Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
489 lines
16 KiB
489 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
//////////////////////////////// GpuMat //////////////////////////////// |
|
//////////////////////////////////////////////////////////////////////// |
|
|
|
|
|
#if !defined (HAVE_CUDA) |
|
|
|
namespace cv |
|
{ |
|
namespace gpu |
|
{ |
|
void GpuMat::upload(const Mat& /*m*/) { throw_nogpu(); } |
|
void GpuMat::download(cv::Mat& /*m*/) const { throw_nogpu(); } |
|
void GpuMat::copyTo( GpuMat& /*m*/ ) const { throw_nogpu(); } |
|
void GpuMat::copyTo( GpuMat& /*m*/, const GpuMat&/* mask */) const { throw_nogpu(); } |
|
void GpuMat::convertTo( GpuMat& /*m*/, int /*rtype*/, double /*alpha*/, double /*beta*/ ) const { throw_nogpu(); } |
|
GpuMat& GpuMat::operator = (const Scalar& /*s*/) { throw_nogpu(); return *this; } |
|
GpuMat& GpuMat::setTo(const Scalar& /*s*/, const GpuMat& /*mask*/) { throw_nogpu(); return *this; } |
|
GpuMat GpuMat::reshape(int /*new_cn*/, int /*new_rows*/) const { throw_nogpu(); return GpuMat(); } |
|
void GpuMat::create(int /*_rows*/, int /*_cols*/, int /*_type*/) { throw_nogpu(); } |
|
void GpuMat::release() { throw_nogpu(); } |
|
|
|
void CudaMem::create(int /*_rows*/, int /*_cols*/, int /*_type*/, int /*type_alloc*/) { throw_nogpu(); } |
|
bool CudaMem::can_device_map_to_host() { throw_nogpu(); return false; } |
|
void CudaMem::release() { throw_nogpu(); } |
|
GpuMat CudaMem::createGpuMatHeader () const { throw_nogpu(); return GpuMat(); } |
|
} |
|
|
|
} |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
void cv::gpu::GpuMat::upload(const Mat& m) |
|
{ |
|
CV_DbgAssert(!m.empty()); |
|
create(m.size(), m.type()); |
|
cudaSafeCall( cudaMemcpy2D(data, step, m.data, m.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) ); |
|
} |
|
|
|
void cv::gpu::GpuMat::upload(const CudaMem& m, Stream& stream) |
|
{ |
|
CV_DbgAssert(!m.empty()); |
|
stream.enqueueUpload(m, *this); |
|
} |
|
|
|
void cv::gpu::GpuMat::download(cv::Mat& m) const |
|
{ |
|
CV_DbgAssert(!this->empty()); |
|
m.create(size(), type()); |
|
cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) ); |
|
} |
|
|
|
void cv::gpu::GpuMat::download(CudaMem& m, Stream& stream) const |
|
{ |
|
CV_DbgAssert(!m.empty()); |
|
stream.enqueueDownload(*this, m); |
|
} |
|
|
|
void cv::gpu::GpuMat::copyTo( GpuMat& m ) const |
|
{ |
|
CV_DbgAssert(!this->empty()); |
|
m.create(size(), type()); |
|
cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) ); |
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
} |
|
|
|
void cv::gpu::GpuMat::copyTo( GpuMat& mat, const GpuMat& mask ) const |
|
{ |
|
if (mask.empty()) |
|
{ |
|
copyTo(mat); |
|
} |
|
else |
|
{ |
|
mat.create(size(), type()); |
|
cv::gpu::matrix_operations::copy_to_with_mask(*this, mat, depth(), mask, channels()); |
|
} |
|
} |
|
|
|
void cv::gpu::GpuMat::convertTo( GpuMat& dst, int rtype, double alpha, double beta ) const |
|
{ |
|
bool noScale = fabs(alpha-1) < std::numeric_limits<double>::epsilon() && fabs(beta) < std::numeric_limits<double>::epsilon(); |
|
|
|
if( rtype < 0 ) |
|
rtype = type(); |
|
else |
|
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); |
|
|
|
int sdepth = depth(), ddepth = CV_MAT_DEPTH(rtype); |
|
if( sdepth == ddepth && noScale ) |
|
{ |
|
copyTo(dst); |
|
return; |
|
} |
|
|
|
GpuMat temp; |
|
const GpuMat* psrc = this; |
|
if( sdepth != ddepth && psrc == &dst ) |
|
psrc = &(temp = *this); |
|
|
|
dst.create( size(), rtype ); |
|
matrix_operations::convert_to(*psrc, sdepth, dst, ddepth, psrc->channels(), alpha, beta); |
|
} |
|
|
|
GpuMat& GpuMat::operator = (const Scalar& s) |
|
{ |
|
setTo(s); |
|
return *this; |
|
} |
|
|
|
GpuMat& GpuMat::setTo(const Scalar& s, const GpuMat& mask) |
|
{ |
|
CV_Assert(mask.type() == CV_8UC1); |
|
|
|
CV_DbgAssert(!this->empty()); |
|
|
|
NppiSize sz; |
|
sz.width = cols; |
|
sz.height = rows; |
|
|
|
if (mask.empty()) |
|
{ |
|
switch (type()) |
|
{ |
|
case CV_8UC1: |
|
{ |
|
Npp8u nVal = (Npp8u)s[0]; |
|
nppSafeCall( nppiSet_8u_C1R(nVal, ptr<Npp8u>(), step, sz) ); |
|
break; |
|
} |
|
case CV_8UC4: |
|
{ |
|
Scalar_<Npp8u> nVal = s; |
|
nppSafeCall( nppiSet_8u_C4R(nVal.val, ptr<Npp8u>(), step, sz) ); |
|
break; |
|
} |
|
case CV_16UC1: |
|
{ |
|
Npp16u nVal = (Npp16u)s[0]; |
|
nppSafeCall( nppiSet_16u_C1R(nVal, ptr<Npp16u>(), step, sz) ); |
|
break; |
|
} |
|
/*case CV_16UC2: |
|
{ |
|
Scalar_<Npp16u> nVal = s; |
|
nppSafeCall( nppiSet_16u_C2R(nVal.val, ptr<Npp16u>(), step, sz) ); |
|
break; |
|
}*/ |
|
case CV_16UC4: |
|
{ |
|
Scalar_<Npp16u> nVal = s; |
|
nppSafeCall( nppiSet_16u_C4R(nVal.val, ptr<Npp16u>(), step, sz) ); |
|
break; |
|
} |
|
case CV_16SC1: |
|
{ |
|
Npp16s nVal = (Npp16s)s[0]; |
|
nppSafeCall( nppiSet_16s_C1R(nVal, ptr<Npp16s>(), step, sz) ); |
|
break; |
|
} |
|
/*case CV_16SC2: |
|
{ |
|
Scalar_<Npp16s> nVal = s; |
|
nppSafeCall( nppiSet_16s_C2R(nVal.val, ptr<Npp16s>(), step, sz) ); |
|
break; |
|
}*/ |
|
case CV_16SC4: |
|
{ |
|
Scalar_<Npp16s> nVal = s; |
|
nppSafeCall( nppiSet_16s_C4R(nVal.val, ptr<Npp16s>(), step, sz) ); |
|
break; |
|
} |
|
case CV_32SC1: |
|
{ |
|
Npp32s nVal = (Npp32s)s[0]; |
|
nppSafeCall( nppiSet_32s_C1R(nVal, ptr<Npp32s>(), step, sz) ); |
|
break; |
|
} |
|
case CV_32SC4: |
|
{ |
|
Scalar_<Npp32s> nVal = s; |
|
nppSafeCall( nppiSet_32s_C4R(nVal.val, ptr<Npp32s>(), step, sz) ); |
|
break; |
|
} |
|
case CV_32FC1: |
|
{ |
|
Npp32f nVal = (Npp32f)s[0]; |
|
nppSafeCall( nppiSet_32f_C1R(nVal, ptr<Npp32f>(), step, sz) ); |
|
break; |
|
} |
|
case CV_32FC4: |
|
{ |
|
Scalar_<Npp32f> nVal = s; |
|
nppSafeCall( nppiSet_32f_C4R(nVal.val, ptr<Npp32f>(), step, sz) ); |
|
break; |
|
} |
|
default: |
|
matrix_operations::set_to_without_mask( *this, depth(), s.val, channels()); |
|
} |
|
} |
|
else |
|
{ |
|
switch (type()) |
|
{ |
|
case CV_8UC1: |
|
{ |
|
Npp8u nVal = (Npp8u)s[0]; |
|
nppSafeCall( nppiSet_8u_C1MR(nVal, ptr<Npp8u>(), step, sz, mask.ptr<Npp8u>(), mask.step) ); |
|
break; |
|
} |
|
case CV_8UC4: |
|
{ |
|
Scalar_<Npp8u> nVal = s; |
|
nppSafeCall( nppiSet_8u_C4MR(nVal.val, ptr<Npp8u>(), step, sz, mask.ptr<Npp8u>(), mask.step) ); |
|
break; |
|
} |
|
case CV_16UC1: |
|
{ |
|
Npp16u nVal = (Npp16u)s[0]; |
|
nppSafeCall( nppiSet_16u_C1MR(nVal, ptr<Npp16u>(), step, sz, mask.ptr<Npp8u>(), mask.step) ); |
|
break; |
|
} |
|
case CV_16UC4: |
|
{ |
|
Scalar_<Npp16u> nVal = s; |
|
nppSafeCall( nppiSet_16u_C4MR(nVal.val, ptr<Npp16u>(), step, sz, mask.ptr<Npp8u>(), mask.step) ); |
|
break; |
|
} |
|
case CV_16SC1: |
|
{ |
|
Npp16s nVal = (Npp16s)s[0]; |
|
nppSafeCall( nppiSet_16s_C1MR(nVal, ptr<Npp16s>(), step, sz, mask.ptr<Npp8u>(), mask.step) ); |
|
break; |
|
} |
|
case CV_16SC4: |
|
{ |
|
Scalar_<Npp16s> nVal = s; |
|
nppSafeCall( nppiSet_16s_C4MR(nVal.val, ptr<Npp16s>(), step, sz, mask.ptr<Npp8u>(), mask.step) ); |
|
break; |
|
} |
|
case CV_32SC1: |
|
{ |
|
Npp32s nVal = (Npp32s)s[0]; |
|
nppSafeCall( nppiSet_32s_C1MR(nVal, ptr<Npp32s>(), step, sz, mask.ptr<Npp8u>(), mask.step) ); |
|
break; |
|
} |
|
case CV_32SC4: |
|
{ |
|
Scalar_<Npp32s> nVal = s; |
|
nppSafeCall( nppiSet_32s_C4MR(nVal.val, ptr<Npp32s>(), step, sz, mask.ptr<Npp8u>(), mask.step) ); |
|
break; |
|
} |
|
case CV_32FC1: |
|
{ |
|
Npp32f nVal = (Npp32f)s[0]; |
|
nppSafeCall( nppiSet_32f_C1MR(nVal, ptr<Npp32f>(), step, sz, mask.ptr<Npp8u>(), mask.step) ); |
|
break; |
|
} |
|
case CV_32FC4: |
|
{ |
|
Scalar_<Npp32f> nVal = s; |
|
nppSafeCall( nppiSet_32f_C4MR(nVal.val, ptr<Npp32f>(), step, sz, mask.ptr<Npp8u>(), mask.step) ); |
|
break; |
|
} |
|
default: |
|
matrix_operations::set_to_with_mask( *this, depth(), s.val, mask, channels()); |
|
} |
|
} |
|
|
|
return *this; |
|
} |
|
|
|
|
|
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const |
|
{ |
|
GpuMat hdr = *this; |
|
|
|
int cn = channels(); |
|
if( new_cn == 0 ) |
|
new_cn = cn; |
|
|
|
int total_width = cols * cn; |
|
|
|
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 ) |
|
new_rows = rows * total_width / new_cn; |
|
|
|
if( new_rows != 0 && new_rows != rows ) |
|
{ |
|
int total_size = total_width * rows; |
|
if( !isContinuous() ) |
|
CV_Error( CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed" ); |
|
|
|
if( (unsigned)new_rows > (unsigned)total_size ) |
|
CV_Error( CV_StsOutOfRange, "Bad new number of rows" ); |
|
|
|
total_width = total_size / new_rows; |
|
|
|
if( total_width * new_rows != total_size ) |
|
CV_Error( CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows" ); |
|
|
|
hdr.rows = new_rows; |
|
hdr.step = total_width * elemSize1(); |
|
} |
|
|
|
int new_width = total_width / new_cn; |
|
|
|
if( new_width * new_cn != total_width ) |
|
CV_Error( CV_BadNumChannels, "The total width is not divisible by the new number of channels" ); |
|
|
|
hdr.cols = new_width; |
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT); |
|
return hdr; |
|
} |
|
|
|
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type) |
|
{ |
|
_type &= TYPE_MASK; |
|
if( rows == _rows && cols == _cols && type() == _type && data ) |
|
return; |
|
if( data ) |
|
release(); |
|
CV_DbgAssert( _rows >= 0 && _cols >= 0 ); |
|
if( _rows > 0 && _cols > 0 ) |
|
{ |
|
flags = Mat::MAGIC_VAL + _type; |
|
rows = _rows; |
|
cols = _cols; |
|
|
|
size_t esz = elemSize(); |
|
|
|
void *dev_ptr; |
|
cudaSafeCall( cudaMallocPitch(&dev_ptr, &step, esz * cols, rows) ); |
|
|
|
if (esz * cols == step) |
|
flags |= Mat::CONTINUOUS_FLAG; |
|
|
|
int64 _nettosize = (int64)step*rows; |
|
size_t nettosize = (size_t)_nettosize; |
|
|
|
datastart = data = (uchar*)dev_ptr; |
|
dataend = data + nettosize; |
|
|
|
refcount = (int*)fastMalloc(sizeof(*refcount)); |
|
*refcount = 1; |
|
} |
|
} |
|
|
|
void cv::gpu::GpuMat::release() |
|
{ |
|
if( refcount && CV_XADD(refcount, -1) == 1 ) |
|
{ |
|
fastFree(refcount); |
|
cudaSafeCall( cudaFree(datastart) ); |
|
} |
|
data = datastart = dataend = 0; |
|
step = rows = cols = 0; |
|
refcount = 0; |
|
} |
|
|
|
|
|
/////////////////////////////////////////////////////////////////////// |
|
//////////////////////////////// CudaMem ////////////////////////////// |
|
/////////////////////////////////////////////////////////////////////// |
|
|
|
bool cv::gpu::CudaMem::can_device_map_to_host() |
|
{ |
|
cudaDeviceProp prop; |
|
cudaGetDeviceProperties(&prop, 0); |
|
return (prop.canMapHostMemory != 0) ? true : false; |
|
} |
|
|
|
void cv::gpu::CudaMem::create(int _rows, int _cols, int _type, int _alloc_type) |
|
{ |
|
if (_alloc_type == ALLOC_ZEROCOPY && !can_device_map_to_host()) |
|
cv::gpu::error("ZeroCopy is not supported by current device", __FILE__, __LINE__); |
|
|
|
_type &= TYPE_MASK; |
|
if( rows == _rows && cols == _cols && type() == _type && data ) |
|
return; |
|
if( data ) |
|
release(); |
|
CV_DbgAssert( _rows >= 0 && _cols >= 0 ); |
|
if( _rows > 0 && _cols > 0 ) |
|
{ |
|
flags = Mat::MAGIC_VAL + Mat::CONTINUOUS_FLAG + _type; |
|
rows = _rows; |
|
cols = _cols; |
|
step = elemSize()*cols; |
|
int64 _nettosize = (int64)step*rows; |
|
size_t nettosize = (size_t)_nettosize; |
|
if( _nettosize != (int64)nettosize ) |
|
CV_Error(CV_StsNoMem, "Too big buffer is allocated"); |
|
size_t datasize = alignSize(nettosize, (int)sizeof(*refcount)); |
|
|
|
//datastart = data = (uchar*)fastMalloc(datasize + sizeof(*refcount)); |
|
alloc_type = _alloc_type; |
|
void *ptr; |
|
|
|
switch (alloc_type) |
|
{ |
|
case ALLOC_PAGE_LOCKED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocDefault) ); break; |
|
case ALLOC_ZEROCOPY: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocMapped) ); break; |
|
case ALLOC_WRITE_COMBINED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocWriteCombined) ); break; |
|
default: cv::gpu::error("Invalid alloc type", __FILE__, __LINE__); |
|
} |
|
|
|
datastart = data = (uchar*)ptr; |
|
dataend = data + nettosize; |
|
|
|
refcount = (int*)cv::fastMalloc(sizeof(*refcount)); |
|
*refcount = 1; |
|
} |
|
} |
|
|
|
GpuMat cv::gpu::CudaMem::createGpuMatHeader () const |
|
{ |
|
GpuMat res; |
|
if (alloc_type == ALLOC_ZEROCOPY) |
|
{ |
|
void *pdev; |
|
cudaSafeCall( cudaHostGetDevicePointer( &pdev, data, 0 ) ); |
|
res = GpuMat(rows, cols, type(), pdev, step); |
|
} |
|
else |
|
cv::gpu::error("Zero-copy is not supported or memory was allocated without zero-copy flag", __FILE__, __LINE__); |
|
|
|
return res; |
|
} |
|
|
|
void cv::gpu::CudaMem::release() |
|
{ |
|
if( refcount && CV_XADD(refcount, -1) == 1 ) |
|
{ |
|
cudaSafeCall( cudaFreeHost(datastart ) ); |
|
fastFree(refcount); |
|
} |
|
data = datastart = dataend = 0; |
|
step = rows = cols = 0; |
|
refcount = 0; |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|