect markers and interpolate charuco corners
vector<Point2f> charucoCorners;
vector<int> charucoIds;
if(iter % 2 == 0) {
detector.detectBoard(img, charucoCorners, charucoIds, corners, ids);
} else {
aruco::CharucoParameters charucoParameters;
charucoParameters.cameraMatrix = cameraMatrix;
charucoParameters.distCoeffs = distCoeffs;
detector.setCharucoParameters(charucoParameters);
detector.detectBoard(img, charucoCorners, charucoIds, corners, ids);
}
ASSERT_EQ(ids.size(), board.getIds().size());
if(charucoIds.size() == 0) continue;
// estimate charuco pose
getCharucoBoardPose(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec);
// check axes
const float aruco_offset = (board.getSquareLength() - board.getMarkerLength()) / 2.f;
Point2f offset;
vector<Point2f> topLeft, bottomLeft;
if(legacyPattern) { // white box in upper left corner for even row count chessboard patterns
offset = Point2f(aruco_offset + board.getSquareLength(), aruco_offset);
topLeft = getMarkerById(board.getIds()[1], corners, ids);
bottomLeft = getMarkerById(board.getIds()[2], corners, ids);
} else { // always a black box in the upper left corner
offset = Point2f(aruco_offset, aruco_offset);
topLeft = getMarkerById(board.getIds()[0], corners, ids);
bottomLeft = getMarkerById(board.getIds()[2], corners, ids);
}
vector<Point2f> axes = getAxis(cameraMatrix, distCoeffs, rvec, tvec, board.getSquareLength(), offset);
ASSERT_NEAR(topLeft[0].x, axes[1].x, 3.f);
ASSERT_NEAR(topLeft[0].y, axes[1].y, 3.f);
ASSERT_NEAR(bottomLeft[0].x, axes[2].x, 3.f);
ASSERT_NEAR(bottomLeft[0].y, axes[2].y, 3.f);
// check estimate result
vector< Point2f > projectedCharucoCorners;
projectPoints(board.getChessboardCorners(), rvec, tvec, cameraMatrix, distCoeffs,
projectedCharucoCorners);
for(unsigned int i = 0; i < charucoIds.size(); i++) {
int currentId = charucoIds[i];
ASSERT_LT(currentId, (int)board.getChessboardCorners().size()) << "Invalid Charuco corner id";
double repError = cv::norm(charucoCorners[i] - projectedCharucoCorners[currentId]); // TODO cvtest
ASSERT_LE(repError, 5.) << "Charuco corner reprojection error too high";
}
}
}
}
}
/**
* @brief Check diamond detection
*/
class CV_CharucoDiamondDetection : public cvtest::BaseTest {
public:
CV_CharucoDiamondDetection();
protected:
void run(int);
};
CV_CharucoDiamondDetection::CV_CharucoDiamondDetection() {}
void CV_CharucoDiamondDetection::run(int) {
int iter = 0;
Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1);
Size imgSize(500, 500);
aruco::DetectorParameters params;
params.minDistanceToBorder = 0;
float squareLength = 0.03f;
float markerLength = 0.015f;
aruco::CharucoBoard board(Size(3, 3), squareLength, markerLength,
aruco::getPredefinedDictionary(aruco::DICT_6X6_250));
aruco::CharucoDetector detector(board);
cameraMatrix.at<double>(0, 0) = cameraMatrix.at< double >(1, 1) = 650;
cameraMatrix.at<double>(0, 2) = imgSize.width / 2;
cameraMatrix.at<double>(1, 2) = imgSize.height / 2;
Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
aruco::CharucoParameters charucoParameters;
charucoParameters.cameraMatrix = cameraMatrix;
charucoParameters.distCoeffs = distCoeffs;
detector.setCharucoParameters(charucoParameters);
// for different perspectives
for(double distance : {0.2, 0.22}) {
for(int yaw = -50; yaw <= 50; yaw += 25) {
for(int pitch = -50; pitch <= 50; pitch += 25) {
int markerBorder = iter % 2 + 1;
vector<int> idsTmp;
for(int i = 0; i < 4; i++)
idsTmp.push_back(4 * iter + i);
board = aruco::CharucoBoard(Size(3, 3), squareLength, markerLength,
aruco::getPredefinedDictionary(aruco::DICT_6X6_250), idsTmp);
detector.setBoard(board);
iter++;
// get synthetic image
Mat rvec, tvec;
Mat img = projectCharucoBoard(board, cameraMatrix, deg2rad(yaw), deg2rad(pitch),
distance, imgSize, markerBorder, rvec, tvec);
// detect markers
vector<vector<Point2f>> corners;
vector<int> ids;
params.markerBorderBits = markerBorder;
detector.setDetectorParameters(params);
//detector.detectMarkers(img, corners, ids);
// detect diamonds
vector<vector<Point2f>> diamondCorners;
vector<Vec4i> diamondIds;
detector.detectDiamonds(img, diamondCorners, diamondIds, corners, ids);
// check detect
if(ids.size() != 4) {
ts->printf(cvtest::TS::LOG, "Not enough markers for diamond detection");
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
// check results
if(diamondIds.size() != 1) {
ts->printf(cvtest::TS::LOG, "Diamond not detected correctly");
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
for(int i = 0; i < 4; i++) {
if(diamondIds[0][i] != board.getIds()[i]) {
ts->printf(cvtest::TS::LOG, "Incorrect diamond ids");
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
}
vector< Point2f > projectedDiamondCorners;
// copy chessboardCorners
vector<Point3f> copyChessboardCorners = board.getChessboardCorners();
// move copyChessboardCorners points
for (size_t i = 0; i < copyChessboardCorners.size(); i++)
copyChessboardCorners[i] -= board.getRightBottomCorner() / 2.f;
projectPoints(copyChessboardCorners, rvec, tvec, cameraMatrix, distCoeffs,
projectedDiamondCorners);
vector< Point2f > projectedDiamondCornersReorder(4);
projectedDiamondCornersReorder[0] = projectedDiamondCorners[0];
projectedDiamondCornersReorder[1] = projectedDiamondCorners[1];
projectedDiamondCornersReorder[2] = projectedDiamondCorners[3];
projectedDiamondCornersReorder[3] = projectedDiamondCorners[2];
for(unsigned int i = 0; i < 4; i++) {
double repError = cv::norm(diamondCorners[0][i] - projectedDiamondCornersReorder[i]); // TODO cvtest
if(repError > 5.) {
ts->printf(cvtest::TS::LOG, "Diamond corner reprojection error too high");
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
}
// estimate diamond pose
vector< Vec3d > estimatedRvec, estimatedTvec;
getMarkersPoses(diamondCorners, squareLength, cameraMatrix, distCoeffs, estimatedRvec,
estimatedTvec, noArray(), false);
// check result
vector< Point2f > projectedDiamondCornersPose;
vector< Vec3f > diamondObjPoints(4);
diamondObjPoints[0] = Vec3f(0.f, 0.f, 0);
diamondObjPoints[1] = Vec3f(squareLength, 0.f, 0);
diamondObjPoints[2] = Vec3f(squareLength, squareLength, 0);
diamondObjPoints[3] = Vec3f(0.f, squareLength, 0);
projectPoints(diamondObjPoints, estimatedRvec[0], estimatedTvec[0], cameraMatrix,
distCoeffs, projectedDiamondCornersPose);
for(unsigned int i = 0; i < 4; i++) {
double repError = cv::norm(projectedDiamondCornersReorder[i] - projectedDiamondCornersPose[i]); // TODO cvtest
if(repError > 5.) {
ts->printf(cvtest::TS::LOG, "Charuco pose error too high");
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
}
}
}
}
}
/**
* @brief Check charuco board creation
*/
class CV_CharucoBoardCreation : public cvtest::BaseTest {
public:
CV_CharucoBoardCreation();
protected:
void run(int);
};
CV_CharucoBoardCreation::CV_CharucoBoardCreation() {}
void CV_CharucoBoardCreation::run(int)
{
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_5X5_250);
int n = 6;
float markerSizeFactor = 0.5f;
for (float squareSize_mm = 5.0f; squareSize_mm < 35.0f; squareSize_mm += 0.1f)
{
aruco::CharucoBoard board_meters(Size(n, n), squareSize_mm*1e-3f,
squareSize_mm * markerSizeFactor * 1e-3f, dictionary);
aruco::CharucoBoard board_millimeters(Size(n, n), squareSize_mm,
squareSize_mm * markerSizeFactor, dictionary);
for (size_t i = 0; i < board_meters.getNearestMarkerIdx().size(); i++)
{
if (board_meters.getNearestMarkerIdx()[i].size() != board_millimeters.getNearestMarkerIdx()[i].size() ||
board_meters.getNearestMarkerIdx()[i][0] != board_millimeters.getNearestMarkerIdx()[i][0])
{
ts->printf(cvtest::TS::LOG,
cv::format("Charuco board topology is sensitive to scale with squareSize=%.1f\n",
squareSize_mm).c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
break;
}
}
}
}
TEST(CV_CharucoDetection, accuracy) {
const bool legacyPattern = false;
CV_CharucoDetection test(legacyPattern);
test.safe_run();
}
TEST(CV_CharucoDetection, accuracy_legacyPattern) {
const bool legacyPattern = true;
CV_CharucoDetection test(legacyPattern);
test.safe_run();
}
TEST(CV_CharucoPoseEstimation, accuracy) {
const bool legacyPattern = false;
CV_CharucoPoseEstimation test(legacyPattern);
test.safe_run();
}
TEST(CV_CharucoPoseEstimation, accuracy_legacyPattern) {
const bool legacyPattern = true;
CV_CharucoPoseEstimation test(legacyPattern);
test.safe_run();
}
TEST(CV_CharucoDiamondDetection, accuracy) {
CV_CharucoDiamondDetection test;
test.safe_run();
}
TEST(CV_CharucoBoardCreation, accuracy) {
CV_CharucoBoardCreation test;
test.safe_run();
}
TEST(Charuco, testCharucoCornersCollinear_true)
{
int squaresX = 13;
int squaresY = 28;
float squareLength = 300;
float markerLength = 150;
int dictionaryId = 11;
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::PredefinedDictionaryType(dictionaryId));
aruco::CharucoBoard charucoBoard(Size(squaresX, squaresY), squareLength, markerLength, dictionary);
// consistency with C++98
const int arrLine[9] = {192, 204, 216, 228, 240, 252, 264, 276, 288};
vector<int> charucoIdsAxisLine(9, 0);
for (int i = 0; i < 9; i++){
charucoIdsAxisLine[i] = arrLine[i];
}
const int arrDiag[7] = {198, 209, 220, 231, 242, 253, 264};
vector<int> charucoIdsDiagonalLine(7, 0);
for (int i = 0; i < 7; i++){
charucoIdsDiagonalLine[i] = arrDiag[i];
}
bool resultAxisLine = charucoBoard.checkCharucoCornersCollinear(charucoIdsAxisLine);
EXPECT_TRUE(resultAxisLine);
bool resultDiagonalLine = charucoBoard.checkCharucoCornersCollinear(charucoIdsDiagonalLine);
EXPECT_TRUE(resultDiagonalLine);
}
TEST(Charuco, testCharucoCornersCollinear_false)
{
int squaresX = 13;
int squaresY = 28;
float squareLength = 300;
float markerLength = 150;
int dictionaryId = 11;
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::PredefinedDictionaryType(dictionaryId));
aruco::CharucoBoard charucoBoard(Size(squaresX, squaresY), squareLength, markerLength, dictionary);
// consistency with C++98
const int arr[63] = {192, 193, 194, 195, 196, 197, 198, 204, 205, 206, 207, 208,
209, 210, 216, 217, 218, 219, 220, 221, 222, 228, 229, 230,
231, 232, 233, 234, 240, 241, 242, 243, 244, 245, 246, 252,
253, 254, 255, 256, 257, 258, 264, 265, 266, 267, 268, 269,
270, 276, 277, 278, 279, 280, 281, 282, 288, 289, 290, 291,
292, 293, 294};
vector<int> charucoIds(63, 0);
for (int i = 0; i < 63; i++){
charucoIds[i] = arr[i];
}
bool result = charucoBoard.checkCharucoCornersCollinear(charucoIds);
EXPECT_FALSE(result);
}
// test that ChArUco board detection is subpixel accurate
TEST(Charuco, testBoardSubpixelCoords)
{
cv::Size res{500, 500};
cv::Mat K = (cv::Mat_<double>(3,3) <<
0.5*res.width, 0, 0.5*res.width,
0, 0.5*res.height, 0.5*res.height,
0, 0, 1);
// set expected_corners values
cv::Mat expected_corners = (cv::Mat_<float>(9,2) <<
200, 200,
250, 200,
300, 200,
200, 250,
250, 250,
300, 250,
200, 300,
250, 300,
300, 300
);
cv::Mat gray;
aruco::Dictionary dict = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_APRILTAG_36h11);
aruco::CharucoBoard board(Size(4, 4), 1.f, .8f, dict);
// generate ChArUco board
board.generateImage(Size(res.width, res.height), gray, 150);
cv::GaussianBlur(gray, gray, Size(5, 5), 1.0);
aruco::DetectorParameters params;
params.cornerRefinementMethod = (int)cv::aruco::CORNER_REFINE_APRILTAG;
aruco::CharucoParameters charucoParameters;
charucoParameters.cameraMatrix = K;
aruco::CharucoDetector detector(board, charucoParameters);
detector.setDetectorParameters(params);
std::vector<int> ids;
std::vector<std::vector<cv::Point2f>> corners;
cv::Mat c_ids, c_corners;
detector.detectBoard(gray, c_corners, c_ids, corners, ids);
ASSERT_EQ(ids.size(), size_t(8));
ASSERT_EQ(c_corners.rows, expected_corners.rows);
EXPECT_NEAR(0, cvtest::norm(expected_corners, c_corners.reshape(1), NORM_INF), 1e-1);
}
TEST(Charuco, issue_14014)
{
string imgPath = cvtest::findDataFile("aruco/recover.png");
Mat img = imread(imgPath);
aruco::DetectorParameters detectorParams;
detectorParams.cornerRefinementMethod = (int)aruco::CORNER_REFINE_SUBPIX;
detectorParams.cornerRefinementMinAccuracy = 0.01;
aruco::ArucoDetector detector(aruco::getPredefinedDictionary(aruco::DICT_7X7_250), detectorParams);
aruco::CharucoBoard board(Size(8, 5), 0.03455f, 0.02164f, detector.getDictionary());
vector<Mat> corners, rejectedPoints;
vector<int> ids;
detector.detectMarkers(img, corners, ids, rejectedPoints);
ASSERT_EQ(corners.size(), 19ull);
EXPECT_EQ(Size(4, 1), corners[0].size()); // check dimension of detected corners
size_t numRejPoints = rejectedPoints.size();
ASSERT_EQ(rejectedPoints.size(), 26ull); // optional check to track regressions
EXPECT_EQ(Size(4, 1), rejectedPoints[0].size()); // check dimension of detected corners
detector.refineDetectedMarkers(img, board, corners, ids, rejectedPoints);
ASSERT_EQ(corners.size(), 20ull);
EXPECT_EQ(Size(4, 1), corners[0].size()); // check dimension of rejected corners after successfully refine
ASSERT_EQ(rejectedPoints.size() + 1, numRejPoints);
EXPECT_EQ(Size(4, 1), rejectedPoints[0].size()); // check dimension of rejected corners after successfully refine
}
TEST(Charuco, testmatchImagePoints)
{
aruco::CharucoBoard board(Size(2, 3), 1.f, 0.5f, aruco::getPredefinedDictionary(aruco::DICT_4X4_50));
auto chessboardPoints = board.getChessboardCorners();
vector<int> detectedIds;
vector<Point2f> detectedCharucoCorners;
for (const Point3f& point : chessboardPoints) {
detectedIds.push_back((int)detectedCharucoCorners.size());
detectedCharucoCorners.push_back({2.f*point.x, 2.f*point.y});
}
vector<Point3f> objPoints;
vector<Point2f> imagePoints;
board.matchImagePoints(detectedCharucoCorners, detectedIds, objPoints, imagePoints);
ASSERT_EQ(detectedCharucoCorners.size(), objPoints.size());
ASSERT_EQ(detectedCharucoCorners.size(), imagePoints.size());
for (size_t i = 0ull; i < detectedCharucoCorners.size(); i++) {
EXPECT_EQ(detectedCharucoCorners[i], imagePoints[i]);
EXPECT_EQ(chessboardPoints[i].x, objPoints[i].x);
EXPECT_EQ(chessboardPoints[i].y, objPoints[i].y);
}
}
}} // namespace