Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

752 lines
21 KiB

/* -- translated by f2c (version 20201020 (for_lapack)). -- */
#include "f2c.h"
//> \brief \b CGEMM
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
// Definition:
// ===========
//
// SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
//
// .. Scalar Arguments ..
// COMPLEX ALPHA,BETA
// INTEGER K,LDA,LDB,LDC,M,N
// CHARACTER TRANSA,TRANSB
// ..
// .. Array Arguments ..
// COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> CGEMM performs one of the matrix-matrix operations
//>
//> C := alpha*op( A )*op( B ) + beta*C,
//>
//> where op( X ) is one of
//>
//> op( X ) = X or op( X ) = X**T or op( X ) = X**H,
//>
//> alpha and beta are scalars, and A, B and C are matrices, with op( A )
//> an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] TRANSA
//> \verbatim
//> TRANSA is CHARACTER*1
//> On entry, TRANSA specifies the form of op( A ) to be used in
//> the matrix multiplication as follows:
//>
//> TRANSA = 'N' or 'n', op( A ) = A.
//>
//> TRANSA = 'T' or 't', op( A ) = A**T.
//>
//> TRANSA = 'C' or 'c', op( A ) = A**H.
//> \endverbatim
//>
//> \param[in] TRANSB
//> \verbatim
//> TRANSB is CHARACTER*1
//> On entry, TRANSB specifies the form of op( B ) to be used in
//> the matrix multiplication as follows:
//>
//> TRANSB = 'N' or 'n', op( B ) = B.
//>
//> TRANSB = 'T' or 't', op( B ) = B**T.
//>
//> TRANSB = 'C' or 'c', op( B ) = B**H.
//> \endverbatim
//>
//> \param[in] M
//> \verbatim
//> M is INTEGER
//> On entry, M specifies the number of rows of the matrix
//> op( A ) and of the matrix C. M must be at least zero.
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> On entry, N specifies the number of columns of the matrix
//> op( B ) and the number of columns of the matrix C. N must be
//> at least zero.
//> \endverbatim
//>
//> \param[in] K
//> \verbatim
//> K is INTEGER
//> On entry, K specifies the number of columns of the matrix
//> op( A ) and the number of rows of the matrix op( B ). K must
//> be at least zero.
//> \endverbatim
//>
//> \param[in] ALPHA
//> \verbatim
//> ALPHA is COMPLEX
//> On entry, ALPHA specifies the scalar alpha.
//> \endverbatim
//>
//> \param[in] A
//> \verbatim
//> A is COMPLEX array, dimension ( LDA, ka ), where ka is
//> k when TRANSA = 'N' or 'n', and is m otherwise.
//> Before entry with TRANSA = 'N' or 'n', the leading m by k
//> part of the array A must contain the matrix A, otherwise
//> the leading k by m part of the array A must contain the
//> matrix A.
//> \endverbatim
//>
//> \param[in] LDA
//> \verbatim
//> LDA is INTEGER
//> On entry, LDA specifies the first dimension of A as declared
//> in the calling (sub) program. When TRANSA = 'N' or 'n' then
//> LDA must be at least max( 1, m ), otherwise LDA must be at
//> least max( 1, k ).
//> \endverbatim
//>
//> \param[in] B
//> \verbatim
//> B is COMPLEX array, dimension ( LDB, kb ), where kb is
//> n when TRANSB = 'N' or 'n', and is k otherwise.
//> Before entry with TRANSB = 'N' or 'n', the leading k by n
//> part of the array B must contain the matrix B, otherwise
//> the leading n by k part of the array B must contain the
//> matrix B.
//> \endverbatim
//>
//> \param[in] LDB
//> \verbatim
//> LDB is INTEGER
//> On entry, LDB specifies the first dimension of B as declared
//> in the calling (sub) program. When TRANSB = 'N' or 'n' then
//> LDB must be at least max( 1, k ), otherwise LDB must be at
//> least max( 1, n ).
//> \endverbatim
//>
//> \param[in] BETA
//> \verbatim
//> BETA is COMPLEX
//> On entry, BETA specifies the scalar beta. When BETA is
//> supplied as zero then C need not be set on input.
//> \endverbatim
//>
//> \param[in,out] C
//> \verbatim
//> C is COMPLEX array, dimension ( LDC, N )
//> Before entry, the leading m by n part of the array C must
//> contain the matrix C, except when beta is zero, in which
//> case C need not be set on entry.
//> On exit, the array C is overwritten by the m by n matrix
//> ( alpha*op( A )*op( B ) + beta*C ).
//> \endverbatim
//>
//> \param[in] LDC
//> \verbatim
//> LDC is INTEGER
//> On entry, LDC specifies the first dimension of C as declared
//> in the calling (sub) program. LDC must be at least
//> max( 1, m ).
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date December 2016
//
//> \ingroup complex_blas_level3
//
//> \par Further Details:
// =====================
//>
//> \verbatim
//>
//> Level 3 Blas routine.
//>
//> -- Written on 8-February-1989.
//> Jack Dongarra, Argonne National Laboratory.
//> Iain Duff, AERE Harwell.
//> Jeremy Du Croz, Numerical Algorithms Group Ltd.
//> Sven Hammarling, Numerical Algorithms Group Ltd.
//> \endverbatim
//>
// =====================================================================
/* Subroutine */ int cgemm_(char *transa, char *transb, int *m, int *n, int *
k, complex *alpha, complex *a, int *lda, complex *b, int *ldb,
complex *beta, complex *c__, int *ldc)
{
// Table of constant values
complex c_b1 = {1.f,0.f};
complex c_b2 = {0.f,0.f};
// System generated locals
int a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3, i__4, i__5, i__6;
complex q__1, q__2, q__3, q__4;
// Local variables
int i__, j, l, info;
int nota, notb;
complex temp;
int conja, conjb;
int ncola;
extern int lsame_(char *, char *);
int nrowa, nrowb;
extern /* Subroutine */ int xerbla_(char *, int *);
//
// -- Reference BLAS level3 routine (version 3.7.0) --
// -- Reference BLAS is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// December 2016
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. External Functions ..
// ..
// .. External Subroutines ..
// ..
// .. Intrinsic Functions ..
// ..
// .. Local Scalars ..
// ..
// .. Parameters ..
// ..
//
// Set NOTA and NOTB as true if A and B respectively are not
// conjugated or transposed, set CONJA and CONJB as true if A and
// B respectively are to be transposed but not conjugated and set
// NROWA, NCOLA and NROWB as the number of rows and columns of A
// and the number of rows of B respectively.
//
// Parameter adjustments
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
// Function Body
nota = lsame_(transa, "N");
notb = lsame_(transb, "N");
conja = lsame_(transa, "C");
conjb = lsame_(transb, "C");
if (nota) {
nrowa = *m;
ncola = *k;
} else {
nrowa = *k;
ncola = *m;
}
if (notb) {
nrowb = *k;
} else {
nrowb = *n;
}
//
// Test the input parameters.
//
info = 0;
if (! nota && ! conja && ! lsame_(transa, "T")) {
info = 1;
} else if (! notb && ! conjb && ! lsame_(transb, "T")) {
info = 2;
} else if (*m < 0) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*k < 0) {
info = 5;
} else if (*lda < max(1,nrowa)) {
info = 8;
} else if (*ldb < max(1,nrowb)) {
info = 10;
} else if (*ldc < max(1,*m)) {
info = 13;
}
if (info != 0) {
xerbla_("CGEMM ", &info);
return 0;
}
//
// Quick return if possible.
//
if (*m == 0 || *n == 0 || (alpha->r == 0.f && alpha->i == 0.f || *k == 0)
&& (beta->r == 1.f && beta->i == 0.f)) {
return 0;
}
//
// And when alpha.eq.zero.
//
if (alpha->r == 0.f && alpha->i == 0.f) {
if (beta->r == 0.f && beta->i == 0.f) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0.f, c__[i__3].i = 0.f;
// L10:
}
// L20:
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
q__1.i = beta->r * c__[i__4].i + beta->i * c__[
i__4].r;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
// L30:
}
// L40:
}
}
return 0;
}
//
// Start the operations.
//
if (notb) {
if (nota) {
//
// Form C := alpha*A*B + beta*C.
//
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (beta->r == 0.f && beta->i == 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0.f, c__[i__3].i = 0.f;
// L50:
}
} else if (beta->r != 1.f || beta->i != 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, q__1.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
// L60:
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
i__3 = l + j * b_dim1;
q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
q__1.i = alpha->r * b[i__3].i + alpha->i * b[i__3]
.r;
temp.r = q__1.r, temp.i = q__1.i;
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
q__2.i = temp.r * a[i__6].i + temp.i * a[i__6]
.r;
q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5].i +
q__2.i;
c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
// L70:
}
// L80:
}
// L90:
}
} else if (conja) {
//
// Form C := alpha*A**H*B + beta*C.
//
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0.f, temp.i = 0.f;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
r_cnjg(&q__3, &a[l + i__ * a_dim1]);
i__4 = l + j * b_dim1;
q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
.r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
// L100:
}
if (beta->r == 0.f && beta->i == 0.f) {
i__3 = i__ + j * c_dim1;
q__1.r = alpha->r * temp.r - alpha->i * temp.i,
q__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
} else {
i__3 = i__ + j * c_dim1;
q__2.r = alpha->r * temp.r - alpha->i * temp.i,
q__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, q__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
}
// L110:
}
// L120:
}
} else {
//
// Form C := alpha*A**T*B + beta*C
//
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0.f, temp.i = 0.f;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
i__4 = l + i__ * a_dim1;
i__5 = l + j * b_dim1;
q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
.i, q__2.i = a[i__4].r * b[i__5].i + a[i__4]
.i * b[i__5].r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
// L130:
}
if (beta->r == 0.f && beta->i == 0.f) {
i__3 = i__ + j * c_dim1;
q__1.r = alpha->r * temp.r - alpha->i * temp.i,
q__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
} else {
i__3 = i__ + j * c_dim1;
q__2.r = alpha->r * temp.r - alpha->i * temp.i,
q__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, q__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
}
// L140:
}
// L150:
}
}
} else if (nota) {
if (conjb) {
//
// Form C := alpha*A*B**H + beta*C.
//
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (beta->r == 0.f && beta->i == 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0.f, c__[i__3].i = 0.f;
// L160:
}
} else if (beta->r != 1.f || beta->i != 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, q__1.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
// L170:
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
r_cnjg(&q__2, &b[j + l * b_dim1]);
q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
alpha->r * q__2.i + alpha->i * q__2.r;
temp.r = q__1.r, temp.i = q__1.i;
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
q__2.i = temp.r * a[i__6].i + temp.i * a[i__6]
.r;
q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5].i +
q__2.i;
c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
// L180:
}
// L190:
}
// L200:
}
} else {
//
// Form C := alpha*A*B**T + beta*C
//
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (beta->r == 0.f && beta->i == 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0.f, c__[i__3].i = 0.f;
// L210:
}
} else if (beta->r != 1.f || beta->i != 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, q__1.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
// L220:
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
i__3 = j + l * b_dim1;
q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
q__1.i = alpha->r * b[i__3].i + alpha->i * b[i__3]
.r;
temp.r = q__1.r, temp.i = q__1.i;
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
q__2.i = temp.r * a[i__6].i + temp.i * a[i__6]
.r;
q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5].i +
q__2.i;
c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
// L230:
}
// L240:
}
// L250:
}
}
} else if (conja) {
if (conjb) {
//
// Form C := alpha*A**H*B**H + beta*C.
//
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0.f, temp.i = 0.f;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
r_cnjg(&q__3, &a[l + i__ * a_dim1]);
r_cnjg(&q__4, &b[j + l * b_dim1]);
q__2.r = q__3.r * q__4.r - q__3.i * q__4.i, q__2.i =
q__3.r * q__4.i + q__3.i * q__4.r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
// L260:
}
if (beta->r == 0.f && beta->i == 0.f) {
i__3 = i__ + j * c_dim1;
q__1.r = alpha->r * temp.r - alpha->i * temp.i,
q__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
} else {
i__3 = i__ + j * c_dim1;
q__2.r = alpha->r * temp.r - alpha->i * temp.i,
q__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, q__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
}
// L270:
}
// L280:
}
} else {
//
// Form C := alpha*A**H*B**T + beta*C
//
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0.f, temp.i = 0.f;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
r_cnjg(&q__3, &a[l + i__ * a_dim1]);
i__4 = j + l * b_dim1;
q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
.r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
// L290:
}
if (beta->r == 0.f && beta->i == 0.f) {
i__3 = i__ + j * c_dim1;
q__1.r = alpha->r * temp.r - alpha->i * temp.i,
q__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
} else {
i__3 = i__ + j * c_dim1;
q__2.r = alpha->r * temp.r - alpha->i * temp.i,
q__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, q__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
}
// L300:
}
// L310:
}
}
} else {
if (conjb) {
//
// Form C := alpha*A**T*B**H + beta*C
//
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0.f, temp.i = 0.f;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
i__4 = l + i__ * a_dim1;
r_cnjg(&q__3, &b[j + l * b_dim1]);
q__2.r = a[i__4].r * q__3.r - a[i__4].i * q__3.i,
q__2.i = a[i__4].r * q__3.i + a[i__4].i *
q__3.r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
// L320:
}
if (beta->r == 0.f && beta->i == 0.f) {
i__3 = i__ + j * c_dim1;
q__1.r = alpha->r * temp.r - alpha->i * temp.i,
q__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
} else {
i__3 = i__ + j * c_dim1;
q__2.r = alpha->r * temp.r - alpha->i * temp.i,
q__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, q__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
}
// L330:
}
// L340:
}
} else {
//
// Form C := alpha*A**T*B**T + beta*C
//
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0.f, temp.i = 0.f;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
i__4 = l + i__ * a_dim1;
i__5 = j + l * b_dim1;
q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
.i, q__2.i = a[i__4].r * b[i__5].i + a[i__4]
.i * b[i__5].r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
// L350:
}
if (beta->r == 0.f && beta->i == 0.f) {
i__3 = i__ + j * c_dim1;
q__1.r = alpha->r * temp.r - alpha->i * temp.i,
q__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
} else {
i__3 = i__ + j * c_dim1;
q__2.r = alpha->r * temp.r - alpha->i * temp.i,
q__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, q__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
}
// L360:
}
// L370:
}
}
}
return 0;
//
// End of CGEMM .
//
} // cgemm_