mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2507 lines
88 KiB
2507 lines
88 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2014, Itseez, Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_imgproc.hpp" |
|
#include "opencv2/core/hal/intrin.hpp" |
|
#include <algorithm> |
|
#include <iterator> |
|
|
|
namespace cv |
|
{ |
|
|
|
// Classical Hough Transform |
|
struct LinePolar |
|
{ |
|
float rho; |
|
float angle; |
|
}; |
|
|
|
|
|
struct hough_cmp_gt |
|
{ |
|
hough_cmp_gt(const int* _aux) : aux(_aux) {} |
|
inline bool operator()(int l1, int l2) const |
|
{ |
|
return aux[l1] > aux[l2] || (aux[l1] == aux[l2] && l1 < l2); |
|
} |
|
const int* aux; |
|
}; |
|
|
|
static inline int |
|
computeNumangle( double min_theta, double max_theta, double theta_step ) |
|
{ |
|
int numangle = cvFloor((max_theta - min_theta) / theta_step) + 1; |
|
// If the distance between the first angle and the last angle is |
|
// approximately equal to pi, then the last angle will be removed |
|
// in order to prevent a line to be detected twice. |
|
if ( numangle > 1 && fabs(CV_PI - (numangle-1)*theta_step) < theta_step/2 ) |
|
--numangle; |
|
return numangle; |
|
} |
|
|
|
static void |
|
createTrigTable( int numangle, double min_theta, double theta_step, |
|
float irho, float *tabSin, float *tabCos ) |
|
{ |
|
float ang = static_cast<float>(min_theta); |
|
for(int n = 0; n < numangle; ang += (float)theta_step, n++ ) |
|
{ |
|
tabSin[n] = (float)(sin((double)ang) * irho); |
|
tabCos[n] = (float)(cos((double)ang) * irho); |
|
} |
|
} |
|
|
|
static void |
|
findLocalMaximums( int numrho, int numangle, int threshold, |
|
const int *accum, std::vector<int>& sort_buf ) |
|
{ |
|
for(int r = 0; r < numrho; r++ ) |
|
for(int n = 0; n < numangle; n++ ) |
|
{ |
|
int base = (n+1) * (numrho+2) + r+1; |
|
if( accum[base] > threshold && |
|
accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] && |
|
accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] ) |
|
sort_buf.push_back(base); |
|
} |
|
} |
|
|
|
/* |
|
Here image is an input raster; |
|
step is it's step; size characterizes it's ROI; |
|
rho and theta are discretization steps (in pixels and radians correspondingly). |
|
threshold is the minimum number of pixels in the feature for it |
|
to be a candidate for line. lines is the output |
|
array of (rho, theta) pairs. linesMax is the buffer size (number of pairs). |
|
Functions return the actual number of found lines. |
|
*/ |
|
static void |
|
HoughLinesStandard( InputArray src, OutputArray lines, int type, |
|
float rho, float theta, |
|
int threshold, int linesMax, |
|
double min_theta, double max_theta ) |
|
{ |
|
CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Internal error"); |
|
|
|
Mat img = src.getMat(); |
|
|
|
int i, j; |
|
float irho = 1 / rho; |
|
|
|
CV_Assert( img.type() == CV_8UC1 ); |
|
CV_Assert( linesMax > 0 ); |
|
|
|
const uchar* image = img.ptr(); |
|
int step = (int)img.step; |
|
int width = img.cols; |
|
int height = img.rows; |
|
|
|
int max_rho = width + height; |
|
int min_rho = -max_rho; |
|
|
|
CV_CheckGE(max_theta, min_theta, "max_theta must be greater than min_theta"); |
|
|
|
int numangle = computeNumangle(min_theta, max_theta, theta); |
|
int numrho = cvRound(((max_rho - min_rho) + 1) / rho); |
|
|
|
#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH |
|
if (type == CV_32FC2 && CV_IPP_CHECK_COND) |
|
{ |
|
IppiSize srcSize = { width, height }; |
|
IppPointPolar delta = { rho, theta }; |
|
IppPointPolar dstRoi[2] = {{(Ipp32f) min_rho, (Ipp32f) min_theta},{(Ipp32f) max_rho, (Ipp32f) max_theta}}; |
|
int bufferSize; |
|
int nz = countNonZero(img); |
|
int ipp_linesMax = std::min(linesMax, nz*numangle/threshold); |
|
int linesCount = 0; |
|
std::vector<Vec2f> _lines(ipp_linesMax); |
|
IppStatus ok = ippiHoughLineGetSize_8u_C1R(srcSize, delta, ipp_linesMax, &bufferSize); |
|
Ipp8u* buffer = ippsMalloc_8u_L(bufferSize); |
|
if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughLine_Region_8u32f_C1R, image, step, srcSize, (IppPointPolar*) &_lines[0], dstRoi, ipp_linesMax, &linesCount, delta, threshold, buffer);}; |
|
ippsFree(buffer); |
|
if (ok >= 0) |
|
{ |
|
lines.create(linesCount, 1, CV_32FC2); |
|
Mat(linesCount, 1, CV_32FC2, &_lines[0]).copyTo(lines); |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
} |
|
#endif |
|
|
|
|
|
Mat _accum = Mat::zeros( (numangle+2), (numrho+2), CV_32SC1 ); |
|
std::vector<int> _sort_buf; |
|
AutoBuffer<float> _tabSin(numangle); |
|
AutoBuffer<float> _tabCos(numangle); |
|
int *accum = _accum.ptr<int>(); |
|
float *tabSin = _tabSin.data(), *tabCos = _tabCos.data(); |
|
|
|
// create sin and cos table |
|
createTrigTable( numangle, min_theta, theta, |
|
irho, tabSin, tabCos); |
|
|
|
// stage 1. fill accumulator |
|
for( i = 0; i < height; i++ ) |
|
for( j = 0; j < width; j++ ) |
|
{ |
|
if( image[i * step + j] != 0 ) |
|
for(int n = 0; n < numangle; n++ ) |
|
{ |
|
int r = cvRound( j * tabCos[n] + i * tabSin[n] ); |
|
r += (numrho - 1) / 2; |
|
accum[(n+1) * (numrho+2) + r+1]++; |
|
} |
|
} |
|
|
|
// stage 2. find local maximums |
|
findLocalMaximums( numrho, numangle, threshold, accum, _sort_buf ); |
|
|
|
// stage 3. sort the detected lines by accumulator value |
|
std::sort(_sort_buf.begin(), _sort_buf.end(), hough_cmp_gt(accum)); |
|
|
|
// stage 4. store the first min(total,linesMax) lines to the output buffer |
|
linesMax = std::min(linesMax, (int)_sort_buf.size()); |
|
double scale = 1./(numrho+2); |
|
|
|
lines.create(linesMax, 1, type); |
|
Mat _lines = lines.getMat(); |
|
for( i = 0; i < linesMax; i++ ) |
|
{ |
|
LinePolar line; |
|
int idx = _sort_buf[i]; |
|
int n = cvFloor(idx*scale) - 1; |
|
int r = idx - (n+1)*(numrho+2) - 1; |
|
line.rho = (r - (numrho - 1)*0.5f) * rho; |
|
line.angle = static_cast<float>(min_theta) + n * theta; |
|
if (type == CV_32FC2) |
|
{ |
|
_lines.at<Vec2f>(i) = Vec2f(line.rho, line.angle); |
|
} |
|
else |
|
{ |
|
CV_DbgAssert(type == CV_32FC3); |
|
_lines.at<Vec3f>(i) = Vec3f(line.rho, line.angle, (float)accum[idx]); |
|
} |
|
} |
|
} |
|
|
|
|
|
// Multi-Scale variant of Classical Hough Transform |
|
|
|
struct hough_index |
|
{ |
|
hough_index() : value(0), rho(0.f), theta(0.f) {} |
|
hough_index(int _val, float _rho, float _theta) |
|
: value(_val), rho(_rho), theta(_theta) {} |
|
|
|
int value; |
|
float rho, theta; |
|
}; |
|
|
|
|
|
static void |
|
HoughLinesSDiv( InputArray image, OutputArray lines, int type, |
|
float rho, float theta, int threshold, |
|
int srn, int stn, int linesMax, |
|
double min_theta, double max_theta ) |
|
{ |
|
CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Internal error"); |
|
|
|
#define _POINT(row, column)\ |
|
(image_src[(row)*step+(column)]) |
|
|
|
Mat img = image.getMat(); |
|
int index, i; |
|
int ri, ti, ti1, ti0; |
|
int row, col; |
|
float r, t; /* Current rho and theta */ |
|
float rv; /* Some temporary rho value */ |
|
|
|
int fn = 0; |
|
float xc, yc; |
|
|
|
const float d2r = (float)(CV_PI / 180); |
|
int sfn = srn * stn; |
|
int fi; |
|
int count; |
|
int cmax = 0; |
|
|
|
std::vector<hough_index> lst; |
|
|
|
CV_Assert( img.type() == CV_8UC1 ); |
|
CV_Assert( linesMax > 0 ); |
|
|
|
threshold = MIN( threshold, 255 ); |
|
|
|
const uchar* image_src = img.ptr(); |
|
int step = (int)img.step; |
|
int w = img.cols; |
|
int h = img.rows; |
|
|
|
float irho = 1 / rho; |
|
float itheta = 1 / theta; |
|
float srho = rho / srn; |
|
float stheta = theta / stn; |
|
float isrho = 1 / srho; |
|
float istheta = 1 / stheta; |
|
|
|
int rn = cvFloor( std::sqrt( (double)w * w + (double)h * h ) * irho ); |
|
int tn = cvFloor( 2 * CV_PI * itheta ); |
|
|
|
lst.push_back(hough_index(threshold, -1.f, 0.f)); |
|
|
|
// Precalculate sin table |
|
std::vector<float> _sinTable( 5 * tn * stn ); |
|
float* sinTable = &_sinTable[0]; |
|
|
|
for( index = 0; index < 5 * tn * stn; index++ ) |
|
sinTable[index] = (float)cos( stheta * index * 0.2f ); |
|
|
|
std::vector<uchar> _caccum(rn * tn, (uchar)0); |
|
uchar* caccum = &_caccum[0]; |
|
|
|
// Counting all feature pixels |
|
for( row = 0; row < h; row++ ) |
|
for( col = 0; col < w; col++ ) |
|
fn += _POINT( row, col ) != 0; |
|
|
|
std::vector<int> _x(fn), _y(fn); |
|
int* x = &_x[0], *y = &_y[0]; |
|
|
|
// Full Hough Transform (it's accumulator update part) |
|
fi = 0; |
|
for( row = 0; row < h; row++ ) |
|
{ |
|
for( col = 0; col < w; col++ ) |
|
{ |
|
if( _POINT( row, col )) |
|
{ |
|
int halftn; |
|
float r0; |
|
float scale_factor; |
|
int iprev = -1; |
|
float phi, phi1; |
|
float theta_it; // Value of theta for iterating |
|
|
|
// Remember the feature point |
|
x[fi] = col; |
|
y[fi] = row; |
|
fi++; |
|
|
|
yc = (float) row + 0.5f; |
|
xc = (float) col + 0.5f; |
|
|
|
/* Update the accumulator */ |
|
t = (float) fabs( cvFastArctan( yc, xc ) * d2r ); |
|
r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ); |
|
r0 = r * irho; |
|
ti0 = cvFloor( (t + CV_PI*0.5) * itheta ); |
|
|
|
caccum[ti0]++; |
|
|
|
theta_it = rho / r; |
|
theta_it = theta_it < theta ? theta_it : theta; |
|
scale_factor = theta_it * itheta; |
|
halftn = cvFloor( CV_PI / theta_it ); |
|
for( ti1 = 1, phi = theta_it - (float)(CV_PI*0.5), phi1 = (theta_it + t) * itheta; |
|
ti1 < halftn; ti1++, phi += theta_it, phi1 += scale_factor ) |
|
{ |
|
rv = r0 * std::cos( phi ); |
|
i = (int)rv * tn; |
|
i += cvFloor( phi1 ); |
|
CV_Assert( i >= 0 ); |
|
CV_Assert( i < rn * tn ); |
|
caccum[i] = (uchar) (caccum[i] + ((i ^ iprev) != 0)); |
|
iprev = i; |
|
if( cmax < caccum[i] ) |
|
cmax = caccum[i]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Starting additional analysis |
|
count = 0; |
|
for( ri = 0; ri < rn; ri++ ) |
|
{ |
|
for( ti = 0; ti < tn; ti++ ) |
|
{ |
|
if( caccum[ri * tn + ti] > threshold ) |
|
count++; |
|
} |
|
} |
|
|
|
if( count * 100 > rn * tn ) |
|
{ |
|
HoughLinesStandard( image, lines, type, rho, theta, threshold, linesMax, min_theta, max_theta ); |
|
return; |
|
} |
|
|
|
std::vector<uchar> _buffer(srn * stn + 2); |
|
uchar* buffer = &_buffer[0]; |
|
uchar* mcaccum = buffer + 1; |
|
|
|
count = 0; |
|
for( ri = 0; ri < rn; ri++ ) |
|
{ |
|
for( ti = 0; ti < tn; ti++ ) |
|
{ |
|
if( caccum[ri * tn + ti] > threshold ) |
|
{ |
|
count++; |
|
memset( mcaccum, 0, sfn * sizeof( uchar )); |
|
|
|
for( index = 0; index < fn; index++ ) |
|
{ |
|
int ti2; |
|
float r0; |
|
|
|
yc = (float) y[index] + 0.5f; |
|
xc = (float) x[index] + 0.5f; |
|
|
|
// Update the accumulator |
|
t = (float) fabs( cvFastArctan( yc, xc ) * d2r ); |
|
r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ) * isrho; |
|
ti0 = cvFloor( (t + CV_PI * 0.5) * istheta ); |
|
ti2 = (ti * stn - ti0) * 5; |
|
r0 = (float) ri *srn; |
|
|
|
for( ti1 = 0; ti1 < stn; ti1++, ti2 += 5 ) |
|
{ |
|
rv = r * sinTable[(int) (std::abs( ti2 ))] - r0; |
|
i = cvFloor( rv ) * stn + ti1; |
|
|
|
i = CV_IMAX( i, -1 ); |
|
i = CV_IMIN( i, sfn ); |
|
mcaccum[i]++; |
|
CV_Assert( i >= -1 ); |
|
CV_Assert( i <= sfn ); |
|
} |
|
} |
|
|
|
// Find peaks in maccum... |
|
for( index = 0; index < sfn; index++ ) |
|
{ |
|
int pos = (int)(lst.size() - 1); |
|
if( pos < 0 || lst[pos].value < mcaccum[index] ) |
|
{ |
|
hough_index vi(mcaccum[index], |
|
index / stn * srho + ri * rho, |
|
index % stn * stheta + ti * theta - (float)(CV_PI*0.5)); |
|
lst.push_back(vi); |
|
for( ; pos >= 0; pos-- ) |
|
{ |
|
if( lst[pos].value > vi.value ) |
|
break; |
|
lst[pos+1] = lst[pos]; |
|
} |
|
lst[pos+1] = vi; |
|
if( (int)lst.size() > linesMax ) |
|
lst.pop_back(); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
int pos = (int)(lst.size() - 1); |
|
if( pos >= 0 && lst[pos].rho < 0 ) |
|
lst.pop_back(); |
|
|
|
lines.create((int)lst.size(), 1, type); |
|
Mat _lines = lines.getMat(); |
|
for( size_t idx = 0; idx < lst.size(); idx++ ) |
|
{ |
|
if (type == CV_32FC2) |
|
{ |
|
_lines.at<Vec2f>((int)idx) = Vec2f(lst[idx].rho, lst[idx].theta); |
|
} |
|
else |
|
{ |
|
CV_DbgAssert(type == CV_32FC3); |
|
_lines.at<Vec3f>((int)idx) = Vec3f(lst[idx].rho, lst[idx].theta, (float)lst[idx].value); |
|
} |
|
} |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Probabilistic Hough Transform * |
|
\****************************************************************************************/ |
|
|
|
static void |
|
HoughLinesProbabilistic( Mat& image, |
|
float rho, float theta, int threshold, |
|
int lineLength, int lineGap, |
|
std::vector<Vec4i>& lines, int linesMax ) |
|
{ |
|
Point pt; |
|
float irho = 1 / rho; |
|
RNG rng((uint64)-1); |
|
|
|
CV_Assert( image.type() == CV_8UC1 ); |
|
|
|
int width = image.cols; |
|
int height = image.rows; |
|
|
|
int numangle = computeNumangle(0.0, CV_PI, theta); |
|
int numrho = cvRound(((width + height) * 2 + 1) / rho); |
|
|
|
#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH |
|
CV_IPP_CHECK() |
|
{ |
|
IppiSize srcSize = { width, height }; |
|
IppPointPolar delta = { rho, theta }; |
|
IppiHoughProbSpec* pSpec; |
|
int bufferSize, specSize; |
|
int ipp_linesMax = std::min(linesMax, numangle*numrho); |
|
int linesCount = 0; |
|
lines.resize(ipp_linesMax); |
|
IppStatus ok = ippiHoughProbLineGetSize_8u_C1R(srcSize, delta, &specSize, &bufferSize); |
|
Ipp8u* buffer = ippsMalloc_8u_L(bufferSize); |
|
pSpec = (IppiHoughProbSpec*) ippsMalloc_8u_L(specSize); |
|
if (ok >= 0) ok = ippiHoughProbLineInit_8u32f_C1R(srcSize, delta, ippAlgHintNone, pSpec); |
|
if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughProbLine_8u32f_C1R, image.data, (int)image.step, srcSize, threshold, lineLength, lineGap, (IppiPoint*) &lines[0], ipp_linesMax, &linesCount, buffer, pSpec);}; |
|
|
|
ippsFree(pSpec); |
|
ippsFree(buffer); |
|
if (ok >= 0) |
|
{ |
|
lines.resize(linesCount); |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
lines.clear(); |
|
setIppErrorStatus(); |
|
} |
|
#endif |
|
|
|
Mat accum = Mat::zeros( numangle, numrho, CV_32SC1 ); |
|
Mat mask( height, width, CV_8UC1 ); |
|
std::vector<float> trigtab(numangle*2); |
|
|
|
for( int n = 0; n < numangle; n++ ) |
|
{ |
|
trigtab[n*2] = (float)(cos((double)n*theta) * irho); |
|
trigtab[n*2+1] = (float)(sin((double)n*theta) * irho); |
|
} |
|
const float* ttab = &trigtab[0]; |
|
uchar* mdata0 = mask.ptr(); |
|
std::vector<Point> nzloc; |
|
|
|
// stage 1. collect non-zero image points |
|
for( pt.y = 0; pt.y < height; pt.y++ ) |
|
{ |
|
const uchar* data = image.ptr(pt.y); |
|
uchar* mdata = mask.ptr(pt.y); |
|
for( pt.x = 0; pt.x < width; pt.x++ ) |
|
{ |
|
if( data[pt.x] ) |
|
{ |
|
mdata[pt.x] = (uchar)1; |
|
nzloc.push_back(pt); |
|
} |
|
else |
|
mdata[pt.x] = 0; |
|
} |
|
} |
|
|
|
int count = (int)nzloc.size(); |
|
|
|
// stage 2. process all the points in random order |
|
for( ; count > 0; count-- ) |
|
{ |
|
// choose random point out of the remaining ones |
|
int idx = rng.uniform(0, count); |
|
int max_val = threshold-1, max_n = 0; |
|
Point point = nzloc[idx]; |
|
Point line_end[2]; |
|
float a, b; |
|
int* adata = accum.ptr<int>(); |
|
int i = point.y, j = point.x, k, x0, y0, dx0, dy0, xflag; |
|
int good_line; |
|
const int shift = 16; |
|
|
|
// "remove" it by overriding it with the last element |
|
nzloc[idx] = nzloc[count-1]; |
|
|
|
// check if it has been excluded already (i.e. belongs to some other line) |
|
if( !mdata0[i*width + j] ) |
|
continue; |
|
|
|
// update accumulator, find the most probable line |
|
for( int n = 0; n < numangle; n++, adata += numrho ) |
|
{ |
|
int r = cvRound( j * ttab[n*2] + i * ttab[n*2+1] ); |
|
r += (numrho - 1) / 2; |
|
int val = ++adata[r]; |
|
if( max_val < val ) |
|
{ |
|
max_val = val; |
|
max_n = n; |
|
} |
|
} |
|
|
|
// if it is too "weak" candidate, continue with another point |
|
if( max_val < threshold ) |
|
continue; |
|
|
|
// from the current point walk in each direction |
|
// along the found line and extract the line segment |
|
a = -ttab[max_n*2+1]; |
|
b = ttab[max_n*2]; |
|
x0 = j; |
|
y0 = i; |
|
if( fabs(a) > fabs(b) ) |
|
{ |
|
xflag = 1; |
|
dx0 = a > 0 ? 1 : -1; |
|
dy0 = cvRound( b*(1 << shift)/fabs(a) ); |
|
y0 = (y0 << shift) + (1 << (shift-1)); |
|
} |
|
else |
|
{ |
|
xflag = 0; |
|
dy0 = b > 0 ? 1 : -1; |
|
dx0 = cvRound( a*(1 << shift)/fabs(b) ); |
|
x0 = (x0 << shift) + (1 << (shift-1)); |
|
} |
|
|
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
int gap = 0, x = x0, y = y0, dx = dx0, dy = dy0; |
|
|
|
if( k > 0 ) |
|
dx = -dx, dy = -dy; |
|
|
|
// walk along the line using fixed-point arithmetic, |
|
// stop at the image border or in case of too big gap |
|
for( ;; x += dx, y += dy ) |
|
{ |
|
uchar* mdata; |
|
int i1, j1; |
|
|
|
if( xflag ) |
|
{ |
|
j1 = x; |
|
i1 = y >> shift; |
|
} |
|
else |
|
{ |
|
j1 = x >> shift; |
|
i1 = y; |
|
} |
|
|
|
if( j1 < 0 || j1 >= width || i1 < 0 || i1 >= height ) |
|
break; |
|
|
|
mdata = mdata0 + i1*width + j1; |
|
|
|
// for each non-zero point: |
|
// update line end, |
|
// clear the mask element |
|
// reset the gap |
|
if( *mdata ) |
|
{ |
|
gap = 0; |
|
line_end[k].y = i1; |
|
line_end[k].x = j1; |
|
} |
|
else if( ++gap > lineGap ) |
|
break; |
|
} |
|
} |
|
|
|
good_line = std::abs(line_end[1].x - line_end[0].x) >= lineLength || |
|
std::abs(line_end[1].y - line_end[0].y) >= lineLength; |
|
|
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
int x = x0, y = y0, dx = dx0, dy = dy0; |
|
|
|
if( k > 0 ) |
|
dx = -dx, dy = -dy; |
|
|
|
// walk along the line using fixed-point arithmetic, |
|
// stop at the image border or in case of too big gap |
|
for( ;; x += dx, y += dy ) |
|
{ |
|
uchar* mdata; |
|
int i1, j1; |
|
|
|
if( xflag ) |
|
{ |
|
j1 = x; |
|
i1 = y >> shift; |
|
} |
|
else |
|
{ |
|
j1 = x >> shift; |
|
i1 = y; |
|
} |
|
|
|
mdata = mdata0 + i1*width + j1; |
|
|
|
// for each non-zero point: |
|
// update line end, |
|
// clear the mask element |
|
// reset the gap |
|
if( *mdata ) |
|
{ |
|
if( good_line ) |
|
{ |
|
adata = accum.ptr<int>(); |
|
for( int n = 0; n < numangle; n++, adata += numrho ) |
|
{ |
|
int r = cvRound( j1 * ttab[n*2] + i1 * ttab[n*2+1] ); |
|
r += (numrho - 1) / 2; |
|
adata[r]--; |
|
} |
|
} |
|
*mdata = 0; |
|
} |
|
|
|
if( i1 == line_end[k].y && j1 == line_end[k].x ) |
|
break; |
|
} |
|
} |
|
|
|
if( good_line ) |
|
{ |
|
Vec4i lr(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y); |
|
lines.push_back(lr); |
|
if( (int)lines.size() >= linesMax ) |
|
return; |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
#define OCL_MAX_LINES 4096 |
|
|
|
static bool ocl_makePointsList(InputArray _src, OutputArray _pointsList, InputOutputArray _counters) |
|
{ |
|
UMat src = _src.getUMat(); |
|
_pointsList.create(1, (int) src.total(), CV_32SC1); |
|
UMat pointsList = _pointsList.getUMat(); |
|
UMat counters = _counters.getUMat(); |
|
ocl::Device dev = ocl::Device::getDefault(); |
|
|
|
const int pixPerWI = 16; |
|
int workgroup_size = min((int) dev.maxWorkGroupSize(), (src.cols + pixPerWI - 1)/pixPerWI); |
|
ocl::Kernel pointListKernel("make_point_list", ocl::imgproc::hough_lines_oclsrc, |
|
format("-D MAKE_POINTS_LIST -D GROUP_SIZE=%d -D LOCAL_SIZE=%d", workgroup_size, src.cols)); |
|
if (pointListKernel.empty()) |
|
return false; |
|
|
|
pointListKernel.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(pointsList), |
|
ocl::KernelArg::PtrWriteOnly(counters)); |
|
|
|
size_t localThreads[2] = { (size_t)workgroup_size, 1 }; |
|
size_t globalThreads[2] = { (size_t)workgroup_size, (size_t)src.rows }; |
|
|
|
return pointListKernel.run(2, globalThreads, localThreads, false); |
|
} |
|
|
|
static bool ocl_fillAccum(InputArray _pointsList, OutputArray _accum, int total_points, double rho, double theta, int numrho, int numangle) |
|
{ |
|
UMat pointsList = _pointsList.getUMat(); |
|
_accum.create(numangle + 2, numrho + 2, CV_32SC1); |
|
UMat accum = _accum.getUMat(); |
|
ocl::Device dev = ocl::Device::getDefault(); |
|
|
|
float irho = (float) (1 / rho); |
|
int workgroup_size = min((int) dev.maxWorkGroupSize(), total_points); |
|
|
|
ocl::Kernel fillAccumKernel; |
|
size_t localThreads[2]; |
|
size_t globalThreads[2]; |
|
|
|
size_t local_memory_needed = (numrho + 2)*sizeof(int); |
|
if (local_memory_needed > dev.localMemSize()) |
|
{ |
|
accum.setTo(Scalar::all(0)); |
|
fillAccumKernel.create("fill_accum_global", ocl::imgproc::hough_lines_oclsrc, |
|
format("-D FILL_ACCUM_GLOBAL")); |
|
if (fillAccumKernel.empty()) |
|
return false; |
|
globalThreads[0] = workgroup_size; globalThreads[1] = numangle; |
|
fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnlyNoSize(accum), |
|
total_points, irho, (float) theta, numrho, numangle); |
|
return fillAccumKernel.run(2, globalThreads, NULL, false); |
|
} |
|
else |
|
{ |
|
fillAccumKernel.create("fill_accum_local", ocl::imgproc::hough_lines_oclsrc, |
|
format("-D FILL_ACCUM_LOCAL -D LOCAL_SIZE=%d -D BUFFER_SIZE=%d", workgroup_size, numrho + 2)); |
|
if (fillAccumKernel.empty()) |
|
return false; |
|
localThreads[0] = workgroup_size; localThreads[1] = 1; |
|
globalThreads[0] = workgroup_size; globalThreads[1] = numangle+2; |
|
fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnlyNoSize(accum), |
|
total_points, irho, (float) theta, numrho, numangle); |
|
return fillAccumKernel.run(2, globalThreads, localThreads, false); |
|
} |
|
} |
|
|
|
static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, double theta, int threshold, |
|
double min_theta, double max_theta) |
|
{ |
|
CV_Assert(_src.type() == CV_8UC1); |
|
|
|
if (max_theta < 0 || max_theta > CV_PI ) { |
|
CV_Error( Error::StsBadArg, "max_theta must fall between 0 and pi" ); |
|
} |
|
if (min_theta < 0 || min_theta > max_theta ) { |
|
CV_Error( Error::StsBadArg, "min_theta must fall between 0 and max_theta" ); |
|
} |
|
if (!(rho > 0 && theta > 0)) { |
|
CV_Error( Error::StsBadArg, "rho and theta must be greater 0" ); |
|
} |
|
|
|
UMat src = _src.getUMat(); |
|
int numangle = computeNumangle(min_theta, max_theta, theta); |
|
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); |
|
|
|
UMat pointsList; |
|
UMat counters(1, 2, CV_32SC1, Scalar::all(0)); |
|
|
|
if (!ocl_makePointsList(src, pointsList, counters)) |
|
return false; |
|
|
|
int total_points = counters.getMat(ACCESS_READ).at<int>(0, 0); |
|
if (total_points <= 0) |
|
{ |
|
_lines.release(); |
|
return true; |
|
} |
|
|
|
UMat accum; |
|
if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle)) |
|
return false; |
|
|
|
const int pixPerWI = 8; |
|
ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc, |
|
format("-D GET_LINES")); |
|
if (getLinesKernel.empty()) |
|
return false; |
|
|
|
int linesMax = threshold > 0 ? min(total_points*numangle/threshold, OCL_MAX_LINES) : OCL_MAX_LINES; |
|
UMat lines(linesMax, 1, CV_32FC2); |
|
|
|
getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::WriteOnlyNoSize(lines), |
|
ocl::KernelArg::PtrWriteOnly(counters), linesMax, threshold, (float) rho, (float) theta); |
|
|
|
size_t globalThreads[2] = { ((size_t)numrho + pixPerWI - 1)/pixPerWI, (size_t)numangle }; |
|
if (!getLinesKernel.run(2, globalThreads, NULL, false)) |
|
return false; |
|
|
|
int total_lines = min(counters.getMat(ACCESS_READ).at<int>(0, 1), linesMax); |
|
if (total_lines > 0) |
|
_lines.assign(lines.rowRange(Range(0, total_lines))); |
|
else |
|
_lines.release(); |
|
return true; |
|
} |
|
|
|
static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, double theta, int threshold, |
|
double minLineLength, double maxGap) |
|
{ |
|
CV_Assert(_src.type() == CV_8UC1); |
|
|
|
if (!(rho > 0 && theta > 0)) { |
|
CV_Error( Error::StsBadArg, "rho and theta must be greater 0" ); |
|
} |
|
|
|
UMat src = _src.getUMat(); |
|
int numangle = computeNumangle(0.0, CV_PI, theta); |
|
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); |
|
|
|
UMat pointsList; |
|
UMat counters(1, 2, CV_32SC1, Scalar::all(0)); |
|
|
|
if (!ocl_makePointsList(src, pointsList, counters)) |
|
return false; |
|
|
|
int total_points = counters.getMat(ACCESS_READ).at<int>(0, 0); |
|
if (total_points <= 0) |
|
{ |
|
_lines.release(); |
|
return true; |
|
} |
|
|
|
UMat accum; |
|
if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle)) |
|
return false; |
|
|
|
ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc, |
|
format("-D GET_LINES_PROBABOLISTIC")); |
|
if (getLinesKernel.empty()) |
|
return false; |
|
|
|
int linesMax = threshold > 0 ? min(total_points*numangle/threshold, OCL_MAX_LINES) : OCL_MAX_LINES; |
|
UMat lines(linesMax, 1, CV_32SC4); |
|
|
|
getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::ReadOnly(src), |
|
ocl::KernelArg::WriteOnlyNoSize(lines), ocl::KernelArg::PtrWriteOnly(counters), |
|
linesMax, threshold, (int) minLineLength, (int) maxGap, (float) rho, (float) theta); |
|
|
|
size_t globalThreads[2] = { (size_t)numrho, (size_t)numangle }; |
|
if (!getLinesKernel.run(2, globalThreads, NULL, false)) |
|
return false; |
|
|
|
int total_lines = min(counters.getMat(ACCESS_READ).at<int>(0, 1), linesMax); |
|
if (total_lines > 0) |
|
_lines.assign(lines.rowRange(Range(0, total_lines))); |
|
else |
|
_lines.release(); |
|
|
|
return true; |
|
} |
|
|
|
#endif /* HAVE_OPENCL */ |
|
|
|
void HoughLines( InputArray _image, OutputArray lines, |
|
double rho, double theta, int threshold, |
|
double srn, double stn, double min_theta, double max_theta ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
int type = CV_32FC2; |
|
if (lines.fixedType()) |
|
{ |
|
type = lines.type(); |
|
CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Wrong type of output lines"); |
|
} |
|
|
|
CV_OCL_RUN(srn == 0 && stn == 0 && _image.isUMat() && lines.isUMat() && type == CV_32FC2, |
|
ocl_HoughLines(_image, lines, rho, theta, threshold, min_theta, max_theta)); |
|
|
|
if( srn == 0 && stn == 0 ) |
|
HoughLinesStandard(_image, lines, type, (float)rho, (float)theta, threshold, INT_MAX, min_theta, max_theta ); |
|
else |
|
HoughLinesSDiv(_image, lines, type, (float)rho, (float)theta, threshold, cvRound(srn), cvRound(stn), INT_MAX, min_theta, max_theta); |
|
} |
|
|
|
|
|
void HoughLinesP(InputArray _image, OutputArray _lines, |
|
double rho, double theta, int threshold, |
|
double minLineLength, double maxGap ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_OCL_RUN(_image.isUMat() && _lines.isUMat(), |
|
ocl_HoughLinesP(_image, _lines, rho, theta, threshold, minLineLength, maxGap)); |
|
|
|
Mat image = _image.getMat(); |
|
std::vector<Vec4i> lines; |
|
HoughLinesProbabilistic(image, (float)rho, (float)theta, threshold, cvRound(minLineLength), cvRound(maxGap), lines, INT_MAX); |
|
Mat(lines).copyTo(_lines); |
|
} |
|
|
|
void HoughLinesPointSet( InputArray _point, OutputArray _lines, int lines_max, int threshold, |
|
double min_rho, double max_rho, double rho_step, |
|
double min_theta, double max_theta, double theta_step ) |
|
{ |
|
std::vector<Vec3d> lines; |
|
std::vector<Point2f> point; |
|
_point.copyTo(point); |
|
|
|
CV_Assert( _point.type() == CV_32FC2 || _point.type() == CV_32SC2 ); |
|
if( lines_max <= 0 ) { |
|
CV_Error( Error::StsBadArg, "lines_max must be greater than 0" ); |
|
} |
|
if( threshold < 0) { |
|
CV_Error( Error::StsBadArg, "threshold must be greater than 0" ); |
|
} |
|
if( ((max_rho - min_rho) <= 0) || ((max_theta - min_theta) <= 0) ) { |
|
CV_Error( Error::StsBadArg, "max must be greater than min" ); |
|
} |
|
if( ((rho_step <= 0)) || ((theta_step <= 0)) ) { |
|
CV_Error( Error::StsBadArg, "step must be greater than 0" ); |
|
} |
|
|
|
int i; |
|
float irho = 1 / (float)rho_step; |
|
float irho_min = ((float)min_rho * irho); |
|
int numangle = computeNumangle(min_theta, max_theta, theta_step); |
|
int numrho = cvRound((max_rho - min_rho + 1) / rho_step); |
|
|
|
Mat _accum = Mat::zeros( (numangle+2), (numrho+2), CV_32SC1 ); |
|
std::vector<int> _sort_buf; |
|
AutoBuffer<float> _tabSin(numangle); |
|
AutoBuffer<float> _tabCos(numangle); |
|
int *accum = _accum.ptr<int>(); |
|
float *tabSin = _tabSin.data(), *tabCos = _tabCos.data(); |
|
|
|
// create sin and cos table |
|
createTrigTable( numangle, min_theta, theta_step, |
|
irho, tabSin, tabCos ); |
|
|
|
// stage 1. fill accumulator |
|
for( i = 0; i < (int)point.size(); i++ ) |
|
for(int n = 0; n < numangle; n++ ) |
|
{ |
|
int r = cvRound( point.at(i).x * tabCos[n] + point.at(i).y * tabSin[n] - irho_min); |
|
if ( r >= 0 && r <= numrho) { |
|
accum[(n+1) * (numrho+2) + r+1]++; |
|
} |
|
} |
|
|
|
// stage 2. find local maximums |
|
findLocalMaximums( numrho, numangle, threshold, accum, _sort_buf ); |
|
|
|
// stage 3. sort the detected lines by accumulator value |
|
std::sort(_sort_buf.begin(), _sort_buf.end(), hough_cmp_gt(accum)); |
|
|
|
// stage 4. store the first min(total,linesMax) lines to the output buffer |
|
lines_max = std::min(lines_max, (int)_sort_buf.size()); |
|
double scale = 1./(numrho+2); |
|
for( i = 0; i < lines_max; i++ ) |
|
{ |
|
LinePolar line; |
|
int idx = _sort_buf[i]; |
|
int n = cvFloor(idx*scale) - 1; |
|
int r = idx - (n+1)*(numrho+2) - 1; |
|
line.rho = static_cast<float>(min_rho) + r * (float)rho_step; |
|
line.angle = static_cast<float>(min_theta) + n * (float)theta_step; |
|
lines.push_back(Vec3d((double)accum[idx], (double)line.rho, (double)line.angle)); |
|
} |
|
|
|
Mat(lines).copyTo(_lines); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Circle Detection * |
|
\****************************************************************************************/ |
|
|
|
struct EstimatedCircle |
|
{ |
|
EstimatedCircle() { accum = 0; } |
|
EstimatedCircle(Vec3f _c, int _accum) : |
|
c(_c), accum(_accum) {} |
|
Vec3f c; |
|
int accum; |
|
}; |
|
|
|
static bool cmpAccum(const EstimatedCircle& left, const EstimatedCircle& right) |
|
{ |
|
// Compare everything so the order is completely deterministic |
|
// Larger accum first |
|
if (left.accum > right.accum) |
|
return true; |
|
else if (left.accum < right.accum) |
|
return false; |
|
// Larger radius first |
|
else if (left.c[2] > right.c[2]) |
|
return true; |
|
else if (left.c[2] < right.c[2]) |
|
return false; |
|
// Smaller X |
|
else if (left.c[0] < right.c[0]) |
|
return true; |
|
else if (left.c[0] > right.c[0]) |
|
return false; |
|
// Smaller Y |
|
else if (left.c[1] < right.c[1]) |
|
return true; |
|
else if (left.c[1] > right.c[1]) |
|
return false; |
|
// Identical - neither object is less than the other |
|
else |
|
return false; |
|
} |
|
|
|
static inline Vec3f GetCircle(const EstimatedCircle& est) |
|
{ |
|
return est.c; |
|
} |
|
|
|
static inline Vec4f GetCircle4f(const EstimatedCircle& est) |
|
{ |
|
return Vec4f(est.c[0], est.c[1], est.c[2], (float)est.accum); |
|
} |
|
|
|
class NZPointList : public std::vector<Point> |
|
{ |
|
private: |
|
NZPointList(const NZPointList& other); // non-copyable |
|
|
|
public: |
|
NZPointList(int reserveSize = 256) |
|
{ |
|
reserve(reserveSize); |
|
} |
|
}; |
|
|
|
class NZPointSet |
|
{ |
|
private: |
|
NZPointSet(const NZPointSet& other); // non-copyable |
|
|
|
public: |
|
Mat_<uchar> positions; |
|
|
|
NZPointSet(int rows, int cols) : |
|
positions(rows, cols, (uchar)0) |
|
{ |
|
} |
|
|
|
void insert(const Point& pt) |
|
{ |
|
positions(pt) = 1; |
|
} |
|
|
|
void insert(const NZPointSet& from) |
|
{ |
|
cv::bitwise_or(from.positions, positions, positions); |
|
} |
|
|
|
void toList(NZPointList& list) const |
|
{ |
|
for (int y = 0; y < positions.rows; y++) |
|
{ |
|
const uchar *ptr = positions.ptr<uchar>(y, 0); |
|
for (int x = 0; x < positions.cols; x++) |
|
{ |
|
if (ptr[x]) |
|
{ |
|
list.push_back(Point(x, y)); |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
class HoughCirclesAccumInvoker : public ParallelLoopBody |
|
{ |
|
public: |
|
HoughCirclesAccumInvoker(const Mat &_edges, const Mat &_dx, const Mat &_dy, int _minRadius, int _maxRadius, float _idp, |
|
std::vector<Mat>& _accumVec, NZPointSet& _nz, Mutex& _mtx) : |
|
edges(_edges), dx(_dx), dy(_dy), minRadius(_minRadius), maxRadius(_maxRadius), idp(_idp), |
|
accumVec(_accumVec), nz(_nz), mutex(_mtx) |
|
{ |
|
acols = cvCeil(edges.cols * idp), arows = cvCeil(edges.rows * idp); |
|
astep = acols + 2; |
|
} |
|
|
|
~HoughCirclesAccumInvoker() { } |
|
|
|
void operator()(const Range &boundaries) const CV_OVERRIDE |
|
{ |
|
Mat accumLocal = Mat(arows + 2, acols + 2, CV_32SC1, Scalar::all(0)); |
|
int *adataLocal = accumLocal.ptr<int>(); |
|
NZPointSet nzLocal(nz.positions.rows, nz.positions.cols); |
|
int startRow = boundaries.start; |
|
int endRow = boundaries.end; |
|
int numCols = edges.cols; |
|
|
|
if(edges.isContinuous() && dx.isContinuous() && dy.isContinuous()) |
|
{ |
|
numCols *= (boundaries.end - boundaries.start); |
|
endRow = boundaries.start + 1; |
|
} |
|
|
|
// Accumulate circle evidence for each edge pixel |
|
for(int y = startRow; y < endRow; ++y ) |
|
{ |
|
const uchar* edgeData = edges.ptr<const uchar>(y); |
|
const short* dxData = dx.ptr<const short>(y); |
|
const short* dyData = dy.ptr<const short>(y); |
|
int x = 0; |
|
|
|
for(; x < numCols; ++x ) |
|
{ |
|
#if CV_SIMD |
|
{ |
|
v_uint8 v_zero = vx_setzero_u8(); |
|
|
|
for(; x <= numCols - 2*v_uint8::nlanes; x += 2*v_uint8::nlanes) { |
|
v_uint8 v_edge1 = (vx_load(edgeData + x ) != v_zero); |
|
v_uint8 v_edge2 = (vx_load(edgeData + x + v_uint8::nlanes) != v_zero); |
|
|
|
if(v_check_any(v_edge1)) |
|
{ |
|
x += v_scan_forward(v_edge1); |
|
goto _next_step; |
|
} |
|
|
|
if(v_check_any(v_edge2)) |
|
{ |
|
x += v_uint8::nlanes + v_scan_forward(v_edge2); |
|
goto _next_step; |
|
} |
|
} |
|
} |
|
#endif |
|
for(; x < numCols && !edgeData[x]; ++x) |
|
; |
|
|
|
if(x == numCols) |
|
continue; |
|
#if CV_SIMD |
|
_next_step: |
|
#endif |
|
float vx, vy; |
|
int sx, sy, x0, y0, x1, y1; |
|
|
|
vx = dxData[x]; |
|
vy = dyData[x]; |
|
|
|
if(vx == 0 && vy == 0) |
|
continue; |
|
|
|
float mag = std::sqrt(vx*vx+vy*vy); |
|
|
|
if(mag < 1.0f) |
|
continue; |
|
|
|
Point pt = Point(x % edges.cols, y + x / edges.cols); |
|
nzLocal.insert(pt); |
|
|
|
sx = cvRound((vx * idp) * 1024 / mag); |
|
sy = cvRound((vy * idp) * 1024 / mag); |
|
|
|
x0 = cvRound((pt.x * idp) * 1024); |
|
y0 = cvRound((pt.y * idp) * 1024); |
|
|
|
// Step from min_radius to max_radius in both directions of the gradient |
|
for(int k1 = 0; k1 < 2; k1++ ) |
|
{ |
|
x1 = x0 + minRadius * sx; |
|
y1 = y0 + minRadius * sy; |
|
|
|
for(int r = minRadius; r <= maxRadius; x1 += sx, y1 += sy, r++ ) |
|
{ |
|
int x2 = x1 >> 10, y2 = y1 >> 10; |
|
if( (unsigned)x2 >= (unsigned)acols || |
|
(unsigned)y2 >= (unsigned)arows ) |
|
break; |
|
|
|
adataLocal[y2*astep + x2]++; |
|
} |
|
|
|
sx = -sx; sy = -sy; |
|
} |
|
} |
|
} |
|
|
|
{ // TODO Try using TLSContainers |
|
AutoLock lock(mutex); |
|
accumVec.push_back(accumLocal); |
|
nz.insert(nzLocal); |
|
} |
|
} |
|
|
|
private: |
|
const Mat &edges, &dx, &dy; |
|
int minRadius, maxRadius; |
|
float idp; |
|
std::vector<Mat>& accumVec; |
|
NZPointSet& nz; |
|
|
|
int acols, arows, astep; |
|
|
|
Mutex& mutex; |
|
}; |
|
|
|
class HoughCirclesFindCentersInvoker : public ParallelLoopBody |
|
{ |
|
public: |
|
HoughCirclesFindCentersInvoker(const Mat &_accum, std::vector<int> &_centers, int _accThreshold, Mutex& _mutex) : |
|
accum(_accum), centers(_centers), accThreshold(_accThreshold), _lock(_mutex) |
|
{ |
|
acols = accum.cols; |
|
arows = accum.rows; |
|
adata = accum.ptr<int>(); |
|
} |
|
|
|
~HoughCirclesFindCentersInvoker() {} |
|
|
|
void operator()(const Range &boundaries) const CV_OVERRIDE |
|
{ |
|
int startRow = boundaries.start; |
|
int endRow = boundaries.end; |
|
std::vector<int> centersLocal; |
|
bool singleThread = (boundaries == Range(1, accum.rows - 1)); |
|
|
|
startRow = max(1, startRow); |
|
endRow = min(arows - 1, endRow); |
|
|
|
//Find possible circle centers |
|
for(int y = startRow; y < endRow; ++y ) |
|
{ |
|
int x = 1; |
|
int base = y * acols + x; |
|
|
|
for(; x < acols - 1; ++x, ++base ) |
|
{ |
|
if( adata[base] > accThreshold && |
|
adata[base] > adata[base-1] && adata[base] >= adata[base+1] && |
|
adata[base] > adata[base-acols] && adata[base] >= adata[base+acols] ) |
|
centersLocal.push_back(base); |
|
} |
|
} |
|
|
|
if(!centersLocal.empty()) |
|
{ |
|
if(singleThread) |
|
centers = centersLocal; |
|
else |
|
{ |
|
AutoLock alock(_lock); |
|
centers.insert(centers.end(), centersLocal.begin(), centersLocal.end()); |
|
} |
|
} |
|
} |
|
|
|
private: |
|
const Mat &accum; |
|
std::vector<int> ¢ers; |
|
int accThreshold; |
|
|
|
int acols, arows; |
|
const int *adata; |
|
Mutex& _lock; |
|
}; |
|
|
|
template<typename T> |
|
static bool CheckDistance(const std::vector<T> &circles, size_t endIdx, const T& circle, float minDist2) |
|
{ |
|
bool goodPoint = true; |
|
for (uint j = 0; j < endIdx; ++j) |
|
{ |
|
T pt = circles[j]; |
|
float distX = circle[0] - pt[0], distY = circle[1] - pt[1]; |
|
if (distX * distX + distY * distY < minDist2) |
|
{ |
|
goodPoint = false; |
|
break; |
|
} |
|
} |
|
return goodPoint; |
|
} |
|
|
|
static void GetCircleCenters(const std::vector<int> ¢ers, std::vector<Vec3f> &circles, int acols, float minDist, float dr) |
|
{ |
|
size_t centerCnt = centers.size(); |
|
float minDist2 = minDist * minDist; |
|
for (size_t i = 0; i < centerCnt; ++i) |
|
{ |
|
int center = centers[i]; |
|
int y = center / acols; |
|
int x = center - y * acols; |
|
Vec3f circle = Vec3f((x + 0.5f) * dr, (y + 0.5f) * dr, 0); |
|
|
|
bool goodPoint = CheckDistance(circles, circles.size(), circle, minDist2); |
|
if (goodPoint) |
|
circles.push_back(circle); |
|
} |
|
} |
|
|
|
static void GetCircleCenters(const std::vector<int> ¢ers, std::vector<Vec4f> &circles, int acols, float minDist, float dr) |
|
{ |
|
size_t centerCnt = centers.size(); |
|
float minDist2 = minDist * minDist; |
|
for (size_t i = 0; i < centerCnt; ++i) |
|
{ |
|
int center = centers[i]; |
|
int y = center / acols; |
|
int x = center - y * acols; |
|
Vec4f circle = Vec4f((x + 0.5f) * dr, (y + 0.5f) * dr, 0, (float)center); |
|
|
|
bool goodPoint = CheckDistance(circles, circles.size(), circle, minDist2); |
|
if (goodPoint) |
|
circles.push_back(circle); |
|
} |
|
} |
|
|
|
template<typename T> |
|
static void RemoveOverlaps(std::vector<T>& circles, float minDist) |
|
{ |
|
if (circles.size() <= 1u) |
|
return; |
|
float minDist2 = minDist * minDist; |
|
size_t endIdx = 1; |
|
for (size_t i = 1; i < circles.size(); ++i) |
|
{ |
|
T circle = circles[i]; |
|
if (CheckDistance(circles, endIdx, circle, minDist2)) |
|
{ |
|
circles[endIdx] = circle; |
|
++endIdx; |
|
} |
|
} |
|
circles.resize(endIdx); |
|
} |
|
|
|
static void CreateCircles(const std::vector<EstimatedCircle>& circlesEst, std::vector<Vec3f>& circles) |
|
{ |
|
std::transform(circlesEst.begin(), circlesEst.end(), std::back_inserter(circles), GetCircle); |
|
} |
|
|
|
static void CreateCircles(const std::vector<EstimatedCircle>& circlesEst, std::vector<Vec4f>& circles) |
|
{ |
|
std::transform(circlesEst.begin(), circlesEst.end(), std::back_inserter(circles), GetCircle4f); |
|
} |
|
|
|
template<class NZPoints> |
|
class HoughCircleEstimateRadiusInvoker : public ParallelLoopBody |
|
{ |
|
public: |
|
HoughCircleEstimateRadiusInvoker(const NZPoints &_nz, int _nzSz, const std::vector<int> &_centers, std::vector<EstimatedCircle> &_circlesEst, |
|
int _acols, int _accThreshold, int _minRadius, int _maxRadius, |
|
float _dp, Mutex& _mutex) : |
|
nz(_nz), nzSz(_nzSz), centers(_centers), circlesEst(_circlesEst), acols(_acols), accThreshold(_accThreshold), |
|
minRadius(_minRadius), maxRadius(_maxRadius), dr(_dp), _lock(_mutex) |
|
{ |
|
minRadius2 = (float)minRadius * minRadius; |
|
maxRadius2 = (float)maxRadius * maxRadius; |
|
centerSz = (int)centers.size(); |
|
CV_Assert(nzSz > 0); |
|
} |
|
|
|
~HoughCircleEstimateRadiusInvoker() {} |
|
|
|
protected: |
|
inline int filterCircles(const Point2f& curCenter, float* ddata) const; |
|
|
|
void operator()(const Range &boundaries) const CV_OVERRIDE |
|
{ |
|
std::vector<EstimatedCircle> circlesLocal; |
|
const int nBinsPerDr = 10; |
|
int nBins = cvRound((maxRadius - minRadius)/dr*nBinsPerDr); |
|
AutoBuffer<int> bins(nBins); |
|
AutoBuffer<float> distBuf(nzSz), distSqrtBuf(nzSz); |
|
float *ddata = distBuf.data(); |
|
float *dSqrtData = distSqrtBuf.data(); |
|
|
|
bool singleThread = (boundaries == Range(0, centerSz)); |
|
int i = boundaries.start; |
|
|
|
// For each found possible center |
|
// Estimate radius and check support |
|
for(; i < boundaries.end; ++i) |
|
{ |
|
int ofs = centers[i]; |
|
int y = ofs / acols; |
|
int x = ofs - y * acols; |
|
|
|
//Calculate circle's center in pixels |
|
Point2f curCenter = Point2f((x + 0.5f) * dr, (y + 0.5f) * dr); |
|
int nzCount = filterCircles(curCenter, ddata); |
|
|
|
int maxCount = 0; |
|
float rBest = 0; |
|
if(nzCount) |
|
{ |
|
Mat_<float> distMat(1, nzCount, ddata); |
|
Mat_<float> distSqrtMat(1, nzCount, dSqrtData); |
|
sqrt(distMat, distSqrtMat); |
|
|
|
memset(bins.data(), 0, sizeof(bins[0])*bins.size()); |
|
for(int k = 0; k < nzCount; k++) |
|
{ |
|
int bin = std::max(0, std::min(nBins-1, cvRound((dSqrtData[k] - minRadius)/dr*nBinsPerDr))); |
|
bins[bin]++; |
|
} |
|
|
|
for(int j = nBins - 1; j > 0; j--) |
|
{ |
|
if(bins[j]) |
|
{ |
|
int upbin = j; |
|
int curCount = 0; |
|
for(; j > upbin - nBinsPerDr && j >= 0; j--) |
|
{ |
|
curCount += bins[j]; |
|
} |
|
float rCur = (upbin + j)/2.f /nBinsPerDr * dr + minRadius; |
|
if((curCount * rBest >= maxCount * rCur) || |
|
(rBest < FLT_EPSILON && curCount >= maxCount)) |
|
{ |
|
rBest = rCur; |
|
maxCount = curCount; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Check if the circle has enough support |
|
if(maxCount > accThreshold) |
|
{ |
|
circlesLocal.push_back(EstimatedCircle(Vec3f(curCenter.x, curCenter.y, rBest), maxCount)); |
|
} |
|
} |
|
|
|
if(!circlesLocal.empty()) |
|
{ |
|
std::sort(circlesLocal.begin(), circlesLocal.end(), cmpAccum); |
|
if(singleThread) |
|
{ |
|
std::swap(circlesEst, circlesLocal); |
|
} |
|
else |
|
{ |
|
AutoLock alock(_lock); |
|
if (circlesEst.empty()) |
|
std::swap(circlesEst, circlesLocal); |
|
else |
|
circlesEst.insert(circlesEst.end(), circlesLocal.begin(), circlesLocal.end()); |
|
} |
|
} |
|
} |
|
|
|
private: |
|
const NZPoints &nz; |
|
int nzSz; |
|
const std::vector<int> ¢ers; |
|
std::vector<EstimatedCircle> &circlesEst; |
|
int acols, accThreshold, minRadius, maxRadius; |
|
float dr; |
|
int centerSz; |
|
float minRadius2, maxRadius2; |
|
Mutex& _lock; |
|
}; |
|
|
|
template<> |
|
inline int HoughCircleEstimateRadiusInvoker<NZPointList>::filterCircles(const Point2f& curCenter, float* ddata) const |
|
{ |
|
int nzCount = 0; |
|
const Point* nz_ = &nz[0]; |
|
int j = 0; |
|
#if CV_SIMD |
|
{ |
|
const v_float32 v_minRadius2 = vx_setall_f32(minRadius2); |
|
const v_float32 v_maxRadius2 = vx_setall_f32(maxRadius2); |
|
|
|
v_float32 v_curCenterX = vx_setall_f32(curCenter.x); |
|
v_float32 v_curCenterY = vx_setall_f32(curCenter.y); |
|
|
|
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) rbuf[v_float32::nlanes]; |
|
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) rmask[v_int32::nlanes]; |
|
for(; j <= nzSz - v_float32::nlanes; j += v_float32::nlanes) |
|
{ |
|
v_float32 v_nzX, v_nzY; |
|
v_load_deinterleave((const float*)&nz_[j], v_nzX, v_nzY); // FIXIT use proper datatype |
|
|
|
v_float32 v_x = v_cvt_f32(v_reinterpret_as_s32(v_nzX)); |
|
v_float32 v_y = v_cvt_f32(v_reinterpret_as_s32(v_nzY)); |
|
|
|
v_float32 v_dx = v_x - v_curCenterX; |
|
v_float32 v_dy = v_y - v_curCenterY; |
|
|
|
v_float32 v_r2 = (v_dx * v_dx) + (v_dy * v_dy); |
|
v_float32 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2); |
|
if (v_check_any(vmask)) |
|
{ |
|
v_store_aligned(rmask, v_reinterpret_as_s32(vmask)); |
|
v_store_aligned(rbuf, v_r2); |
|
for (int i = 0; i < v_int32::nlanes; ++i) |
|
if (rmask[i]) ddata[nzCount++] = rbuf[i]; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
// Estimate best radius |
|
for(; j < nzSz; ++j) |
|
{ |
|
const Point pt = nz_[j]; |
|
float _dx = curCenter.x - pt.x, _dy = curCenter.y - pt.y; |
|
float _r2 = _dx * _dx + _dy * _dy; |
|
|
|
if(minRadius2 <= _r2 && _r2 <= maxRadius2) |
|
{ |
|
ddata[nzCount++] = _r2; |
|
} |
|
} |
|
return nzCount; |
|
} |
|
|
|
template<> |
|
inline int HoughCircleEstimateRadiusInvoker<NZPointSet>::filterCircles(const Point2f& curCenter, float* ddata) const |
|
{ |
|
int nzCount = 0; |
|
const Mat_<uchar>& positions = nz.positions; |
|
|
|
const int rOuter = maxRadius + 1; |
|
const Range xOuter = Range(std::max(int(curCenter.x - rOuter), 0), std::min(int(curCenter.x + rOuter), positions.cols)); |
|
const Range yOuter = Range(std::max(int(curCenter.y - rOuter), 0), std::min(int(curCenter.y + rOuter), positions.rows)); |
|
|
|
#if CV_SIMD |
|
float v_seq[v_float32::nlanes]; |
|
for (int i = 0; i < v_float32::nlanes; ++i) |
|
v_seq[i] = (float)i; |
|
const v_float32 v_minRadius2 = vx_setall_f32(minRadius2); |
|
const v_float32 v_maxRadius2 = vx_setall_f32(maxRadius2); |
|
const v_float32 v_curCenterX_0123 = vx_setall_f32(curCenter.x) - vx_load(v_seq); |
|
#endif |
|
|
|
for (int y = yOuter.start; y < yOuter.end; y++) |
|
{ |
|
const uchar* ptr = positions.ptr(y, 0); |
|
float dy = curCenter.y - y; |
|
float dy2 = dy * dy; |
|
|
|
int x = xOuter.start; |
|
#if CV_SIMD |
|
{ |
|
const v_float32 v_dy2 = vx_setall_f32(dy2); |
|
const v_uint32 v_zero_u32 = vx_setall_u32(0); |
|
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) rbuf[v_float32::nlanes]; |
|
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) rmask[v_int32::nlanes]; |
|
for (; x <= xOuter.end - v_float32::nlanes; x += v_float32::nlanes) |
|
{ |
|
v_uint32 v_mask = vx_load_expand_q(ptr + x); |
|
v_mask = v_mask != v_zero_u32; |
|
|
|
v_float32 v_x = v_cvt_f32(vx_setall_s32(x)); |
|
v_float32 v_dx = v_x - v_curCenterX_0123; |
|
|
|
v_float32 v_r2 = (v_dx * v_dx) + v_dy2; |
|
v_float32 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2) & v_reinterpret_as_f32(v_mask); |
|
if (v_check_any(vmask)) |
|
{ |
|
v_store_aligned(rmask, v_reinterpret_as_s32(vmask)); |
|
v_store_aligned(rbuf, v_r2); |
|
for (int i = 0; i < v_int32::nlanes; ++i) |
|
if (rmask[i]) ddata[nzCount++] = rbuf[i]; |
|
} |
|
} |
|
} |
|
#endif |
|
for (; x < xOuter.end; x++) |
|
{ |
|
if (ptr[x]) |
|
{ |
|
float _dx = curCenter.x - x; |
|
float _r2 = _dx * _dx + dy2; |
|
if(minRadius2 <= _r2 && _r2 <= maxRadius2) |
|
{ |
|
ddata[nzCount++] = _r2; |
|
} |
|
} |
|
} |
|
} |
|
return nzCount; |
|
} |
|
|
|
template <typename CircleType> |
|
static void HoughCirclesGradient(InputArray _image, OutputArray _circles, |
|
float dp, float minDist, |
|
int minRadius, int maxRadius, int cannyThreshold, |
|
int accThreshold, int maxCircles, int kernelSize, bool centersOnly) |
|
{ |
|
CV_Assert(kernelSize == -1 || kernelSize == 3 || kernelSize == 5 || kernelSize == 7); |
|
|
|
dp = max(dp, 1.f); |
|
float idp = 1.f/dp; |
|
|
|
Mat edges, dx, dy; |
|
|
|
Sobel(_image, dx, CV_16S, 1, 0, kernelSize, 1, 0, BORDER_REPLICATE); |
|
Sobel(_image, dy, CV_16S, 0, 1, kernelSize, 1, 0, BORDER_REPLICATE); |
|
Canny(dx, dy, edges, std::max(1, cannyThreshold / 2), cannyThreshold, false); |
|
|
|
Mutex mtx; |
|
int numThreads = std::max(1, getNumThreads()); |
|
std::vector<Mat> accumVec; |
|
NZPointSet nz(_image.rows(), _image.cols()); |
|
parallel_for_(Range(0, edges.rows), |
|
HoughCirclesAccumInvoker(edges, dx, dy, minRadius, maxRadius, idp, accumVec, nz, mtx), |
|
numThreads); |
|
int nzSz = cv::countNonZero(nz.positions); |
|
if(nzSz <= 0) |
|
return; |
|
|
|
Mat accum = accumVec[0]; |
|
for(size_t i = 1; i < accumVec.size(); i++) |
|
{ |
|
accum += accumVec[i]; |
|
} |
|
accumVec.clear(); |
|
|
|
std::vector<int> centers; |
|
|
|
// 4 rows when multithreaded because there is a bit overhead |
|
// and on the other side there are some row ranges where centers are concentrated |
|
parallel_for_(Range(1, accum.rows - 1), |
|
HoughCirclesFindCentersInvoker(accum, centers, accThreshold, mtx), |
|
(numThreads > 1) ? ((accum.rows - 2) / 4) : 1); |
|
|
|
int centerCnt = (int)centers.size(); |
|
if(centerCnt == 0) |
|
return; |
|
|
|
std::sort(centers.begin(), centers.end(), hough_cmp_gt(accum.ptr<int>())); |
|
|
|
std::vector<CircleType> circles; |
|
circles.reserve(256); |
|
if (centersOnly) |
|
{ |
|
// Just get the circle centers |
|
GetCircleCenters(centers, circles, accum.cols, minDist, dp); |
|
} |
|
else |
|
{ |
|
std::vector<EstimatedCircle> circlesEst; |
|
if (nzSz < maxRadius * maxRadius) |
|
{ |
|
// Faster to use a list |
|
NZPointList nzList(nzSz); |
|
nz.toList(nzList); |
|
// One loop iteration per thread if multithreaded. |
|
parallel_for_(Range(0, centerCnt), |
|
HoughCircleEstimateRadiusInvoker<NZPointList>(nzList, nzSz, centers, circlesEst, accum.cols, |
|
accThreshold, minRadius, maxRadius, dp, mtx), |
|
numThreads); |
|
} |
|
else |
|
{ |
|
// Faster to use a matrix |
|
// One loop iteration per thread if multithreaded. |
|
parallel_for_(Range(0, centerCnt), |
|
HoughCircleEstimateRadiusInvoker<NZPointSet>(nz, nzSz, centers, circlesEst, accum.cols, |
|
accThreshold, minRadius, maxRadius, dp, mtx), |
|
numThreads); |
|
} |
|
|
|
// Sort by accumulator value |
|
std::sort(circlesEst.begin(), circlesEst.end(), cmpAccum); |
|
|
|
// Create Circles |
|
CreateCircles(circlesEst, circles); |
|
RemoveOverlaps(circles, minDist); |
|
} |
|
|
|
if (circles.size() > 0) |
|
{ |
|
int numCircles = std::min(maxCircles, int(circles.size())); |
|
Mat(1, numCircles, cv::traits::Type<CircleType>::value, &circles[0]).copyTo(_circles); |
|
return; |
|
} |
|
} |
|
|
|
static int circle_popcnt(uint64 val) |
|
{ |
|
#ifdef CV_POPCNT_U64 |
|
return CV_POPCNT_U64(val); |
|
#else |
|
val -= (val >> 1) & 0x5555555555555555ULL; |
|
val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL); |
|
val = (val + (val >> 4)) & 0x0f0f0f0f0f0f0f0fULL; |
|
return (int)((val * 0x0101010101010101ULL) >> 56); |
|
#endif |
|
} |
|
|
|
// The structure describes the circle "candidate" that is composed by one or more circle-like arcs. |
|
// * rw - the sum of radiuses multiplied by the corresponding arc lengths. |
|
// * weight - the arc length (the number of pixels it contains) |
|
// * mask - bit mask of 64 elements that shows the coverage of the whole 0..360 degrees angular range of the circle. |
|
// The mask of all 1's means that the whole circle is completely covered. 0's show the uncovered segments. |
|
struct CircleData |
|
{ |
|
CircleData() { rw = 0; weight = 0; mask = 0; } |
|
double rw; |
|
int weight; |
|
uint64 mask; |
|
}; |
|
|
|
enum |
|
{ |
|
HOUGH_CIRCLES_ALT_BLOCK_SIZE = 10, |
|
HOUGH_CIRCLES_ALT_MAX_CLUSTERS = 10 |
|
}; |
|
|
|
static void HoughCirclesAlt( const Mat& img, std::vector<EstimatedCircle>& circles, double dp, double rdMinDist, |
|
double minRadius, double maxRadius, double cannyThreshold, double minCos2 ) |
|
{ |
|
const int MIN_COUNT = 10; |
|
const int RAY_FP_BITS = 10; |
|
const int RAY_FP_SCALE = 1 << RAY_FP_BITS; |
|
const int ACCUM_FP_BITS = 6; |
|
const int RAY_SHIFT2 = ACCUM_FP_BITS/2; |
|
const int ACCUM_ALPHA_ONE = 1 << RAY_SHIFT2; |
|
const int ACCUM_ALPHA_MASK = ACCUM_ALPHA_ONE - 1; |
|
const int RAY_SHIFT1 = RAY_FP_BITS - RAY_SHIFT2; |
|
const int RAY_DELTA1 = 1 << (RAY_SHIFT1 - 1); |
|
|
|
const double ARC_DELTA = 80; |
|
const double ARC_EPS = 0.03; |
|
const double CIRCLE_AREA_OFFSET = 4000; |
|
const double ARC2CLUSTER_EPS = 0.06; |
|
const double CLUSTER_MERGE_EPS = 0.075; |
|
const double FINAL_MERGE_DIST_EPS = 0.01; |
|
const double FINAL_MERGE_AREA_EPS = CLUSTER_MERGE_EPS; |
|
|
|
if( maxRadius <= 0 ) |
|
maxRadius = std::min(img.cols, img.rows)*0.5; |
|
if( minRadius > maxRadius ) |
|
std::swap(minRadius, maxRadius); |
|
maxRadius = std::min(maxRadius, std::min(img.cols, img.rows)*0.5); |
|
maxRadius = std::max(maxRadius, 1.); |
|
minRadius = std::max(minRadius, 1.); |
|
minRadius = std::min(minRadius, maxRadius); |
|
cannyThreshold = std::max(cannyThreshold, 1.); |
|
dp = std::max(dp, 1.); |
|
|
|
Mat Dx, Dy, edges; |
|
Scharr(img, Dx, CV_16S, 1, 0); |
|
Scharr(img, Dy, CV_16S, 0, 1); |
|
Canny(Dx, Dy, edges, cannyThreshold/2, cannyThreshold, true); |
|
Mat mask(img.rows + 2, img.cols + 2, CV_8U, Scalar::all(0)); |
|
double idp = 1./dp; |
|
int minR = cvFloor(minRadius*idp); |
|
int maxR = cvCeil(maxRadius*idp); |
|
int acols = cvRound(img.cols*idp); |
|
int arows = cvRound(img.rows*idp); |
|
Mat accum(arows + 1, acols + 1, CV_32S, Scalar::all(0)); |
|
int* adata = accum.ptr<int>(); |
|
int astep = (int)accum.step1(); |
|
minR = std::max(minR, 1); |
|
maxR = std::max(maxR, 1); |
|
|
|
const uchar* edgeData = edges.ptr<uchar>(); |
|
int estep = (int)edges.step1(); |
|
const short* dxData = Dx.ptr<short>(); |
|
const short* dyData = Dy.ptr<short>(); |
|
int dxystep = (int)Dx.step1(); |
|
uchar* mdata = mask.ptr<uchar>(); |
|
int mstep = (int)mask.step1(); |
|
|
|
circles.clear(); |
|
std::vector<Vec4f> nz; |
|
|
|
std::vector<Point> stack; |
|
const int n33[][2] = {{-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1}}; |
|
|
|
for( int x = 0; x < mask.cols; x++ ) mdata[x] = mdata[(mask.rows-1)*mstep + x] = (uchar)1; |
|
for( int y = 0; y < mask.rows; y++ ) mdata[y*mstep] = mdata[y*mstep + mask.cols-1] = (uchar)1; |
|
mdata += mstep + 1; |
|
|
|
for( int y = 0; y < edges.rows; y++ ) |
|
{ |
|
for( int x = 0; x < edges.cols; x++ ) |
|
{ |
|
if(!edgeData[y*estep + x] || mdata[y*mstep + x]) |
|
continue; |
|
|
|
mdata[y*mstep + x] = (uchar)1; |
|
stack.push_back(Point(x, y)); |
|
bool backtrace_mode = false; |
|
|
|
do |
|
{ |
|
Point p = stack.back(); |
|
stack.pop_back(); |
|
int vx = dxData[p.y*dxystep + p.x]; |
|
int vy = dyData[p.y*dxystep + p.x]; |
|
|
|
float mag = std::sqrt((float)vx*vx+(float)vy*vy); |
|
nz.push_back(Vec4f((float)p.x, (float)p.y, (float)vx, (float)vy)); |
|
CV_Assert(mdata[p.y*mstep + p.x] == 1); |
|
|
|
int sx = cvRound(vx * RAY_FP_SCALE / mag); |
|
int sy = cvRound(vy * RAY_FP_SCALE / mag); |
|
|
|
int x0 = cvRound((p.x * idp) * RAY_FP_SCALE); |
|
int y0 = cvRound((p.y * idp) * RAY_FP_SCALE); |
|
|
|
// Step from min_radius to max_radius in both directions of the gradient |
|
for(int k1 = 0; k1 < 2; k1++ ) |
|
{ |
|
int x1 = x0 + minR * sx; |
|
int y1 = y0 + minR * sy; |
|
|
|
for(int r = minR; r <= maxR; x1 += sx, y1 += sy, r++ ) |
|
{ |
|
int x2a = (x1 + RAY_DELTA1) >> RAY_SHIFT1, y2a = (y1 + RAY_DELTA1) >> RAY_SHIFT1; |
|
int x2 = x2a >> RAY_SHIFT2, y2 = y2a >> RAY_SHIFT2; |
|
if( (unsigned)x2 >= (unsigned)acols || |
|
(unsigned)y2 >= (unsigned)arows ) |
|
break; |
|
|
|
// instead of giving everything to the computed pixel of the accumulator, |
|
// do a weighted update of 4 neighbor (2x2) pixels using bilinear interpolation. |
|
// we do it to reduce the aliasing effect, even though it's slower |
|
int* ptr = adata + y2*astep + x2; |
|
int a = (x2a & ACCUM_ALPHA_MASK), b = (y2a & ACCUM_ALPHA_MASK); |
|
ptr[0] += (ACCUM_ALPHA_ONE - a)*(ACCUM_ALPHA_ONE - b); |
|
ptr[1] += a*(ACCUM_ALPHA_ONE - b); |
|
ptr[astep] += (ACCUM_ALPHA_ONE - a)*b; |
|
ptr[astep+1] += a*b; |
|
} |
|
|
|
sx = -sx; sy = -sy; |
|
} |
|
|
|
int neighbors = 0; |
|
for( int k = 0; k < 8; k++ ) |
|
{ |
|
int dy = n33[k][0], dx = n33[k][1]; |
|
int y_ = p.y + dy, x_ = p.x + dx; |
|
if( mdata[y_*mstep + x_] || !edgeData[y_*estep + x_]) |
|
continue; |
|
mdata[y_*mstep + x_] = (uchar)1; |
|
stack.push_back(Point(x_, y_)); |
|
neighbors++; |
|
} |
|
|
|
if( neighbors == 0 ) |
|
{ |
|
if( backtrace_mode ) |
|
nz.pop_back(); |
|
backtrace_mode = true; |
|
} |
|
else |
|
backtrace_mode = false; |
|
} while(!stack.empty()); |
|
// insert a special "stop marker" in the end of each |
|
// connected component to make sure we |
|
// finalize and analyze the arc segment |
|
nz.push_back(Vec4f(0.f, 0.f, 0.f, 0.f)); |
|
} |
|
} |
|
|
|
if( nz.empty() ) |
|
return; |
|
|
|
// use dilation with massive ((rdMinDisp/dp)*2+1) x ((rdMinDisp/dp)*2+1) kernel. |
|
// this trick helps us quickly find the local maxima of accumulator value |
|
// that are at least within the specified distance from each other. |
|
Mat accum_f, accum_max; |
|
accum.convertTo(accum_f, CV_32F); |
|
int niters = std::max(cvCeil(rdMinDist*idp), 1); |
|
dilate(accum_f, accum_max, Mat(), Point(-1, -1), niters, BORDER_CONSTANT, Scalar::all(0)); |
|
std::vector<Point2f> centers; |
|
|
|
// find the possible circle centers |
|
for( int y = 0; y < arows; y++ ) |
|
{ |
|
const float* adataf = accum_f.ptr<float>(y); |
|
const float* amaxdata = accum_max.ptr<float>(y); |
|
int left = -1; |
|
for( int x = 0; x < acols; x++ ) |
|
{ |
|
if(adataf[x] == amaxdata[x] && adataf[x] > adataf[x+astep]) |
|
{ |
|
if(left < 0) left=x; |
|
} |
|
else if(left >= 0) |
|
{ |
|
float cx = (float)((left + x - 1)*dp*0.5f); |
|
float cy = (float)(y*dp); |
|
centers.push_back(Point2f(cx, cy)); |
|
left = -1; |
|
} |
|
} |
|
} |
|
|
|
if(centers.empty()) |
|
return; |
|
|
|
float minR2 = (float)(minRadius*minRadius); |
|
float maxR2 = (float)(maxRadius*maxRadius); |
|
int nstripes = (int)((centers.size() + HOUGH_CIRCLES_ALT_BLOCK_SIZE-1)/HOUGH_CIRCLES_ALT_BLOCK_SIZE); |
|
const int nnz = (int)nz.size(); |
|
Mutex cmutex; |
|
|
|
// Check each possible pair (edge_pixel[i], circle_center[j]). |
|
// For each circle form the clusters to identify possible radius values. |
|
// Several clusters (up to 10) are maintained to help to filter out false alarms and |
|
// to support the concentric circle cases. |
|
|
|
// inside parallel for we process the next "HOUGH_CIRCLES_ALT_BLOCK_SIZE" circles |
|
parallel_for_(Range(0, nstripes), [&](const Range& r) |
|
{ |
|
CircleData cdata[HOUGH_CIRCLES_ALT_BLOCK_SIZE*HOUGH_CIRCLES_ALT_MAX_CLUSTERS]; |
|
CircleData arc[HOUGH_CIRCLES_ALT_BLOCK_SIZE]; |
|
int prev_idx[HOUGH_CIRCLES_ALT_BLOCK_SIZE]; |
|
|
|
std::vector<EstimatedCircle> local_circles; |
|
for(int j0 = r.start*HOUGH_CIRCLES_ALT_BLOCK_SIZE; j0 < r.end*HOUGH_CIRCLES_ALT_BLOCK_SIZE; j0 += HOUGH_CIRCLES_ALT_BLOCK_SIZE) |
|
{ |
|
const Vec4f* nzdata = &nz[0]; |
|
const Point2f* cc = ¢ers[j0]; |
|
int nc = std::min((int)(centers.size() - j0), (int)HOUGH_CIRCLES_ALT_BLOCK_SIZE); |
|
if(nc <= 0) break; |
|
|
|
// reset the statistics about the clusters |
|
for( int j = 0; j < nc; j++ ) |
|
{ |
|
for( int k = 0; k < HOUGH_CIRCLES_ALT_BLOCK_SIZE; k++ ) |
|
cdata[j*HOUGH_CIRCLES_ALT_MAX_CLUSTERS + k] = CircleData(); |
|
arc[j] = CircleData(); |
|
arc[j].weight = 1; // avoid division by zero |
|
prev_idx[j] = -2; // we compare the current index "i" with prev_idx[j]+1 |
|
// to check whether we are still at the current Canny |
|
// connected component. so we initially set it to -2 |
|
// to make sure that the initial check gives "false". |
|
} |
|
|
|
for( int i = 0; i < nnz; i++ ) |
|
{ |
|
Vec4f v = nzdata[i]; |
|
float x = v[0], y = v[1], vx = v[2], vy = v[3], mag2 = vx*vx + vy*vy; |
|
bool stop_marker = x == 0.f && y == 0.f && vx == 0.f && vy == 0.f; |
|
|
|
for( int j = 0; j < nc; j++ ) |
|
{ |
|
float cx = cc[j].x, cy = cc[j].y; |
|
float dx = x - cx, dy = y - cy; |
|
float rij2 = dx*dx + dy*dy; |
|
// check that i-th pixel is within the specified distance range from the center |
|
if( (rij2 > maxR2 || rij2 < minR2) && i < nnz-1 ) continue; |
|
float dv = dx*vx + dy*vy; |
|
// check that the line segment connecting the edge pixel and the center and |
|
// the gradient at the edge pixel are almost collinear |
|
if( (double)dv*dv < (double)minCos2*mag2*rij2 && i < nnz-1 ) continue; |
|
float rij = std::sqrt(rij2); |
|
|
|
CircleData& arc_j = arc[j]; |
|
double r_arc = arc_j.rw/arc_j.weight; |
|
int di0 = 0; |
|
int prev = prev_idx[j]; |
|
prev_idx[j] = i; |
|
|
|
// update the arc statistics if it still looks like an arc |
|
if( std::abs(rij - r_arc) < (r_arc + ARC_DELTA)*ARC_EPS && prev+1 == i && !stop_marker ) |
|
{ |
|
arc_j.rw += rij; |
|
arc_j.weight++; |
|
di0 = 1; |
|
r_arc = arc_j.rw/arc_j.weight; |
|
if( i < nnz -1 ) |
|
continue; |
|
} |
|
|
|
// otherwise (or in the very end) store the arc in the cluster collection, |
|
// if the arc is long enough. |
|
if( arc_j.weight >= MIN_COUNT && arc_j.weight >= r_arc*0.15 ) |
|
{ |
|
// before doing it, compute the angular range coverage (the mask). |
|
uint64 mval = 0; |
|
for( int di = 0; di < arc_j.weight; di++ ) |
|
{ |
|
int i1 = prev + di0 - di; |
|
Vec4f u = nz[i1]; |
|
float x1 = u[0], y1 = u[1]; |
|
float dx1 = x1 - cx, dy1 = y1 - cy; |
|
float af = fastAtan2(dy1, dx1)*(64.f/360.f); |
|
int a = (cvFloor(af) & 63); |
|
int b = (a + 1) & 63; |
|
af -= a; |
|
// this is another protection from aliasing effects |
|
if( af <= 0.25f ) |
|
mval |= (uint64)1 << a; |
|
else if( af > 0.75f ) |
|
mval |= (uint64)1 << b; |
|
else |
|
mval |= ((uint64)1 << a) | ((uint64)1 << b); |
|
} |
|
|
|
double min_eps = DBL_MAX; |
|
int min_mval = (int)(sizeof(mval)*8+1); |
|
int k = 0, best_k = -1, subst_k = -1; |
|
CircleData* cdata_j = &cdata[j*HOUGH_CIRCLES_ALT_MAX_CLUSTERS]; |
|
|
|
for( ; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++ ) |
|
{ |
|
CircleData& cjk = cdata_j[k]; |
|
if( cjk.weight == 0 ) |
|
break; // it means that there is no more valid clusters |
|
double rk = cjk.rw/cjk.weight; |
|
// Compute and use the weighted "cluster with arc" area instead of |
|
// just cluster area or just arc area or their sum. This is because the cluster can |
|
// be small and the arc can be big, or vice versa. Weighted area is more robust. |
|
double r2avg = (rk*rk*cjk.weight + r_arc*r_arc*arc_j.weight)/(cjk.weight + arc_j.weight); |
|
// It seems to be more robust to compare circle areas (without "pi" scale) |
|
// instead of radiuses. When we compare radiuses, when depending on the ALPHA, |
|
// different big circles are merged too easily, or different small circles stay different. |
|
if( std::abs(rk*rk - r_arc*r_arc) < (r2avg + CIRCLE_AREA_OFFSET)*ARC2CLUSTER_EPS ) |
|
{ |
|
double eps = std::abs(rk - r_arc)/rk; |
|
if( eps < min_eps ) |
|
{ |
|
min_eps = eps; |
|
best_k = k; |
|
} |
|
} |
|
else |
|
{ |
|
// Select the cluster with the worst angular coverage. |
|
// We use the angular coverage instead of the arc weight |
|
// in order to protect real small circles |
|
// from "fake" bigger circles with bigger "support". |
|
int pcnt = circle_popcnt(cjk.mask); |
|
if( pcnt < min_mval ) |
|
{ |
|
min_mval = pcnt; |
|
subst_k = k; |
|
} |
|
} |
|
} |
|
|
|
if( best_k >= 0 ) // if found the match, merge the arc into the cluster |
|
{ |
|
CircleData& cjk = cdata_j[best_k]; |
|
cjk.rw += arc_j.rw; |
|
cjk.weight += arc_j.weight; |
|
cjk.mask |= mval; |
|
} |
|
else |
|
{ |
|
if( k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS ) |
|
subst_k = k; // if we have empty space, just add the new cluster, do not throw anything |
|
CircleData& cjk0 = cdata_j[subst_k]; |
|
|
|
// here was the code that attempts to merge the thrown-away cluster with others, |
|
// but apparently it does not have any noticeable effect, |
|
// so we removed it for the sake of simplicity ... |
|
|
|
// add the new cluster |
|
cjk0.rw = arc_j.rw; |
|
cjk0.weight = arc_j.weight; |
|
cjk0.mask = mval; |
|
} |
|
} |
|
// reset the arc statistics. |
|
arc_j.rw = stop_marker ? 0. : rij; |
|
arc_j.weight = 1; |
|
// do not clean arc_j.mval, because we do not alter it. |
|
} |
|
} |
|
|
|
// now merge the final clusters for each particular circle center (cx, cy) |
|
for( int j = 0; j < nc; j++ ) |
|
{ |
|
CircleData* cdata_j = &cdata[j*HOUGH_CIRCLES_ALT_MAX_CLUSTERS]; |
|
float cx = cc[j].x, cy = cc[j].y; |
|
|
|
for( int k = 0; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++ ) |
|
{ |
|
CircleData& cjk = cdata_j[k]; |
|
if( cjk.weight == 0 ) |
|
continue; |
|
|
|
// Let in only more or less significant clusters. |
|
// Small clusters more likely correspond to a noise |
|
// (otherwise they would grew more substantial during the |
|
// cluster construction phase). |
|
// Processing those noisy clusters takes time and |
|
// potentially decreases accuracy of computed radiuses |
|
// of good clusters. |
|
double rjk = cjk.rw/cjk.weight; |
|
if( cjk.weight < rjk || circle_popcnt(cjk.mask) < 15 ) |
|
cjk.weight = 0; |
|
} |
|
|
|
// extensive O(nclusters^2) cluster merge algorithm, but since the number |
|
// of clusters is limited with a modest constant HOUGH_CIRCLES_ALT_MAX_CLUSTERS, |
|
// it's still O(1) algorithm :) |
|
for( int k = 0; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++ ) |
|
{ |
|
CircleData& cjk = cdata_j[k]; |
|
if( cjk.weight == 0 ) |
|
continue; |
|
double rk = cjk.rw/cjk.weight; |
|
|
|
int l = k+1; |
|
for( ; l < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; l++ ) |
|
{ |
|
CircleData& cjl = cdata_j[l]; |
|
if( l == k || cjl.weight == 0 ) |
|
continue; |
|
double rl = cjl.rw/cjl.weight; |
|
// Here we use a simple sum of areas (without "pi" scale) instead of weighted |
|
// sum just for simplicity and potentially for better accuracy. |
|
if( std::abs(rk*rk - rl*rl) < (rk*rk + rl*rl + CIRCLE_AREA_OFFSET)*CLUSTER_MERGE_EPS) |
|
{ |
|
cjk.rw += cjl.rw; |
|
cjk.weight += cjl.weight; |
|
cjk.mask |= cjl.mask; |
|
rk = cjk.rw/cjk.weight; |
|
cjl.weight = 0; |
|
l = -1; // try to merge other clusters again with the updated k-th cluster |
|
} |
|
} |
|
} |
|
|
|
for( int k = 0; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++ ) |
|
{ |
|
CircleData& cjk = cdata_j[k]; |
|
if( cjk.weight == 0 ) |
|
continue; |
|
double rk = cjk.rw/cjk.weight; |
|
uint64 mask_jk = cjk.mask, mask_jk0 = (mask_jk + 1) ^ mask_jk; |
|
int count = 0, count0 = -1, runlen = 0, max_runlen = 0; |
|
int prev_bit = 0; |
|
for( int b = 0; b < 64; b++, mask_jk >>= 1, mask_jk0 >>= 1 ) |
|
{ |
|
int bit_k = (mask_jk & 1) != 0; |
|
count += bit_k; |
|
count0 += (mask_jk0 & 1) != 0; |
|
if(bit_k == prev_bit) { runlen++; continue; } |
|
if(prev_bit == 1) |
|
max_runlen = std::max(max_runlen, runlen); |
|
runlen = 1; |
|
prev_bit = bit_k; |
|
} |
|
if( prev_bit == 1) |
|
max_runlen = std::max(max_runlen, runlen + (count < 64 ? count0 : 0)); |
|
|
|
// Those constants are the results of fine-tuning. |
|
// Basically, by lowering thresholds more real circles, as well as fake circles, are accepted. |
|
// By raising the thresholds you get less real circles and less false alarms. |
|
// A better and more safe way to obtain better detection results is to regulate |
|
// [minRadius, maxRadius] range and to play with minCos2 parameter. |
|
// May be some classifier can be trained that takes the weight, |
|
// circle radius and the bit mask as inputs and produces the verdict. |
|
bool accepted = (cjk.weight >= rk*3 && count >= 35 && max_runlen >= 20) || count >= 55; |
|
//if(debug) |
|
//printf("[%c]. cx=%.1f, cy=%.1f, r=%.1f, weight=%d, count=%d, max_runlen=%d, mask=%016llx\n", |
|
// (accepted ? '+' : '-'), cx, cy, rk, cjk.weight, count, max_runlen, cjk.mask); |
|
|
|
if( accepted ) |
|
local_circles.push_back(EstimatedCircle(Vec3f(cx, cy, (float)rk), cjk.weight)); |
|
} |
|
} |
|
} |
|
if(!local_circles.empty()) |
|
{ |
|
cmutex.lock(); |
|
std::copy(local_circles.begin(), local_circles.end(), std::back_inserter(circles)); |
|
cmutex.unlock(); |
|
} |
|
}); |
|
|
|
// The final circle merge procedure. |
|
// This is O(ncircles^2) algorithm |
|
// and it can take a long time in some specific scenarious. |
|
// But most of the time it's very fast. |
|
size_t i0 = 0, nc = circles.size(); |
|
for( size_t i = 0; i < nc; i++ ) |
|
{ |
|
if( circles[i].accum == 0 ) continue; |
|
EstimatedCircle& ci = circles[i0] = circles[i]; |
|
for( size_t j = i+1; j < nc; j++ ) |
|
{ |
|
EstimatedCircle cj = circles[j]; |
|
if( cj.accum == 0 ) continue; |
|
float dx = ci.c[0] - cj.c[0], dy = ci.c[1] - cj.c[1]; |
|
float r2 = dx*dx + dy*dy; |
|
float rs = ci.c[2] + cj.c[2]; |
|
if( r2 > rs*rs*FINAL_MERGE_DIST_EPS) |
|
continue; |
|
if( std::abs(ci.c[2]*ci.c[2] - cj.c[2]*cj.c[2]) < |
|
(ci.c[2]*ci.c[2] + cj.c[2]*cj.c[2] + CIRCLE_AREA_OFFSET)*FINAL_MERGE_AREA_EPS ) |
|
{ |
|
int wi = ci.accum, wj = cj.accum; |
|
if( wi < wj ) std::swap(ci, cj); |
|
circles[j].accum = 0; |
|
} |
|
} |
|
i0++; |
|
} |
|
circles.resize(i0); |
|
} |
|
|
|
static void HoughCircles( InputArray _image, OutputArray _circles, |
|
int method, double dp, double minDist, |
|
double param1, double param2, |
|
int minRadius, int maxRadius, |
|
int maxCircles, double param3 ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
int type = CV_32FC3; |
|
if( _circles.fixedType() ) |
|
{ |
|
type = _circles.type(); |
|
CV_CheckType(type, type == CV_32FC3 || type == CV_32FC4, "Wrong type of output circles"); |
|
} |
|
|
|
CV_Assert(!_image.empty() && _image.type() == CV_8UC1 && (_image.isMat() || _image.isUMat())); |
|
|
|
if( dp <= 0 || minDist <= 0 || param1 <= 0) |
|
CV_Error( Error::StsOutOfRange, "dp, min_dist and canny_threshold must be all positive numbers" ); |
|
|
|
switch( method ) |
|
{ |
|
case HOUGH_GRADIENT: |
|
{ |
|
int cannyThresh = cvRound(param1), accThresh = cvRound(param2), kernelSize = cvRound(param3); |
|
minRadius = std::max(0, minRadius); |
|
|
|
if( param2 <= 0 ) |
|
CV_Error( Error::StsOutOfRange, "acc_threshold must be a positive number" ); |
|
|
|
if(maxCircles < 0) |
|
maxCircles = INT_MAX; |
|
|
|
bool centersOnly = (maxRadius < 0); |
|
|
|
if( maxRadius <= 0 ) |
|
maxRadius = std::max( _image.rows(), _image.cols() ); |
|
else if( maxRadius <= minRadius ) |
|
maxRadius = minRadius + 2; |
|
|
|
if (type == CV_32FC3) |
|
HoughCirclesGradient<Vec3f>(_image, _circles, (float)dp, (float)minDist, |
|
minRadius, maxRadius, cannyThresh, |
|
accThresh, maxCircles, kernelSize, centersOnly); |
|
else if (type == CV_32FC4) |
|
HoughCirclesGradient<Vec4f>(_image, _circles, (float)dp, (float)minDist, |
|
minRadius, maxRadius, cannyThresh, |
|
accThresh, maxCircles, kernelSize, centersOnly); |
|
else |
|
CV_Error(Error::StsError, "Internal error"); |
|
} |
|
break; |
|
case HOUGH_GRADIENT_ALT: |
|
{ |
|
if( param2 >= 1 ) |
|
CV_Error( Error::StsOutOfRange, "when using HOUGH_GRADIENT_ALT method, param2 parameter must be smaller than 1.0" ); |
|
|
|
std::vector<EstimatedCircle> circles; |
|
Mat image = _image.getMat(); |
|
HoughCirclesAlt(image, circles, dp, minDist, minRadius, maxRadius, param1, param2); |
|
std::sort(circles.begin(), circles.end(), cmpAccum); |
|
size_t i, ncircles = circles.size(); |
|
|
|
if( type == CV_32FC4 ) |
|
{ |
|
std::vector<Vec4f> cw(ncircles); |
|
for( i = 0; i < ncircles; i++ ) |
|
cw[i] = GetCircle4f(circles[i]); |
|
if (ncircles > 0) |
|
Mat(1, (int)ncircles, cv::traits::Type<Vec4f>::value, &cw[0]).copyTo(_circles); |
|
} |
|
else if( type == CV_32FC3 ) |
|
{ |
|
std::vector<Vec3f> cwow(ncircles); |
|
for( i = 0; i < ncircles; i++ ) |
|
cwow[i] = GetCircle(circles[i]); |
|
if (ncircles > 0) |
|
Mat(1, (int)ncircles, cv::traits::Type<Vec3f>::value, &cwow[0]).copyTo(_circles); |
|
} |
|
else |
|
CV_Error(Error::StsError, "Internal error"); |
|
} |
|
break; |
|
default: |
|
CV_Error( Error::StsBadArg, "Unrecognized method id. Actually supported methods are HOUGH_GRADIENT and HOUGH_GRADIENT_ALT" ); |
|
} |
|
} |
|
|
|
void HoughCircles( InputArray _image, OutputArray _circles, |
|
int method, double dp, double minDist, |
|
double param1, double param2, |
|
int minRadius, int maxRadius ) |
|
{ |
|
HoughCircles(_image, _circles, method, dp, minDist, param1, param2, minRadius, maxRadius, -1, 3); |
|
} |
|
} // \namespace cv |
|
|
|
|
|
/* Wrapper function for standard hough transform */ |
|
CV_IMPL CvSeq* |
|
cvHoughLines2( CvArr* src_image, void* lineStorage, int method, |
|
double rho, double theta, int threshold, |
|
double param1, double param2, |
|
double min_theta, double max_theta ) |
|
{ |
|
cv::Mat image = cv::cvarrToMat(src_image); |
|
std::vector<cv::Vec2f> l2; |
|
std::vector<cv::Vec4i> l4; |
|
|
|
CvMat* mat = 0; |
|
CvSeq* lines = 0; |
|
CvSeq lines_header; |
|
CvSeqBlock lines_block; |
|
int lineType, elemSize; |
|
int linesMax = INT_MAX; |
|
int iparam1, iparam2; |
|
|
|
if( !lineStorage ) |
|
CV_Error(cv::Error::StsNullPtr, "NULL destination" ); |
|
|
|
if( rho <= 0 || theta <= 0 || threshold <= 0 ) |
|
CV_Error( cv::Error::StsOutOfRange, "rho, theta and threshold must be positive" ); |
|
|
|
if( method != CV_HOUGH_PROBABILISTIC ) |
|
{ |
|
lineType = CV_32FC2; |
|
elemSize = sizeof(float)*2; |
|
} |
|
else |
|
{ |
|
lineType = CV_32SC4; |
|
elemSize = sizeof(int)*4; |
|
} |
|
|
|
bool isStorage = isStorageOrMat(lineStorage); |
|
|
|
if( isStorage ) |
|
{ |
|
lines = cvCreateSeq( lineType, sizeof(CvSeq), elemSize, (CvMemStorage*)lineStorage ); |
|
} |
|
else |
|
{ |
|
mat = (CvMat*)lineStorage; |
|
|
|
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) ) |
|
CV_Error( CV_StsBadArg, |
|
"The destination matrix should be continuous and have a single row or a single column" ); |
|
|
|
if( CV_MAT_TYPE( mat->type ) != lineType ) |
|
CV_Error( CV_StsBadArg, |
|
"The destination matrix data type is inappropriate, see the manual" ); |
|
|
|
lines = cvMakeSeqHeaderForArray( lineType, sizeof(CvSeq), elemSize, mat->data.ptr, |
|
mat->rows + mat->cols - 1, &lines_header, &lines_block ); |
|
linesMax = lines->total; |
|
cvClearSeq( lines ); |
|
} |
|
|
|
iparam1 = cvRound(param1); |
|
iparam2 = cvRound(param2); |
|
|
|
switch( method ) |
|
{ |
|
case CV_HOUGH_STANDARD: |
|
HoughLinesStandard( image, l2, CV_32FC2, (float)rho, |
|
(float)theta, threshold, linesMax, min_theta, max_theta ); |
|
break; |
|
case CV_HOUGH_MULTI_SCALE: |
|
HoughLinesSDiv( image, l2, CV_32FC2, (float)rho, (float)theta, |
|
threshold, iparam1, iparam2, linesMax, min_theta, max_theta ); |
|
break; |
|
case CV_HOUGH_PROBABILISTIC: |
|
HoughLinesProbabilistic( image, (float)rho, (float)theta, |
|
threshold, iparam1, iparam2, l4, linesMax ); |
|
break; |
|
default: |
|
CV_Error( CV_StsBadArg, "Unrecognized method id" ); |
|
} |
|
|
|
int nlines = (int)(l2.size() + l4.size()); |
|
|
|
if( !isStorage ) |
|
{ |
|
if( mat->cols > mat->rows ) |
|
mat->cols = nlines; |
|
else |
|
mat->rows = nlines; |
|
} |
|
|
|
if( nlines ) |
|
{ |
|
cv::Mat lx = method == CV_HOUGH_STANDARD || method == CV_HOUGH_MULTI_SCALE ? |
|
cv::Mat(nlines, 1, CV_32FC2, &l2[0]) : cv::Mat(nlines, 1, CV_32SC4, &l4[0]); |
|
|
|
if (isStorage) |
|
{ |
|
cvSeqPushMulti(lines, lx.ptr(), nlines); |
|
} |
|
else |
|
{ |
|
cv::Mat dst(nlines, 1, lx.type(), mat->data.ptr); |
|
lx.copyTo(dst); |
|
} |
|
} |
|
|
|
if( isStorage ) |
|
return lines; |
|
return 0; |
|
} |
|
|
|
|
|
CV_IMPL CvSeq* |
|
cvHoughCircles( CvArr* src_image, void* circle_storage, |
|
int method, double dp, double min_dist, |
|
double param1, double param2, |
|
int min_radius, int max_radius ) |
|
{ |
|
CvSeq* circles = NULL; |
|
int circles_max = INT_MAX; |
|
cv::Mat src = cv::cvarrToMat(src_image), circles_mat; |
|
|
|
if( !circle_storage ) |
|
CV_Error( CV_StsNullPtr, "NULL destination" ); |
|
|
|
bool isStorage = isStorageOrMat(circle_storage); |
|
|
|
if(isStorage) |
|
{ |
|
circles = cvCreateSeq( CV_32FC3, sizeof(CvSeq), |
|
sizeof(float)*3, (CvMemStorage*)circle_storage ); |
|
} |
|
else |
|
{ |
|
CvSeq circles_header; |
|
CvSeqBlock circles_block; |
|
CvMat *mat = (CvMat*)circle_storage; |
|
|
|
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) || |
|
CV_MAT_TYPE(mat->type) != CV_32FC3 ) |
|
CV_Error( CV_StsBadArg, |
|
"The destination matrix should be continuous and have a single row or a single column" ); |
|
|
|
circles = cvMakeSeqHeaderForArray( CV_32FC3, sizeof(CvSeq), sizeof(float)*3, |
|
mat->data.ptr, mat->rows + mat->cols - 1, &circles_header, &circles_block ); |
|
circles_max = circles->total; |
|
cvClearSeq( circles ); |
|
} |
|
|
|
cv::HoughCircles(src, circles_mat, method, dp, min_dist, param1, param2, min_radius, max_radius, circles_max, 3); |
|
cvSeqPushMulti(circles, circles_mat.data, (int)circles_mat.total()); |
|
return circles; |
|
} |
|
|
|
/* End of file. */
|
|
|