Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

153 lines
5.7 KiB

#!/usr/bin/python
#
# The full "Square Detector" program.
# It loads several images subsequentally and tries to find squares in
# each image
#
import urllib2
from math import sqrt
import cv
thresh = 50
img = None
img0 = None
storage = None
wndname = "Square Detection Demo"
def angle(pt1, pt2, pt0):
dx1 = pt1.x - pt0.x
dy1 = pt1.y - pt0.y
dx2 = pt2.x - pt0.x
dy2 = pt2.y - pt0.y
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10)
def findSquares4(img, storage):
N = 11
sz = (img.width & -2, img.height & -2)
timg = cv.CloneImage(img); # make a copy of input image
gray = cv.CreateImage(sz, 8, 1)
pyr = cv.CreateImage((sz.width/2, sz.height/2), 8, 3)
# create empty sequence that will contain points -
# 4 points per square (the square's vertices)
squares = cv.CreateSeq(0, sizeof_CvSeq, sizeof_CvPoint, storage)
squares = CvSeq_CvPoint.cast(squares)
# select the maximum ROI in the image
# with the width and height divisible by 2
subimage = cv.GetSubRect(timg, cv.Rect(0, 0, sz.width, sz.height))
# down-scale and upscale the image to filter out the noise
cv.PyrDown(subimage, pyr, 7)
cv.PyrUp(pyr, subimage, 7)
tgray = cv.CreateImage(sz, 8, 1)
# find squares in every color plane of the image
for c in range(3):
# extract the c-th color plane
channels = [None, None, None]
channels[c] = tgray
cv.Split(subimage, channels[0], channels[1], channels[2], None)
for l in range(N):
# hack: use Canny instead of zero threshold level.
# Canny helps to catch squares with gradient shading
if(l == 0):
# apply Canny. Take the upper threshold from slider
# and set the lower to 0 (which forces edges merging)
cv.Canny(tgray, gray, 0, thresh, 5)
# dilate canny output to remove potential
# holes between edge segments
cv.Dilate(gray, gray, None, 1)
else:
# apply threshold if l!=0:
# tgray(x, y) = gray(x, y) < (l+1)*255/N ? 255 : 0
cv.Threshold(tgray, gray, (l+1)*255/N, 255, cv.CV_THRESH_BINARY)
# find contours and store them all as a list
count, contours = cv.FindContours(gray, storage, sizeof_CvContour,
cv.CV_RETR_LIST, cv. CV_CHAIN_APPROX_SIMPLE, (0, 0))
if not contours:
continue
# test each contour
for contour in contours.hrange():
# approximate contour with accuracy proportional
# to the contour perimeter
result = cv.ApproxPoly(contour, sizeof_CvContour, storage,
cv.CV_POLY_APPROX_DP, cv.ContourPerimeter(contours)*0.02, 0)
# square contours should have 4 vertices after approximation
# relatively large area (to filter out noisy contours)
# and be convex.
# Note: absolute value of an area is used because
# area may be positive or negative - in accordance with the
# contour orientation
if(result.total == 4 and
abs(cv.ContourArea(result)) > 1000 and
cv.CheckContourConvexity(result)):
s = 0
for i in range(5):
# find minimum angle between joint
# edges (maximum of cosine)
if(i >= 2):
t = abs(angle(result[i], result[i-2], result[i-1]))
if s<t:
s=t
# if cosines of all angles are small
# (all angles are ~90 degree) then write quandrange
# vertices to resultant sequence
if(s < 0.3):
for i in range(4):
squares.append(result[i])
return squares
# the function draws all the squares in the image
def drawSquares(img, squares):
cpy = cv.CloneImage(img)
# read 4 sequence elements at a time (all vertices of a square)
i=0
while i<squares.total:
pt = []
# read 4 vertices
pt.append(squares[i])
pt.append(squares[i+1])
pt.append(squares[i+2])
pt.append(squares[i+3])
# draw the square as a closed polyline
cv.PolyLine(cpy, [pt], 1, cv.CV_RGB(0, 255, 0), 3, cv. CV_AA, 0)
i+=4
# show the resultant image
cv.ShowImage(wndname, cpy)
def on_trackbar(a):
if(img):
drawSquares(img, findSquares4(img, storage))
names = ["../c/pic1.png", "../c/pic2.png", "../c/pic3.png",
"../c/pic4.png", "../c/pic5.png", "../c/pic6.png" ]
if __name__ == "__main__":
# create memory storage that will contain all the dynamic data
storage = cv.CreateMemStorage(0)
for name in names:
img0 = cv.LoadImage(name, 1)
if not img0:
print "Couldn't load %s" % name
continue
img = cv.CloneImage(img0)
# create window and a trackbar (slider) with parent "image" and set callback
# (the slider regulates upper threshold, passed to Canny edge detector)
cv.NamedWindow(wndname, 1)
cv.CreateTrackbar("canny thresh", wndname, thresh, 1000, on_trackbar)
# force the image processing
on_trackbar(0)
# wait for key.
# Also the function cv.WaitKey takes care of event processing
c = cv.WaitKey(0) % 0x100
# clear memory storage - reset free space position
cv.ClearMemStorage(storage)
if(c == '\x1b'):
break
cv.DestroyWindow(wndname)