Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

389 lines
11 KiB

/* -- translated by f2c (version 20201020 (for_lapack)). -- */
#include "f2c.h"
//> \brief \b DLARFT forms the triangular factor T of a block reflector H = I - vtvH
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
//> \htmlonly
//> Download DLARFT + dependencies
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarft.f">
//> [TGZ]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarft.f">
//> [ZIP]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarft.f">
//> [TXT]</a>
//> \endhtmlonly
//
// Definition:
// ===========
//
// SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
//
// .. Scalar Arguments ..
// CHARACTER DIRECT, STOREV
// INTEGER K, LDT, LDV, N
// ..
// .. Array Arguments ..
// DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> DLARFT forms the triangular factor T of a real block reflector H
//> of order n, which is defined as a product of k elementary reflectors.
//>
//> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
//>
//> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
//>
//> If STOREV = 'C', the vector which defines the elementary reflector
//> H(i) is stored in the i-th column of the array V, and
//>
//> H = I - V * T * V**T
//>
//> If STOREV = 'R', the vector which defines the elementary reflector
//> H(i) is stored in the i-th row of the array V, and
//>
//> H = I - V**T * T * V
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] DIRECT
//> \verbatim
//> DIRECT is CHARACTER*1
//> Specifies the order in which the elementary reflectors are
//> multiplied to form the block reflector:
//> = 'F': H = H(1) H(2) . . . H(k) (Forward)
//> = 'B': H = H(k) . . . H(2) H(1) (Backward)
//> \endverbatim
//>
//> \param[in] STOREV
//> \verbatim
//> STOREV is CHARACTER*1
//> Specifies how the vectors which define the elementary
//> reflectors are stored (see also Further Details):
//> = 'C': columnwise
//> = 'R': rowwise
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> The order of the block reflector H. N >= 0.
//> \endverbatim
//>
//> \param[in] K
//> \verbatim
//> K is INTEGER
//> The order of the triangular factor T (= the number of
//> elementary reflectors). K >= 1.
//> \endverbatim
//>
//> \param[in] V
//> \verbatim
//> V is DOUBLE PRECISION array, dimension
//> (LDV,K) if STOREV = 'C'
//> (LDV,N) if STOREV = 'R'
//> The matrix V. See further details.
//> \endverbatim
//>
//> \param[in] LDV
//> \verbatim
//> LDV is INTEGER
//> The leading dimension of the array V.
//> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
//> \endverbatim
//>
//> \param[in] TAU
//> \verbatim
//> TAU is DOUBLE PRECISION array, dimension (K)
//> TAU(i) must contain the scalar factor of the elementary
//> reflector H(i).
//> \endverbatim
//>
//> \param[out] T
//> \verbatim
//> T is DOUBLE PRECISION array, dimension (LDT,K)
//> The k by k triangular factor T of the block reflector.
//> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
//> lower triangular. The rest of the array is not used.
//> \endverbatim
//>
//> \param[in] LDT
//> \verbatim
//> LDT is INTEGER
//> The leading dimension of the array T. LDT >= K.
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date December 2016
//
//> \ingroup doubleOTHERauxiliary
//
//> \par Further Details:
// =====================
//>
//> \verbatim
//>
//> The shape of the matrix V and the storage of the vectors which define
//> the H(i) is best illustrated by the following example with n = 5 and
//> k = 3. The elements equal to 1 are not stored.
//>
//> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
//>
//> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
//> ( v1 1 ) ( 1 v2 v2 v2 )
//> ( v1 v2 1 ) ( 1 v3 v3 )
//> ( v1 v2 v3 )
//> ( v1 v2 v3 )
//>
//> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
//>
//> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
//> ( v1 v2 v3 ) ( v2 v2 v2 1 )
//> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
//> ( 1 v3 )
//> ( 1 )
//> \endverbatim
//>
// =====================================================================
/* Subroutine */ int dlarft_(char *direct, char *storev, int *n, int *k,
double *v, int *ldv, double *tau, double *t, int *ldt)
{
// Table of constant values
int c__1 = 1;
double c_b7 = 1.;
// System generated locals
int t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;
double d__1;
// Local variables
int i__, j, prevlastv;
extern int lsame_(char *, char *);
extern /* Subroutine */ int dgemv_(char *, int *, int *, double *, double
*, int *, double *, int *, double *, double *, int *);
int lastv;
extern /* Subroutine */ int dtrmv_(char *, char *, char *, int *, double *
, int *, double *, int *);
//
// -- LAPACK auxiliary routine (version 3.7.0) --
// -- LAPACK is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// December 2016
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. Parameters ..
// ..
// .. Local Scalars ..
// ..
// .. External Subroutines ..
// ..
// .. External Functions ..
// ..
// .. Executable Statements ..
//
// Quick return if possible
//
// Parameter adjustments
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
--tau;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
// Function Body
if (*n == 0) {
return 0;
}
if (lsame_(direct, "F")) {
prevlastv = *n;
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
prevlastv = max(i__,prevlastv);
if (tau[i__] == 0.) {
//
// H(i) = I
//
i__2 = i__;
for (j = 1; j <= i__2; ++j) {
t[j + i__ * t_dim1] = 0.;
}
} else {
//
// general case
//
if (lsame_(storev, "C")) {
// Skip any trailing zeros.
i__2 = i__ + 1;
for (lastv = *n; lastv >= i__2; --lastv) {
if (v[lastv + i__ * v_dim1] != 0.) {
break;
}
}
i__2 = i__ - 1;
for (j = 1; j <= i__2; ++j) {
t[j + i__ * t_dim1] = -tau[i__] * v[i__ + j * v_dim1];
}
j = min(lastv,prevlastv);
//
// T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i)
//
i__2 = j - i__;
i__3 = i__ - 1;
d__1 = -tau[i__];
dgemv_("Transpose", &i__2, &i__3, &d__1, &v[i__ + 1 +
v_dim1], ldv, &v[i__ + 1 + i__ * v_dim1], &c__1, &
c_b7, &t[i__ * t_dim1 + 1], &c__1);
} else {
// Skip any trailing zeros.
i__2 = i__ + 1;
for (lastv = *n; lastv >= i__2; --lastv) {
if (v[i__ + lastv * v_dim1] != 0.) {
break;
}
}
i__2 = i__ - 1;
for (j = 1; j <= i__2; ++j) {
t[j + i__ * t_dim1] = -tau[i__] * v[j + i__ * v_dim1];
}
j = min(lastv,prevlastv);
//
// T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T
//
i__2 = i__ - 1;
i__3 = j - i__;
d__1 = -tau[i__];
dgemv_("No transpose", &i__2, &i__3, &d__1, &v[(i__ + 1) *
v_dim1 + 1], ldv, &v[i__ + (i__ + 1) * v_dim1],
ldv, &c_b7, &t[i__ * t_dim1 + 1], &c__1);
}
//
// T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
//
i__2 = i__ - 1;
dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1);
t[i__ + i__ * t_dim1] = tau[i__];
if (i__ > 1) {
prevlastv = max(prevlastv,lastv);
} else {
prevlastv = lastv;
}
}
}
} else {
prevlastv = 1;
for (i__ = *k; i__ >= 1; --i__) {
if (tau[i__] == 0.) {
//
// H(i) = I
//
i__1 = *k;
for (j = i__; j <= i__1; ++j) {
t[j + i__ * t_dim1] = 0.;
}
} else {
//
// general case
//
if (i__ < *k) {
if (lsame_(storev, "C")) {
// Skip any leading zeros.
i__1 = i__ - 1;
for (lastv = 1; lastv <= i__1; ++lastv) {
if (v[lastv + i__ * v_dim1] != 0.) {
break;
}
}
i__1 = *k;
for (j = i__ + 1; j <= i__1; ++j) {
t[j + i__ * t_dim1] = -tau[i__] * v[*n - *k + i__
+ j * v_dim1];
}
j = max(lastv,prevlastv);
//
// T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i)
//
i__1 = *n - *k + i__ - j;
i__2 = *k - i__;
d__1 = -tau[i__];
dgemv_("Transpose", &i__1, &i__2, &d__1, &v[j + (i__
+ 1) * v_dim1], ldv, &v[j + i__ * v_dim1], &
c__1, &c_b7, &t[i__ + 1 + i__ * t_dim1], &
c__1);
} else {
// Skip any leading zeros.
i__1 = i__ - 1;
for (lastv = 1; lastv <= i__1; ++lastv) {
if (v[i__ + lastv * v_dim1] != 0.) {
break;
}
}
i__1 = *k;
for (j = i__ + 1; j <= i__1; ++j) {
t[j + i__ * t_dim1] = -tau[i__] * v[j + (*n - *k
+ i__) * v_dim1];
}
j = max(lastv,prevlastv);
//
// T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T
//
i__1 = *k - i__;
i__2 = *n - *k + i__ - j;
d__1 = -tau[i__];
dgemv_("No transpose", &i__1, &i__2, &d__1, &v[i__ +
1 + j * v_dim1], ldv, &v[i__ + j * v_dim1],
ldv, &c_b7, &t[i__ + 1 + i__ * t_dim1], &c__1)
;
}
//
// T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
//
i__1 = *k - i__;
dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__
+ 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *
t_dim1], &c__1);
if (i__ > 1) {
prevlastv = min(prevlastv,lastv);
} else {
prevlastv = lastv;
}
}
t[i__ + i__ * t_dim1] = tau[i__];
}
}
}
return 0;
//
// End of DLARFT
//
} // dlarft_