Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2507 lines
88 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include <algorithm>
#include <iterator>
namespace cv
{
// Classical Hough Transform
struct LinePolar
{
float rho;
float angle;
};
struct hough_cmp_gt
{
hough_cmp_gt(const int* _aux) : aux(_aux) {}
inline bool operator()(int l1, int l2) const
{
return aux[l1] > aux[l2] || (aux[l1] == aux[l2] && l1 < l2);
}
const int* aux;
};
static inline int
computeNumangle( double min_theta, double max_theta, double theta_step )
{
int numangle = cvFloor((max_theta - min_theta) / theta_step) + 1;
// If the distance between the first angle and the last angle is
// approximately equal to pi, then the last angle will be removed
// in order to prevent a line to be detected twice.
if ( numangle > 1 && fabs(CV_PI - (numangle-1)*theta_step) < theta_step/2 )
--numangle;
return numangle;
}
static void
createTrigTable( int numangle, double min_theta, double theta_step,
float irho, float *tabSin, float *tabCos )
{
float ang = static_cast<float>(min_theta);
for(int n = 0; n < numangle; ang += (float)theta_step, n++ )
{
tabSin[n] = (float)(sin((double)ang) * irho);
tabCos[n] = (float)(cos((double)ang) * irho);
}
}
static void
findLocalMaximums( int numrho, int numangle, int threshold,
const int *accum, std::vector<int>& sort_buf )
{
for(int r = 0; r < numrho; r++ )
for(int n = 0; n < numangle; n++ )
{
int base = (n+1) * (numrho+2) + r+1;
if( accum[base] > threshold &&
accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] &&
accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] )
sort_buf.push_back(base);
}
}
/*
Here image is an input raster;
step is it's step; size characterizes it's ROI;
rho and theta are discretization steps (in pixels and radians correspondingly).
threshold is the minimum number of pixels in the feature for it
to be a candidate for line. lines is the output
array of (rho, theta) pairs. linesMax is the buffer size (number of pairs).
Functions return the actual number of found lines.
*/
static void
HoughLinesStandard( InputArray src, OutputArray lines, int type,
float rho, float theta,
int threshold, int linesMax,
double min_theta, double max_theta )
{
CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Internal error");
Mat img = src.getMat();
int i, j;
float irho = 1 / rho;
CV_Assert( img.type() == CV_8UC1 );
CV_Assert( linesMax > 0 );
const uchar* image = img.ptr();
int step = (int)img.step;
int width = img.cols;
int height = img.rows;
int max_rho = width + height;
int min_rho = -max_rho;
CV_CheckGE(max_theta, min_theta, "max_theta must be greater than min_theta");
int numangle = computeNumangle(min_theta, max_theta, theta);
int numrho = cvRound(((max_rho - min_rho) + 1) / rho);
#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH
if (type == CV_32FC2 && CV_IPP_CHECK_COND)
{
IppiSize srcSize = { width, height };
IppPointPolar delta = { rho, theta };
IppPointPolar dstRoi[2] = {{(Ipp32f) min_rho, (Ipp32f) min_theta},{(Ipp32f) max_rho, (Ipp32f) max_theta}};
int bufferSize;
int nz = countNonZero(img);
int ipp_linesMax = std::min(linesMax, nz*numangle/threshold);
int linesCount = 0;
std::vector<Vec2f> _lines(ipp_linesMax);
IppStatus ok = ippiHoughLineGetSize_8u_C1R(srcSize, delta, ipp_linesMax, &bufferSize);
Ipp8u* buffer = ippsMalloc_8u_L(bufferSize);
if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughLine_Region_8u32f_C1R, image, step, srcSize, (IppPointPolar*) &_lines[0], dstRoi, ipp_linesMax, &linesCount, delta, threshold, buffer);};
ippsFree(buffer);
if (ok >= 0)
{
lines.create(linesCount, 1, CV_32FC2);
Mat(linesCount, 1, CV_32FC2, &_lines[0]).copyTo(lines);
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
setIppErrorStatus();
}
#endif
Mat _accum = Mat::zeros( (numangle+2), (numrho+2), CV_32SC1 );
std::vector<int> _sort_buf;
AutoBuffer<float> _tabSin(numangle);
AutoBuffer<float> _tabCos(numangle);
int *accum = _accum.ptr<int>();
float *tabSin = _tabSin.data(), *tabCos = _tabCos.data();
// create sin and cos table
createTrigTable( numangle, min_theta, theta,
irho, tabSin, tabCos);
// stage 1. fill accumulator
for( i = 0; i < height; i++ )
for( j = 0; j < width; j++ )
{
if( image[i * step + j] != 0 )
for(int n = 0; n < numangle; n++ )
{
int r = cvRound( j * tabCos[n] + i * tabSin[n] );
r += (numrho - 1) / 2;
accum[(n+1) * (numrho+2) + r+1]++;
}
}
// stage 2. find local maximums
findLocalMaximums( numrho, numangle, threshold, accum, _sort_buf );
// stage 3. sort the detected lines by accumulator value
std::sort(_sort_buf.begin(), _sort_buf.end(), hough_cmp_gt(accum));
// stage 4. store the first min(total,linesMax) lines to the output buffer
linesMax = std::min(linesMax, (int)_sort_buf.size());
double scale = 1./(numrho+2);
lines.create(linesMax, 1, type);
Mat _lines = lines.getMat();
for( i = 0; i < linesMax; i++ )
{
LinePolar line;
int idx = _sort_buf[i];
int n = cvFloor(idx*scale) - 1;
int r = idx - (n+1)*(numrho+2) - 1;
line.rho = (r - (numrho - 1)*0.5f) * rho;
line.angle = static_cast<float>(min_theta) + n * theta;
if (type == CV_32FC2)
{
_lines.at<Vec2f>(i) = Vec2f(line.rho, line.angle);
}
else
{
CV_DbgAssert(type == CV_32FC3);
_lines.at<Vec3f>(i) = Vec3f(line.rho, line.angle, (float)accum[idx]);
}
}
}
// Multi-Scale variant of Classical Hough Transform
struct hough_index
{
hough_index() : value(0), rho(0.f), theta(0.f) {}
hough_index(int _val, float _rho, float _theta)
: value(_val), rho(_rho), theta(_theta) {}
int value;
float rho, theta;
};
static void
HoughLinesSDiv( InputArray image, OutputArray lines, int type,
float rho, float theta, int threshold,
int srn, int stn, int linesMax,
double min_theta, double max_theta )
{
CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Internal error");
#define _POINT(row, column)\
(image_src[(row)*step+(column)])
Mat img = image.getMat();
int index, i;
int ri, ti, ti1, ti0;
int row, col;
float r, t; /* Current rho and theta */
float rv; /* Some temporary rho value */
int fn = 0;
float xc, yc;
const float d2r = (float)(CV_PI / 180);
int sfn = srn * stn;
int fi;
int count;
int cmax = 0;
std::vector<hough_index> lst;
CV_Assert( img.type() == CV_8UC1 );
CV_Assert( linesMax > 0 );
threshold = MIN( threshold, 255 );
const uchar* image_src = img.ptr();
int step = (int)img.step;
int w = img.cols;
int h = img.rows;
float irho = 1 / rho;
float itheta = 1 / theta;
float srho = rho / srn;
float stheta = theta / stn;
float isrho = 1 / srho;
float istheta = 1 / stheta;
int rn = cvFloor( std::sqrt( (double)w * w + (double)h * h ) * irho );
int tn = cvFloor( 2 * CV_PI * itheta );
lst.push_back(hough_index(threshold, -1.f, 0.f));
// Precalculate sin table
std::vector<float> _sinTable( 5 * tn * stn );
float* sinTable = &_sinTable[0];
for( index = 0; index < 5 * tn * stn; index++ )
sinTable[index] = (float)cos( stheta * index * 0.2f );
std::vector<uchar> _caccum(rn * tn, (uchar)0);
uchar* caccum = &_caccum[0];
// Counting all feature pixels
for( row = 0; row < h; row++ )
for( col = 0; col < w; col++ )
fn += _POINT( row, col ) != 0;
std::vector<int> _x(fn), _y(fn);
int* x = &_x[0], *y = &_y[0];
// Full Hough Transform (it's accumulator update part)
fi = 0;
for( row = 0; row < h; row++ )
{
for( col = 0; col < w; col++ )
{
if( _POINT( row, col ))
{
int halftn;
float r0;
float scale_factor;
int iprev = -1;
float phi, phi1;
float theta_it; // Value of theta for iterating
// Remember the feature point
x[fi] = col;
y[fi] = row;
fi++;
yc = (float) row + 0.5f;
xc = (float) col + 0.5f;
/* Update the accumulator */
t = (float) fabs( cvFastArctan( yc, xc ) * d2r );
r = (float) std::sqrt( (double)xc * xc + (double)yc * yc );
r0 = r * irho;
ti0 = cvFloor( (t + CV_PI*0.5) * itheta );
caccum[ti0]++;
theta_it = rho / r;
theta_it = theta_it < theta ? theta_it : theta;
scale_factor = theta_it * itheta;
halftn = cvFloor( CV_PI / theta_it );
for( ti1 = 1, phi = theta_it - (float)(CV_PI*0.5), phi1 = (theta_it + t) * itheta;
ti1 < halftn; ti1++, phi += theta_it, phi1 += scale_factor )
{
rv = r0 * std::cos( phi );
i = (int)rv * tn;
i += cvFloor( phi1 );
CV_Assert( i >= 0 );
CV_Assert( i < rn * tn );
caccum[i] = (uchar) (caccum[i] + ((i ^ iprev) != 0));
iprev = i;
if( cmax < caccum[i] )
cmax = caccum[i];
}
}
}
}
// Starting additional analysis
count = 0;
for( ri = 0; ri < rn; ri++ )
{
for( ti = 0; ti < tn; ti++ )
{
if( caccum[ri * tn + ti] > threshold )
count++;
}
}
if( count * 100 > rn * tn )
{
HoughLinesStandard( image, lines, type, rho, theta, threshold, linesMax, min_theta, max_theta );
return;
}
std::vector<uchar> _buffer(srn * stn + 2);
uchar* buffer = &_buffer[0];
uchar* mcaccum = buffer + 1;
count = 0;
for( ri = 0; ri < rn; ri++ )
{
for( ti = 0; ti < tn; ti++ )
{
if( caccum[ri * tn + ti] > threshold )
{
count++;
memset( mcaccum, 0, sfn * sizeof( uchar ));
for( index = 0; index < fn; index++ )
{
int ti2;
float r0;
yc = (float) y[index] + 0.5f;
xc = (float) x[index] + 0.5f;
// Update the accumulator
t = (float) fabs( cvFastArctan( yc, xc ) * d2r );
r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ) * isrho;
ti0 = cvFloor( (t + CV_PI * 0.5) * istheta );
ti2 = (ti * stn - ti0) * 5;
r0 = (float) ri *srn;
for( ti1 = 0; ti1 < stn; ti1++, ti2 += 5 )
{
rv = r * sinTable[(int) (std::abs( ti2 ))] - r0;
i = cvFloor( rv ) * stn + ti1;
i = CV_IMAX( i, -1 );
i = CV_IMIN( i, sfn );
mcaccum[i]++;
CV_Assert( i >= -1 );
CV_Assert( i <= sfn );
}
}
// Find peaks in maccum...
for( index = 0; index < sfn; index++ )
{
int pos = (int)(lst.size() - 1);
if( pos < 0 || lst[pos].value < mcaccum[index] )
{
hough_index vi(mcaccum[index],
index / stn * srho + ri * rho,
index % stn * stheta + ti * theta - (float)(CV_PI*0.5));
lst.push_back(vi);
for( ; pos >= 0; pos-- )
{
if( lst[pos].value > vi.value )
break;
lst[pos+1] = lst[pos];
}
lst[pos+1] = vi;
if( (int)lst.size() > linesMax )
lst.pop_back();
}
}
}
}
}
int pos = (int)(lst.size() - 1);
if( pos >= 0 && lst[pos].rho < 0 )
lst.pop_back();
lines.create((int)lst.size(), 1, type);
Mat _lines = lines.getMat();
for( size_t idx = 0; idx < lst.size(); idx++ )
{
if (type == CV_32FC2)
{
_lines.at<Vec2f>((int)idx) = Vec2f(lst[idx].rho, lst[idx].theta);
}
else
{
CV_DbgAssert(type == CV_32FC3);
_lines.at<Vec3f>((int)idx) = Vec3f(lst[idx].rho, lst[idx].theta, (float)lst[idx].value);
}
}
}
/****************************************************************************************\
* Probabilistic Hough Transform *
\****************************************************************************************/
static void
HoughLinesProbabilistic( Mat& image,
float rho, float theta, int threshold,
int lineLength, int lineGap,
std::vector<Vec4i>& lines, int linesMax )
{
Point pt;
float irho = 1 / rho;
RNG rng((uint64)-1);
CV_Assert( image.type() == CV_8UC1 );
int width = image.cols;
int height = image.rows;
int numangle = computeNumangle(0.0, CV_PI, theta);
int numrho = cvRound(((width + height) * 2 + 1) / rho);
#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH
CV_IPP_CHECK()
{
IppiSize srcSize = { width, height };
IppPointPolar delta = { rho, theta };
IppiHoughProbSpec* pSpec;
int bufferSize, specSize;
int ipp_linesMax = std::min(linesMax, numangle*numrho);
int linesCount = 0;
lines.resize(ipp_linesMax);
IppStatus ok = ippiHoughProbLineGetSize_8u_C1R(srcSize, delta, &specSize, &bufferSize);
Ipp8u* buffer = ippsMalloc_8u_L(bufferSize);
pSpec = (IppiHoughProbSpec*) ippsMalloc_8u_L(specSize);
if (ok >= 0) ok = ippiHoughProbLineInit_8u32f_C1R(srcSize, delta, ippAlgHintNone, pSpec);
if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughProbLine_8u32f_C1R, image.data, (int)image.step, srcSize, threshold, lineLength, lineGap, (IppiPoint*) &lines[0], ipp_linesMax, &linesCount, buffer, pSpec);};
ippsFree(pSpec);
ippsFree(buffer);
if (ok >= 0)
{
lines.resize(linesCount);
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
lines.clear();
setIppErrorStatus();
}
#endif
Mat accum = Mat::zeros( numangle, numrho, CV_32SC1 );
Mat mask( height, width, CV_8UC1 );
std::vector<float> trigtab(numangle*2);
for( int n = 0; n < numangle; n++ )
{
trigtab[n*2] = (float)(cos((double)n*theta) * irho);
trigtab[n*2+1] = (float)(sin((double)n*theta) * irho);
}
const float* ttab = &trigtab[0];
uchar* mdata0 = mask.ptr();
std::vector<Point> nzloc;
// stage 1. collect non-zero image points
for( pt.y = 0; pt.y < height; pt.y++ )
{
const uchar* data = image.ptr(pt.y);
uchar* mdata = mask.ptr(pt.y);
for( pt.x = 0; pt.x < width; pt.x++ )
{
if( data[pt.x] )
{
mdata[pt.x] = (uchar)1;
nzloc.push_back(pt);
}
else
mdata[pt.x] = 0;
}
}
int count = (int)nzloc.size();
// stage 2. process all the points in random order
for( ; count > 0; count-- )
{
// choose random point out of the remaining ones
int idx = rng.uniform(0, count);
int max_val = threshold-1, max_n = 0;
Point point = nzloc[idx];
Point line_end[2];
float a, b;
int* adata = accum.ptr<int>();
int i = point.y, j = point.x, k, x0, y0, dx0, dy0, xflag;
int good_line;
const int shift = 16;
// "remove" it by overriding it with the last element
nzloc[idx] = nzloc[count-1];
// check if it has been excluded already (i.e. belongs to some other line)
if( !mdata0[i*width + j] )
continue;
// update accumulator, find the most probable line
for( int n = 0; n < numangle; n++, adata += numrho )
{
int r = cvRound( j * ttab[n*2] + i * ttab[n*2+1] );
r += (numrho - 1) / 2;
int val = ++adata[r];
if( max_val < val )
{
max_val = val;
max_n = n;
}
}
// if it is too "weak" candidate, continue with another point
if( max_val < threshold )
continue;
// from the current point walk in each direction
// along the found line and extract the line segment
a = -ttab[max_n*2+1];
b = ttab[max_n*2];
x0 = j;
y0 = i;
if( fabs(a) > fabs(b) )
{
xflag = 1;
dx0 = a > 0 ? 1 : -1;
dy0 = cvRound( b*(1 << shift)/fabs(a) );
y0 = (y0 << shift) + (1 << (shift-1));
}
else
{
xflag = 0;
dy0 = b > 0 ? 1 : -1;
dx0 = cvRound( a*(1 << shift)/fabs(b) );
x0 = (x0 << shift) + (1 << (shift-1));
}
for( k = 0; k < 2; k++ )
{
int gap = 0, x = x0, y = y0, dx = dx0, dy = dy0;
if( k > 0 )
dx = -dx, dy = -dy;
// walk along the line using fixed-point arithmetic,
// stop at the image border or in case of too big gap
for( ;; x += dx, y += dy )
{
uchar* mdata;
int i1, j1;
if( xflag )
{
j1 = x;
i1 = y >> shift;
}
else
{
j1 = x >> shift;
i1 = y;
}
if( j1 < 0 || j1 >= width || i1 < 0 || i1 >= height )
break;
mdata = mdata0 + i1*width + j1;
// for each non-zero point:
// update line end,
// clear the mask element
// reset the gap
if( *mdata )
{
gap = 0;
line_end[k].y = i1;
line_end[k].x = j1;
}
else if( ++gap > lineGap )
break;
}
}
good_line = std::abs(line_end[1].x - line_end[0].x) >= lineLength ||
std::abs(line_end[1].y - line_end[0].y) >= lineLength;
for( k = 0; k < 2; k++ )
{
int x = x0, y = y0, dx = dx0, dy = dy0;
if( k > 0 )
dx = -dx, dy = -dy;
// walk along the line using fixed-point arithmetic,
// stop at the image border or in case of too big gap
for( ;; x += dx, y += dy )
{
uchar* mdata;
int i1, j1;
if( xflag )
{
j1 = x;
i1 = y >> shift;
}
else
{
j1 = x >> shift;
i1 = y;
}
mdata = mdata0 + i1*width + j1;
// for each non-zero point:
// update line end,
// clear the mask element
// reset the gap
if( *mdata )
{
if( good_line )
{
adata = accum.ptr<int>();
for( int n = 0; n < numangle; n++, adata += numrho )
{
int r = cvRound( j1 * ttab[n*2] + i1 * ttab[n*2+1] );
r += (numrho - 1) / 2;
adata[r]--;
}
}
*mdata = 0;
}
if( i1 == line_end[k].y && j1 == line_end[k].x )
break;
}
}
if( good_line )
{
Vec4i lr(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y);
lines.push_back(lr);
if( (int)lines.size() >= linesMax )
return;
}
}
}
#ifdef HAVE_OPENCL
#define OCL_MAX_LINES 4096
static bool ocl_makePointsList(InputArray _src, OutputArray _pointsList, InputOutputArray _counters)
{
UMat src = _src.getUMat();
_pointsList.create(1, (int) src.total(), CV_32SC1);
UMat pointsList = _pointsList.getUMat();
UMat counters = _counters.getUMat();
ocl::Device dev = ocl::Device::getDefault();
const int pixPerWI = 16;
int workgroup_size = min((int) dev.maxWorkGroupSize(), (src.cols + pixPerWI - 1)/pixPerWI);
ocl::Kernel pointListKernel("make_point_list", ocl::imgproc::hough_lines_oclsrc,
format("-D MAKE_POINTS_LIST -D GROUP_SIZE=%d -D LOCAL_SIZE=%d", workgroup_size, src.cols));
if (pointListKernel.empty())
return false;
pointListKernel.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(pointsList),
ocl::KernelArg::PtrWriteOnly(counters));
size_t localThreads[2] = { (size_t)workgroup_size, 1 };
size_t globalThreads[2] = { (size_t)workgroup_size, (size_t)src.rows };
return pointListKernel.run(2, globalThreads, localThreads, false);
}
static bool ocl_fillAccum(InputArray _pointsList, OutputArray _accum, int total_points, double rho, double theta, int numrho, int numangle)
{
UMat pointsList = _pointsList.getUMat();
_accum.create(numangle + 2, numrho + 2, CV_32SC1);
UMat accum = _accum.getUMat();
ocl::Device dev = ocl::Device::getDefault();
float irho = (float) (1 / rho);
int workgroup_size = min((int) dev.maxWorkGroupSize(), total_points);
ocl::Kernel fillAccumKernel;
size_t localThreads[2];
size_t globalThreads[2];
size_t local_memory_needed = (numrho + 2)*sizeof(int);
if (local_memory_needed > dev.localMemSize())
{
accum.setTo(Scalar::all(0));
fillAccumKernel.create("fill_accum_global", ocl::imgproc::hough_lines_oclsrc,
format("-D FILL_ACCUM_GLOBAL"));
if (fillAccumKernel.empty())
return false;
globalThreads[0] = workgroup_size; globalThreads[1] = numangle;
fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnlyNoSize(accum),
total_points, irho, (float) theta, numrho, numangle);
return fillAccumKernel.run(2, globalThreads, NULL, false);
}
else
{
fillAccumKernel.create("fill_accum_local", ocl::imgproc::hough_lines_oclsrc,
format("-D FILL_ACCUM_LOCAL -D LOCAL_SIZE=%d -D BUFFER_SIZE=%d", workgroup_size, numrho + 2));
if (fillAccumKernel.empty())
return false;
localThreads[0] = workgroup_size; localThreads[1] = 1;
globalThreads[0] = workgroup_size; globalThreads[1] = numangle+2;
fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnlyNoSize(accum),
total_points, irho, (float) theta, numrho, numangle);
return fillAccumKernel.run(2, globalThreads, localThreads, false);
}
}
static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
double min_theta, double max_theta)
{
CV_Assert(_src.type() == CV_8UC1);
if (max_theta < 0 || max_theta > CV_PI ) {
CV_Error( Error::StsBadArg, "max_theta must fall between 0 and pi" );
}
if (min_theta < 0 || min_theta > max_theta ) {
CV_Error( Error::StsBadArg, "min_theta must fall between 0 and max_theta" );
}
if (!(rho > 0 && theta > 0)) {
CV_Error( Error::StsBadArg, "rho and theta must be greater 0" );
}
UMat src = _src.getUMat();
int numangle = computeNumangle(min_theta, max_theta, theta);
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
UMat pointsList;
UMat counters(1, 2, CV_32SC1, Scalar::all(0));
if (!ocl_makePointsList(src, pointsList, counters))
return false;
int total_points = counters.getMat(ACCESS_READ).at<int>(0, 0);
if (total_points <= 0)
{
_lines.release();
return true;
}
UMat accum;
if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle))
return false;
const int pixPerWI = 8;
ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc,
format("-D GET_LINES"));
if (getLinesKernel.empty())
return false;
int linesMax = threshold > 0 ? min(total_points*numangle/threshold, OCL_MAX_LINES) : OCL_MAX_LINES;
UMat lines(linesMax, 1, CV_32FC2);
getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::WriteOnlyNoSize(lines),
ocl::KernelArg::PtrWriteOnly(counters), linesMax, threshold, (float) rho, (float) theta);
size_t globalThreads[2] = { ((size_t)numrho + pixPerWI - 1)/pixPerWI, (size_t)numangle };
if (!getLinesKernel.run(2, globalThreads, NULL, false))
return false;
int total_lines = min(counters.getMat(ACCESS_READ).at<int>(0, 1), linesMax);
if (total_lines > 0)
_lines.assign(lines.rowRange(Range(0, total_lines)));
else
_lines.release();
return true;
}
static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
double minLineLength, double maxGap)
{
CV_Assert(_src.type() == CV_8UC1);
if (!(rho > 0 && theta > 0)) {
CV_Error( Error::StsBadArg, "rho and theta must be greater 0" );
}
UMat src = _src.getUMat();
int numangle = computeNumangle(0.0, CV_PI, theta);
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
UMat pointsList;
UMat counters(1, 2, CV_32SC1, Scalar::all(0));
if (!ocl_makePointsList(src, pointsList, counters))
return false;
int total_points = counters.getMat(ACCESS_READ).at<int>(0, 0);
if (total_points <= 0)
{
_lines.release();
return true;
}
UMat accum;
if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle))
return false;
ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc,
format("-D GET_LINES_PROBABOLISTIC"));
if (getLinesKernel.empty())
return false;
int linesMax = threshold > 0 ? min(total_points*numangle/threshold, OCL_MAX_LINES) : OCL_MAX_LINES;
UMat lines(linesMax, 1, CV_32SC4);
getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::ReadOnly(src),
ocl::KernelArg::WriteOnlyNoSize(lines), ocl::KernelArg::PtrWriteOnly(counters),
linesMax, threshold, (int) minLineLength, (int) maxGap, (float) rho, (float) theta);
size_t globalThreads[2] = { (size_t)numrho, (size_t)numangle };
if (!getLinesKernel.run(2, globalThreads, NULL, false))
return false;
int total_lines = min(counters.getMat(ACCESS_READ).at<int>(0, 1), linesMax);
if (total_lines > 0)
_lines.assign(lines.rowRange(Range(0, total_lines)));
else
_lines.release();
return true;
}
#endif /* HAVE_OPENCL */
void HoughLines( InputArray _image, OutputArray lines,
double rho, double theta, int threshold,
double srn, double stn, double min_theta, double max_theta )
{
CV_INSTRUMENT_REGION();
int type = CV_32FC2;
if (lines.fixedType())
{
type = lines.type();
CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Wrong type of output lines");
}
CV_OCL_RUN(srn == 0 && stn == 0 && _image.isUMat() && lines.isUMat() && type == CV_32FC2,
ocl_HoughLines(_image, lines, rho, theta, threshold, min_theta, max_theta));
if( srn == 0 && stn == 0 )
HoughLinesStandard(_image, lines, type, (float)rho, (float)theta, threshold, INT_MAX, min_theta, max_theta );
else
HoughLinesSDiv(_image, lines, type, (float)rho, (float)theta, threshold, cvRound(srn), cvRound(stn), INT_MAX, min_theta, max_theta);
}
void HoughLinesP(InputArray _image, OutputArray _lines,
double rho, double theta, int threshold,
double minLineLength, double maxGap )
{
CV_INSTRUMENT_REGION();
CV_OCL_RUN(_image.isUMat() && _lines.isUMat(),
ocl_HoughLinesP(_image, _lines, rho, theta, threshold, minLineLength, maxGap));
Mat image = _image.getMat();
std::vector<Vec4i> lines;
HoughLinesProbabilistic(image, (float)rho, (float)theta, threshold, cvRound(minLineLength), cvRound(maxGap), lines, INT_MAX);
Mat(lines).copyTo(_lines);
}
void HoughLinesPointSet( InputArray _point, OutputArray _lines, int lines_max, int threshold,
double min_rho, double max_rho, double rho_step,
double min_theta, double max_theta, double theta_step )
{
std::vector<Vec3d> lines;
std::vector<Point2f> point;
_point.copyTo(point);
CV_Assert( _point.type() == CV_32FC2 || _point.type() == CV_32SC2 );
if( lines_max <= 0 ) {
CV_Error( Error::StsBadArg, "lines_max must be greater than 0" );
}
if( threshold < 0) {
CV_Error( Error::StsBadArg, "threshold must be greater than 0" );
}
if( ((max_rho - min_rho) <= 0) || ((max_theta - min_theta) <= 0) ) {
CV_Error( Error::StsBadArg, "max must be greater than min" );
}
if( ((rho_step <= 0)) || ((theta_step <= 0)) ) {
CV_Error( Error::StsBadArg, "step must be greater than 0" );
}
int i;
float irho = 1 / (float)rho_step;
float irho_min = ((float)min_rho * irho);
int numangle = computeNumangle(min_theta, max_theta, theta_step);
int numrho = cvRound((max_rho - min_rho + 1) / rho_step);
Mat _accum = Mat::zeros( (numangle+2), (numrho+2), CV_32SC1 );
std::vector<int> _sort_buf;
AutoBuffer<float> _tabSin(numangle);
AutoBuffer<float> _tabCos(numangle);
int *accum = _accum.ptr<int>();
float *tabSin = _tabSin.data(), *tabCos = _tabCos.data();
// create sin and cos table
createTrigTable( numangle, min_theta, theta_step,
irho, tabSin, tabCos );
// stage 1. fill accumulator
for( i = 0; i < (int)point.size(); i++ )
for(int n = 0; n < numangle; n++ )
{
int r = cvRound( point.at(i).x * tabCos[n] + point.at(i).y * tabSin[n] - irho_min);
if ( r >= 0 && r <= numrho) {
accum[(n+1) * (numrho+2) + r+1]++;
}
}
// stage 2. find local maximums
findLocalMaximums( numrho, numangle, threshold, accum, _sort_buf );
// stage 3. sort the detected lines by accumulator value
std::sort(_sort_buf.begin(), _sort_buf.end(), hough_cmp_gt(accum));
// stage 4. store the first min(total,linesMax) lines to the output buffer
lines_max = std::min(lines_max, (int)_sort_buf.size());
double scale = 1./(numrho+2);
for( i = 0; i < lines_max; i++ )
{
LinePolar line;
int idx = _sort_buf[i];
int n = cvFloor(idx*scale) - 1;
int r = idx - (n+1)*(numrho+2) - 1;
line.rho = static_cast<float>(min_rho) + r * (float)rho_step;
line.angle = static_cast<float>(min_theta) + n * (float)theta_step;
lines.push_back(Vec3d((double)accum[idx], (double)line.rho, (double)line.angle));
}
Mat(lines).copyTo(_lines);
}
/****************************************************************************************\
* Circle Detection *
\****************************************************************************************/
struct EstimatedCircle
{
EstimatedCircle() { accum = 0; }
EstimatedCircle(Vec3f _c, int _accum) :
c(_c), accum(_accum) {}
Vec3f c;
int accum;
};
static bool cmpAccum(const EstimatedCircle& left, const EstimatedCircle& right)
{
// Compare everything so the order is completely deterministic
// Larger accum first
if (left.accum > right.accum)
return true;
else if (left.accum < right.accum)
return false;
// Larger radius first
else if (left.c[2] > right.c[2])
return true;
else if (left.c[2] < right.c[2])
return false;
// Smaller X
else if (left.c[0] < right.c[0])
return true;
else if (left.c[0] > right.c[0])
return false;
// Smaller Y
else if (left.c[1] < right.c[1])
return true;
else if (left.c[1] > right.c[1])
return false;
// Identical - neither object is less than the other
else
return false;
}
static inline Vec3f GetCircle(const EstimatedCircle& est)
{
return est.c;
}
static inline Vec4f GetCircle4f(const EstimatedCircle& est)
{
return Vec4f(est.c[0], est.c[1], est.c[2], (float)est.accum);
}
class NZPointList : public std::vector<Point>
{
private:
NZPointList(const NZPointList& other); // non-copyable
public:
NZPointList(int reserveSize = 256)
{
reserve(reserveSize);
}
};
class NZPointSet
{
private:
NZPointSet(const NZPointSet& other); // non-copyable
public:
Mat_<uchar> positions;
NZPointSet(int rows, int cols) :
positions(rows, cols, (uchar)0)
{
}
void insert(const Point& pt)
{
positions(pt) = 1;
}
void insert(const NZPointSet& from)
{
cv::bitwise_or(from.positions, positions, positions);
}
void toList(NZPointList& list) const
{
for (int y = 0; y < positions.rows; y++)
{
const uchar *ptr = positions.ptr<uchar>(y, 0);
for (int x = 0; x < positions.cols; x++)
{
if (ptr[x])
{
list.push_back(Point(x, y));
}
}
}
}
};
class HoughCirclesAccumInvoker : public ParallelLoopBody
{
public:
HoughCirclesAccumInvoker(const Mat &_edges, const Mat &_dx, const Mat &_dy, int _minRadius, int _maxRadius, float _idp,
std::vector<Mat>& _accumVec, NZPointSet& _nz, Mutex& _mtx) :
edges(_edges), dx(_dx), dy(_dy), minRadius(_minRadius), maxRadius(_maxRadius), idp(_idp),
accumVec(_accumVec), nz(_nz), mutex(_mtx)
{
acols = cvCeil(edges.cols * idp), arows = cvCeil(edges.rows * idp);
astep = acols + 2;
}
~HoughCirclesAccumInvoker() { }
void operator()(const Range &boundaries) const CV_OVERRIDE
{
Mat accumLocal = Mat(arows + 2, acols + 2, CV_32SC1, Scalar::all(0));
int *adataLocal = accumLocal.ptr<int>();
NZPointSet nzLocal(nz.positions.rows, nz.positions.cols);
int startRow = boundaries.start;
int endRow = boundaries.end;
int numCols = edges.cols;
if(edges.isContinuous() && dx.isContinuous() && dy.isContinuous())
{
numCols *= (boundaries.end - boundaries.start);
endRow = boundaries.start + 1;
}
// Accumulate circle evidence for each edge pixel
for(int y = startRow; y < endRow; ++y )
{
const uchar* edgeData = edges.ptr<const uchar>(y);
const short* dxData = dx.ptr<const short>(y);
const short* dyData = dy.ptr<const short>(y);
int x = 0;
for(; x < numCols; ++x )
{
#if CV_SIMD
{
v_uint8 v_zero = vx_setzero_u8();
for(; x <= numCols - 2*v_uint8::nlanes; x += 2*v_uint8::nlanes) {
v_uint8 v_edge1 = (vx_load(edgeData + x ) != v_zero);
v_uint8 v_edge2 = (vx_load(edgeData + x + v_uint8::nlanes) != v_zero);
if(v_check_any(v_edge1))
{
x += v_scan_forward(v_edge1);
goto _next_step;
}
if(v_check_any(v_edge2))
{
x += v_uint8::nlanes + v_scan_forward(v_edge2);
goto _next_step;
}
}
}
#endif
for(; x < numCols && !edgeData[x]; ++x)
;
if(x == numCols)
continue;
#if CV_SIMD
_next_step:
#endif
float vx, vy;
int sx, sy, x0, y0, x1, y1;
vx = dxData[x];
vy = dyData[x];
if(vx == 0 && vy == 0)
continue;
float mag = std::sqrt(vx*vx+vy*vy);
if(mag < 1.0f)
continue;
Point pt = Point(x % edges.cols, y + x / edges.cols);
nzLocal.insert(pt);
sx = cvRound((vx * idp) * 1024 / mag);
sy = cvRound((vy * idp) * 1024 / mag);
x0 = cvRound((pt.x * idp) * 1024);
y0 = cvRound((pt.y * idp) * 1024);
// Step from min_radius to max_radius in both directions of the gradient
for(int k1 = 0; k1 < 2; k1++ )
{
x1 = x0 + minRadius * sx;
y1 = y0 + minRadius * sy;
for(int r = minRadius; r <= maxRadius; x1 += sx, y1 += sy, r++ )
{
int x2 = x1 >> 10, y2 = y1 >> 10;
if( (unsigned)x2 >= (unsigned)acols ||
(unsigned)y2 >= (unsigned)arows )
break;
adataLocal[y2*astep + x2]++;
}
sx = -sx; sy = -sy;
}
}
}
{ // TODO Try using TLSContainers
AutoLock lock(mutex);
accumVec.push_back(accumLocal);
nz.insert(nzLocal);
}
}
private:
const Mat &edges, &dx, &dy;
int minRadius, maxRadius;
float idp;
std::vector<Mat>& accumVec;
NZPointSet& nz;
int acols, arows, astep;
Mutex& mutex;
};
class HoughCirclesFindCentersInvoker : public ParallelLoopBody
{
public:
HoughCirclesFindCentersInvoker(const Mat &_accum, std::vector<int> &_centers, int _accThreshold, Mutex& _mutex) :
accum(_accum), centers(_centers), accThreshold(_accThreshold), _lock(_mutex)
{
acols = accum.cols;
arows = accum.rows;
adata = accum.ptr<int>();
}
~HoughCirclesFindCentersInvoker() {}
void operator()(const Range &boundaries) const CV_OVERRIDE
{
int startRow = boundaries.start;
int endRow = boundaries.end;
std::vector<int> centersLocal;
bool singleThread = (boundaries == Range(1, accum.rows - 1));
startRow = max(1, startRow);
endRow = min(arows - 1, endRow);
//Find possible circle centers
for(int y = startRow; y < endRow; ++y )
{
int x = 1;
int base = y * acols + x;
for(; x < acols - 1; ++x, ++base )
{
if( adata[base] > accThreshold &&
adata[base] > adata[base-1] && adata[base] >= adata[base+1] &&
adata[base] > adata[base-acols] && adata[base] >= adata[base+acols] )
centersLocal.push_back(base);
}
}
if(!centersLocal.empty())
{
if(singleThread)
centers = centersLocal;
else
{
AutoLock alock(_lock);
centers.insert(centers.end(), centersLocal.begin(), centersLocal.end());
}
}
}
private:
const Mat &accum;
std::vector<int> &centers;
int accThreshold;
int acols, arows;
const int *adata;
Mutex& _lock;
};
template<typename T>
static bool CheckDistance(const std::vector<T> &circles, size_t endIdx, const T& circle, float minDist2)
{
bool goodPoint = true;
for (uint j = 0; j < endIdx; ++j)
{
T pt = circles[j];
float distX = circle[0] - pt[0], distY = circle[1] - pt[1];
if (distX * distX + distY * distY < minDist2)
{
goodPoint = false;
break;
}
}
return goodPoint;
}
static void GetCircleCenters(const std::vector<int> &centers, std::vector<Vec3f> &circles, int acols, float minDist, float dr)
{
size_t centerCnt = centers.size();
float minDist2 = minDist * minDist;
for (size_t i = 0; i < centerCnt; ++i)
{
int center = centers[i];
int y = center / acols;
int x = center - y * acols;
Vec3f circle = Vec3f((x + 0.5f) * dr, (y + 0.5f) * dr, 0);
bool goodPoint = CheckDistance(circles, circles.size(), circle, minDist2);
if (goodPoint)
circles.push_back(circle);
}
}
static void GetCircleCenters(const std::vector<int> &centers, std::vector<Vec4f> &circles, int acols, float minDist, float dr)
{
size_t centerCnt = centers.size();
float minDist2 = minDist * minDist;
for (size_t i = 0; i < centerCnt; ++i)
{
int center = centers[i];
int y = center / acols;
int x = center - y * acols;
Vec4f circle = Vec4f((x + 0.5f) * dr, (y + 0.5f) * dr, 0, (float)center);
bool goodPoint = CheckDistance(circles, circles.size(), circle, minDist2);
if (goodPoint)
circles.push_back(circle);
}
}
template<typename T>
static void RemoveOverlaps(std::vector<T>& circles, float minDist)
{
if (circles.size() <= 1u)
return;
float minDist2 = minDist * minDist;
size_t endIdx = 1;
for (size_t i = 1; i < circles.size(); ++i)
{
T circle = circles[i];
if (CheckDistance(circles, endIdx, circle, minDist2))
{
circles[endIdx] = circle;
++endIdx;
}
}
circles.resize(endIdx);
}
static void CreateCircles(const std::vector<EstimatedCircle>& circlesEst, std::vector<Vec3f>& circles)
{
std::transform(circlesEst.begin(), circlesEst.end(), std::back_inserter(circles), GetCircle);
}
static void CreateCircles(const std::vector<EstimatedCircle>& circlesEst, std::vector<Vec4f>& circles)
{
std::transform(circlesEst.begin(), circlesEst.end(), std::back_inserter(circles), GetCircle4f);
}
template<class NZPoints>
class HoughCircleEstimateRadiusInvoker : public ParallelLoopBody
{
public:
HoughCircleEstimateRadiusInvoker(const NZPoints &_nz, int _nzSz, const std::vector<int> &_centers, std::vector<EstimatedCircle> &_circlesEst,
int _acols, int _accThreshold, int _minRadius, int _maxRadius,
float _dp, Mutex& _mutex) :
nz(_nz), nzSz(_nzSz), centers(_centers), circlesEst(_circlesEst), acols(_acols), accThreshold(_accThreshold),
minRadius(_minRadius), maxRadius(_maxRadius), dr(_dp), _lock(_mutex)
{
minRadius2 = (float)minRadius * minRadius;
maxRadius2 = (float)maxRadius * maxRadius;
centerSz = (int)centers.size();
CV_Assert(nzSz > 0);
}
~HoughCircleEstimateRadiusInvoker() {}
protected:
inline int filterCircles(const Point2f& curCenter, float* ddata) const;
void operator()(const Range &boundaries) const CV_OVERRIDE
{
std::vector<EstimatedCircle> circlesLocal;
const int nBinsPerDr = 10;
int nBins = cvRound((maxRadius - minRadius)/dr*nBinsPerDr);
AutoBuffer<int> bins(nBins);
AutoBuffer<float> distBuf(nzSz), distSqrtBuf(nzSz);
float *ddata = distBuf.data();
float *dSqrtData = distSqrtBuf.data();
bool singleThread = (boundaries == Range(0, centerSz));
int i = boundaries.start;
// For each found possible center
// Estimate radius and check support
for(; i < boundaries.end; ++i)
{
int ofs = centers[i];
int y = ofs / acols;
int x = ofs - y * acols;
//Calculate circle's center in pixels
Point2f curCenter = Point2f((x + 0.5f) * dr, (y + 0.5f) * dr);
int nzCount = filterCircles(curCenter, ddata);
int maxCount = 0;
float rBest = 0;
if(nzCount)
{
Mat_<float> distMat(1, nzCount, ddata);
Mat_<float> distSqrtMat(1, nzCount, dSqrtData);
sqrt(distMat, distSqrtMat);
memset(bins.data(), 0, sizeof(bins[0])*bins.size());
for(int k = 0; k < nzCount; k++)
{
int bin = std::max(0, std::min(nBins-1, cvRound((dSqrtData[k] - minRadius)/dr*nBinsPerDr)));
bins[bin]++;
}
for(int j = nBins - 1; j > 0; j--)
{
if(bins[j])
{
int upbin = j;
int curCount = 0;
for(; j > upbin - nBinsPerDr && j >= 0; j--)
{
curCount += bins[j];
}
float rCur = (upbin + j)/2.f /nBinsPerDr * dr + minRadius;
if((curCount * rBest >= maxCount * rCur) ||
(rBest < FLT_EPSILON && curCount >= maxCount))
{
rBest = rCur;
maxCount = curCount;
}
}
}
}
// Check if the circle has enough support
if(maxCount > accThreshold)
{
circlesLocal.push_back(EstimatedCircle(Vec3f(curCenter.x, curCenter.y, rBest), maxCount));
}
}
if(!circlesLocal.empty())
{
std::sort(circlesLocal.begin(), circlesLocal.end(), cmpAccum);
if(singleThread)
{
std::swap(circlesEst, circlesLocal);
}
else
{
AutoLock alock(_lock);
if (circlesEst.empty())
std::swap(circlesEst, circlesLocal);
else
circlesEst.insert(circlesEst.end(), circlesLocal.begin(), circlesLocal.end());
}
}
}
private:
const NZPoints &nz;
int nzSz;
const std::vector<int> &centers;
std::vector<EstimatedCircle> &circlesEst;
int acols, accThreshold, minRadius, maxRadius;
float dr;
int centerSz;
float minRadius2, maxRadius2;
Mutex& _lock;
};
template<>
inline int HoughCircleEstimateRadiusInvoker<NZPointList>::filterCircles(const Point2f& curCenter, float* ddata) const
{
int nzCount = 0;
const Point* nz_ = &nz[0];
int j = 0;
#if CV_SIMD
{
const v_float32 v_minRadius2 = vx_setall_f32(minRadius2);
const v_float32 v_maxRadius2 = vx_setall_f32(maxRadius2);
v_float32 v_curCenterX = vx_setall_f32(curCenter.x);
v_float32 v_curCenterY = vx_setall_f32(curCenter.y);
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) rbuf[v_float32::nlanes];
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) rmask[v_int32::nlanes];
for(; j <= nzSz - v_float32::nlanes; j += v_float32::nlanes)
{
v_float32 v_nzX, v_nzY;
v_load_deinterleave((const float*)&nz_[j], v_nzX, v_nzY); // FIXIT use proper datatype
v_float32 v_x = v_cvt_f32(v_reinterpret_as_s32(v_nzX));
v_float32 v_y = v_cvt_f32(v_reinterpret_as_s32(v_nzY));
v_float32 v_dx = v_x - v_curCenterX;
v_float32 v_dy = v_y - v_curCenterY;
v_float32 v_r2 = (v_dx * v_dx) + (v_dy * v_dy);
v_float32 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2);
if (v_check_any(vmask))
{
v_store_aligned(rmask, v_reinterpret_as_s32(vmask));
v_store_aligned(rbuf, v_r2);
for (int i = 0; i < v_int32::nlanes; ++i)
if (rmask[i]) ddata[nzCount++] = rbuf[i];
}
}
}
#endif
// Estimate best radius
for(; j < nzSz; ++j)
{
const Point pt = nz_[j];
float _dx = curCenter.x - pt.x, _dy = curCenter.y - pt.y;
float _r2 = _dx * _dx + _dy * _dy;
if(minRadius2 <= _r2 && _r2 <= maxRadius2)
{
ddata[nzCount++] = _r2;
}
}
return nzCount;
}
template<>
inline int HoughCircleEstimateRadiusInvoker<NZPointSet>::filterCircles(const Point2f& curCenter, float* ddata) const
{
int nzCount = 0;
const Mat_<uchar>& positions = nz.positions;
const int rOuter = maxRadius + 1;
const Range xOuter = Range(std::max(int(curCenter.x - rOuter), 0), std::min(int(curCenter.x + rOuter), positions.cols));
const Range yOuter = Range(std::max(int(curCenter.y - rOuter), 0), std::min(int(curCenter.y + rOuter), positions.rows));
#if CV_SIMD
float v_seq[v_float32::nlanes];
for (int i = 0; i < v_float32::nlanes; ++i)
v_seq[i] = (float)i;
const v_float32 v_minRadius2 = vx_setall_f32(minRadius2);
const v_float32 v_maxRadius2 = vx_setall_f32(maxRadius2);
const v_float32 v_curCenterX_0123 = vx_setall_f32(curCenter.x) - vx_load(v_seq);
#endif
for (int y = yOuter.start; y < yOuter.end; y++)
{
const uchar* ptr = positions.ptr(y, 0);
float dy = curCenter.y - y;
float dy2 = dy * dy;
int x = xOuter.start;
#if CV_SIMD
{
const v_float32 v_dy2 = vx_setall_f32(dy2);
const v_uint32 v_zero_u32 = vx_setall_u32(0);
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) rbuf[v_float32::nlanes];
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) rmask[v_int32::nlanes];
for (; x <= xOuter.end - v_float32::nlanes; x += v_float32::nlanes)
{
v_uint32 v_mask = vx_load_expand_q(ptr + x);
v_mask = v_mask != v_zero_u32;
v_float32 v_x = v_cvt_f32(vx_setall_s32(x));
v_float32 v_dx = v_x - v_curCenterX_0123;
v_float32 v_r2 = (v_dx * v_dx) + v_dy2;
v_float32 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2) & v_reinterpret_as_f32(v_mask);
if (v_check_any(vmask))
{
v_store_aligned(rmask, v_reinterpret_as_s32(vmask));
v_store_aligned(rbuf, v_r2);
for (int i = 0; i < v_int32::nlanes; ++i)
if (rmask[i]) ddata[nzCount++] = rbuf[i];
}
}
}
#endif
for (; x < xOuter.end; x++)
{
if (ptr[x])
{
float _dx = curCenter.x - x;
float _r2 = _dx * _dx + dy2;
if(minRadius2 <= _r2 && _r2 <= maxRadius2)
{
ddata[nzCount++] = _r2;
}
}
}
}
return nzCount;
}
template <typename CircleType>
static void HoughCirclesGradient(InputArray _image, OutputArray _circles,
float dp, float minDist,
int minRadius, int maxRadius, int cannyThreshold,
int accThreshold, int maxCircles, int kernelSize, bool centersOnly)
{
CV_Assert(kernelSize == -1 || kernelSize == 3 || kernelSize == 5 || kernelSize == 7);
dp = max(dp, 1.f);
float idp = 1.f/dp;
Mat edges, dx, dy;
Sobel(_image, dx, CV_16S, 1, 0, kernelSize, 1, 0, BORDER_REPLICATE);
Sobel(_image, dy, CV_16S, 0, 1, kernelSize, 1, 0, BORDER_REPLICATE);
Canny(dx, dy, edges, std::max(1, cannyThreshold / 2), cannyThreshold, false);
Mutex mtx;
int numThreads = std::max(1, getNumThreads());
std::vector<Mat> accumVec;
NZPointSet nz(_image.rows(), _image.cols());
parallel_for_(Range(0, edges.rows),
HoughCirclesAccumInvoker(edges, dx, dy, minRadius, maxRadius, idp, accumVec, nz, mtx),
numThreads);
int nzSz = cv::countNonZero(nz.positions);
if(nzSz <= 0)
return;
Mat accum = accumVec[0];
for(size_t i = 1; i < accumVec.size(); i++)
{
accum += accumVec[i];
}
accumVec.clear();
std::vector<int> centers;
// 4 rows when multithreaded because there is a bit overhead
// and on the other side there are some row ranges where centers are concentrated
parallel_for_(Range(1, accum.rows - 1),
HoughCirclesFindCentersInvoker(accum, centers, accThreshold, mtx),
(numThreads > 1) ? ((accum.rows - 2) / 4) : 1);
int centerCnt = (int)centers.size();
if(centerCnt == 0)
return;
std::sort(centers.begin(), centers.end(), hough_cmp_gt(accum.ptr<int>()));
std::vector<CircleType> circles;
circles.reserve(256);
if (centersOnly)
{
// Just get the circle centers
GetCircleCenters(centers, circles, accum.cols, minDist, dp);
}
else
{
std::vector<EstimatedCircle> circlesEst;
if (nzSz < maxRadius * maxRadius)
{
// Faster to use a list
NZPointList nzList(nzSz);
nz.toList(nzList);
// One loop iteration per thread if multithreaded.
parallel_for_(Range(0, centerCnt),
HoughCircleEstimateRadiusInvoker<NZPointList>(nzList, nzSz, centers, circlesEst, accum.cols,
accThreshold, minRadius, maxRadius, dp, mtx),
numThreads);
}
else
{
// Faster to use a matrix
// One loop iteration per thread if multithreaded.
parallel_for_(Range(0, centerCnt),
HoughCircleEstimateRadiusInvoker<NZPointSet>(nz, nzSz, centers, circlesEst, accum.cols,
accThreshold, minRadius, maxRadius, dp, mtx),
numThreads);
}
// Sort by accumulator value
std::sort(circlesEst.begin(), circlesEst.end(), cmpAccum);
// Create Circles
CreateCircles(circlesEst, circles);
RemoveOverlaps(circles, minDist);
}
if (circles.size() > 0)
{
int numCircles = std::min(maxCircles, int(circles.size()));
Mat(1, numCircles, cv::traits::Type<CircleType>::value, &circles[0]).copyTo(_circles);
return;
}
}
static int circle_popcnt(uint64 val)
{
#ifdef CV_POPCNT_U64
return CV_POPCNT_U64(val);
#else
val -= (val >> 1) & 0x5555555555555555ULL;
val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
val = (val + (val >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
return (int)((val * 0x0101010101010101ULL) >> 56);
#endif
}
// The structure describes the circle "candidate" that is composed by one or more circle-like arcs.
// * rw - the sum of radiuses multiplied by the corresponding arc lengths.
// * weight - the arc length (the number of pixels it contains)
// * mask - bit mask of 64 elements that shows the coverage of the whole 0..360 degrees angular range of the circle.
// The mask of all 1's means that the whole circle is completely covered. 0's show the uncovered segments.
struct CircleData
{
CircleData() { rw = 0; weight = 0; mask = 0; }
double rw;
int weight;
uint64 mask;
};
enum
{
HOUGH_CIRCLES_ALT_BLOCK_SIZE = 10,
HOUGH_CIRCLES_ALT_MAX_CLUSTERS = 10
};
static void HoughCirclesAlt( const Mat& img, std::vector<EstimatedCircle>& circles, double dp, double rdMinDist,
double minRadius, double maxRadius, double cannyThreshold, double minCos2 )
{
const int MIN_COUNT = 10;
const int RAY_FP_BITS = 10;
const int RAY_FP_SCALE = 1 << RAY_FP_BITS;
const int ACCUM_FP_BITS = 6;
const int RAY_SHIFT2 = ACCUM_FP_BITS/2;
const int ACCUM_ALPHA_ONE = 1 << RAY_SHIFT2;
const int ACCUM_ALPHA_MASK = ACCUM_ALPHA_ONE - 1;
const int RAY_SHIFT1 = RAY_FP_BITS - RAY_SHIFT2;
const int RAY_DELTA1 = 1 << (RAY_SHIFT1 - 1);
const double ARC_DELTA = 80;
const double ARC_EPS = 0.03;
const double CIRCLE_AREA_OFFSET = 4000;
const double ARC2CLUSTER_EPS = 0.06;
const double CLUSTER_MERGE_EPS = 0.075;
const double FINAL_MERGE_DIST_EPS = 0.01;
const double FINAL_MERGE_AREA_EPS = CLUSTER_MERGE_EPS;
if( maxRadius <= 0 )
maxRadius = std::min(img.cols, img.rows)*0.5;
if( minRadius > maxRadius )
std::swap(minRadius, maxRadius);
maxRadius = std::min(maxRadius, std::min(img.cols, img.rows)*0.5);
maxRadius = std::max(maxRadius, 1.);
minRadius = std::max(minRadius, 1.);
minRadius = std::min(minRadius, maxRadius);
cannyThreshold = std::max(cannyThreshold, 1.);
dp = std::max(dp, 1.);
Mat Dx, Dy, edges;
Scharr(img, Dx, CV_16S, 1, 0);
Scharr(img, Dy, CV_16S, 0, 1);
Canny(Dx, Dy, edges, cannyThreshold/2, cannyThreshold, true);
Mat mask(img.rows + 2, img.cols + 2, CV_8U, Scalar::all(0));
double idp = 1./dp;
int minR = cvFloor(minRadius*idp);
int maxR = cvCeil(maxRadius*idp);
int acols = cvRound(img.cols*idp);
int arows = cvRound(img.rows*idp);
Mat accum(arows + 1, acols + 1, CV_32S, Scalar::all(0));
int* adata = accum.ptr<int>();
int astep = (int)accum.step1();
minR = std::max(minR, 1);
maxR = std::max(maxR, 1);
const uchar* edgeData = edges.ptr<uchar>();
int estep = (int)edges.step1();
const short* dxData = Dx.ptr<short>();
const short* dyData = Dy.ptr<short>();
int dxystep = (int)Dx.step1();
uchar* mdata = mask.ptr<uchar>();
int mstep = (int)mask.step1();
circles.clear();
std::vector<Vec4f> nz;
std::vector<Point> stack;
const int n33[][2] = {{-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1}};
for( int x = 0; x < mask.cols; x++ ) mdata[x] = mdata[(mask.rows-1)*mstep + x] = (uchar)1;
for( int y = 0; y < mask.rows; y++ ) mdata[y*mstep] = mdata[y*mstep + mask.cols-1] = (uchar)1;
mdata += mstep + 1;
for( int y = 0; y < edges.rows; y++ )
{
for( int x = 0; x < edges.cols; x++ )
{
if(!edgeData[y*estep + x] || mdata[y*mstep + x])
continue;
mdata[y*mstep + x] = (uchar)1;
stack.push_back(Point(x, y));
bool backtrace_mode = false;
do
{
Point p = stack.back();
stack.pop_back();
int vx = dxData[p.y*dxystep + p.x];
int vy = dyData[p.y*dxystep + p.x];
float mag = std::sqrt((float)vx*vx+(float)vy*vy);
nz.push_back(Vec4f((float)p.x, (float)p.y, (float)vx, (float)vy));
CV_Assert(mdata[p.y*mstep + p.x] == 1);
int sx = cvRound(vx * RAY_FP_SCALE / mag);
int sy = cvRound(vy * RAY_FP_SCALE / mag);
int x0 = cvRound((p.x * idp) * RAY_FP_SCALE);
int y0 = cvRound((p.y * idp) * RAY_FP_SCALE);
// Step from min_radius to max_radius in both directions of the gradient
for(int k1 = 0; k1 < 2; k1++ )
{
int x1 = x0 + minR * sx;
int y1 = y0 + minR * sy;
for(int r = minR; r <= maxR; x1 += sx, y1 += sy, r++ )
{
int x2a = (x1 + RAY_DELTA1) >> RAY_SHIFT1, y2a = (y1 + RAY_DELTA1) >> RAY_SHIFT1;
int x2 = x2a >> RAY_SHIFT2, y2 = y2a >> RAY_SHIFT2;
if( (unsigned)x2 >= (unsigned)acols ||
(unsigned)y2 >= (unsigned)arows )
break;
// instead of giving everything to the computed pixel of the accumulator,
// do a weighted update of 4 neighbor (2x2) pixels using bilinear interpolation.
// we do it to reduce the aliasing effect, even though it's slower
int* ptr = adata + y2*astep + x2;
int a = (x2a & ACCUM_ALPHA_MASK), b = (y2a & ACCUM_ALPHA_MASK);
ptr[0] += (ACCUM_ALPHA_ONE - a)*(ACCUM_ALPHA_ONE - b);
ptr[1] += a*(ACCUM_ALPHA_ONE - b);
ptr[astep] += (ACCUM_ALPHA_ONE - a)*b;
ptr[astep+1] += a*b;
}
sx = -sx; sy = -sy;
}
int neighbors = 0;
for( int k = 0; k < 8; k++ )
{
int dy = n33[k][0], dx = n33[k][1];
int y_ = p.y + dy, x_ = p.x + dx;
if( mdata[y_*mstep + x_] || !edgeData[y_*estep + x_])
continue;
mdata[y_*mstep + x_] = (uchar)1;
stack.push_back(Point(x_, y_));
neighbors++;
}
if( neighbors == 0 )
{
if( backtrace_mode )
nz.pop_back();
backtrace_mode = true;
}
else
backtrace_mode = false;
} while(!stack.empty());
// insert a special "stop marker" in the end of each
// connected component to make sure we
// finalize and analyze the arc segment
nz.push_back(Vec4f(0.f, 0.f, 0.f, 0.f));
}
}
if( nz.empty() )
return;
// use dilation with massive ((rdMinDisp/dp)*2+1) x ((rdMinDisp/dp)*2+1) kernel.
// this trick helps us quickly find the local maxima of accumulator value
// that are at least within the specified distance from each other.
Mat accum_f, accum_max;
accum.convertTo(accum_f, CV_32F);
int niters = std::max(cvCeil(rdMinDist*idp), 1);
dilate(accum_f, accum_max, Mat(), Point(-1, -1), niters, BORDER_CONSTANT, Scalar::all(0));
std::vector<Point2f> centers;
// find the possible circle centers
for( int y = 0; y < arows; y++ )
{
const float* adataf = accum_f.ptr<float>(y);
const float* amaxdata = accum_max.ptr<float>(y);
int left = -1;
for( int x = 0; x < acols; x++ )
{
if(adataf[x] == amaxdata[x] && adataf[x] > adataf[x+astep])
{
if(left < 0) left=x;
}
else if(left >= 0)
{
float cx = (float)((left + x - 1)*dp*0.5f);
float cy = (float)(y*dp);
centers.push_back(Point2f(cx, cy));
left = -1;
}
}
}
if(centers.empty())
return;
float minR2 = (float)(minRadius*minRadius);
float maxR2 = (float)(maxRadius*maxRadius);
int nstripes = (int)((centers.size() + HOUGH_CIRCLES_ALT_BLOCK_SIZE-1)/HOUGH_CIRCLES_ALT_BLOCK_SIZE);
const int nnz = (int)nz.size();
Mutex cmutex;
// Check each possible pair (edge_pixel[i], circle_center[j]).
// For each circle form the clusters to identify possible radius values.
// Several clusters (up to 10) are maintained to help to filter out false alarms and
// to support the concentric circle cases.
// inside parallel for we process the next "HOUGH_CIRCLES_ALT_BLOCK_SIZE" circles
parallel_for_(Range(0, nstripes), [&](const Range& r)
{
CircleData cdata[HOUGH_CIRCLES_ALT_BLOCK_SIZE*HOUGH_CIRCLES_ALT_MAX_CLUSTERS];
CircleData arc[HOUGH_CIRCLES_ALT_BLOCK_SIZE];
int prev_idx[HOUGH_CIRCLES_ALT_BLOCK_SIZE];
std::vector<EstimatedCircle> local_circles;
for(int j0 = r.start*HOUGH_CIRCLES_ALT_BLOCK_SIZE; j0 < r.end*HOUGH_CIRCLES_ALT_BLOCK_SIZE; j0 += HOUGH_CIRCLES_ALT_BLOCK_SIZE)
{
const Vec4f* nzdata = &nz[0];
const Point2f* cc = &centers[j0];
int nc = std::min((int)(centers.size() - j0), (int)HOUGH_CIRCLES_ALT_BLOCK_SIZE);
if(nc <= 0) break;
// reset the statistics about the clusters
for( int j = 0; j < nc; j++ )
{
for( int k = 0; k < HOUGH_CIRCLES_ALT_BLOCK_SIZE; k++ )
cdata[j*HOUGH_CIRCLES_ALT_MAX_CLUSTERS + k] = CircleData();
arc[j] = CircleData();
arc[j].weight = 1; // avoid division by zero
prev_idx[j] = -2; // we compare the current index "i" with prev_idx[j]+1
// to check whether we are still at the current Canny
// connected component. so we initially set it to -2
// to make sure that the initial check gives "false".
}
for( int i = 0; i < nnz; i++ )
{
Vec4f v = nzdata[i];
float x = v[0], y = v[1], vx = v[2], vy = v[3], mag2 = vx*vx + vy*vy;
bool stop_marker = x == 0.f && y == 0.f && vx == 0.f && vy == 0.f;
for( int j = 0; j < nc; j++ )
{
float cx = cc[j].x, cy = cc[j].y;
float dx = x - cx, dy = y - cy;
float rij2 = dx*dx + dy*dy;
// check that i-th pixel is within the specified distance range from the center
if( (rij2 > maxR2 || rij2 < minR2) && i < nnz-1 ) continue;
float dv = dx*vx + dy*vy;
// check that the line segment connecting the edge pixel and the center and
// the gradient at the edge pixel are almost collinear
if( (double)dv*dv < (double)minCos2*mag2*rij2 && i < nnz-1 ) continue;
float rij = std::sqrt(rij2);
CircleData& arc_j = arc[j];
double r_arc = arc_j.rw/arc_j.weight;
int di0 = 0;
int prev = prev_idx[j];
prev_idx[j] = i;
// update the arc statistics if it still looks like an arc
if( std::abs(rij - r_arc) < (r_arc + ARC_DELTA)*ARC_EPS && prev+1 == i && !stop_marker )
{
arc_j.rw += rij;
arc_j.weight++;
di0 = 1;
r_arc = arc_j.rw/arc_j.weight;
if( i < nnz -1 )
continue;
}
// otherwise (or in the very end) store the arc in the cluster collection,
// if the arc is long enough.
if( arc_j.weight >= MIN_COUNT && arc_j.weight >= r_arc*0.15 )
{
// before doing it, compute the angular range coverage (the mask).
uint64 mval = 0;
for( int di = 0; di < arc_j.weight; di++ )
{
int i1 = prev + di0 - di;
Vec4f u = nz[i1];
float x1 = u[0], y1 = u[1];
float dx1 = x1 - cx, dy1 = y1 - cy;
float af = fastAtan2(dy1, dx1)*(64.f/360.f);
int a = (cvFloor(af) & 63);
int b = (a + 1) & 63;
af -= a;
// this is another protection from aliasing effects
if( af <= 0.25f )
mval |= (uint64)1 << a;
else if( af > 0.75f )
mval |= (uint64)1 << b;
else
mval |= ((uint64)1 << a) | ((uint64)1 << b);
}
double min_eps = DBL_MAX;
int min_mval = (int)(sizeof(mval)*8+1);
int k = 0, best_k = -1, subst_k = -1;
CircleData* cdata_j = &cdata[j*HOUGH_CIRCLES_ALT_MAX_CLUSTERS];
for( ; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++ )
{
CircleData& cjk = cdata_j[k];
if( cjk.weight == 0 )
break; // it means that there is no more valid clusters
double rk = cjk.rw/cjk.weight;
// Compute and use the weighted "cluster with arc" area instead of
// just cluster area or just arc area or their sum. This is because the cluster can
// be small and the arc can be big, or vice versa. Weighted area is more robust.
double r2avg = (rk*rk*cjk.weight + r_arc*r_arc*arc_j.weight)/(cjk.weight + arc_j.weight);
// It seems to be more robust to compare circle areas (without "pi" scale)
// instead of radiuses. When we compare radiuses, when depending on the ALPHA,
// different big circles are merged too easily, or different small circles stay different.
if( std::abs(rk*rk - r_arc*r_arc) < (r2avg + CIRCLE_AREA_OFFSET)*ARC2CLUSTER_EPS )
{
double eps = std::abs(rk - r_arc)/rk;
if( eps < min_eps )
{
min_eps = eps;
best_k = k;
}
}
else
{
// Select the cluster with the worst angular coverage.
// We use the angular coverage instead of the arc weight
// in order to protect real small circles
// from "fake" bigger circles with bigger "support".
int pcnt = circle_popcnt(cjk.mask);
if( pcnt < min_mval )
{
min_mval = pcnt;
subst_k = k;
}
}
}
if( best_k >= 0 ) // if found the match, merge the arc into the cluster
{
CircleData& cjk = cdata_j[best_k];
cjk.rw += arc_j.rw;
cjk.weight += arc_j.weight;
cjk.mask |= mval;
}
else
{
if( k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS )
subst_k = k; // if we have empty space, just add the new cluster, do not throw anything
CircleData& cjk0 = cdata_j[subst_k];
// here was the code that attempts to merge the thrown-away cluster with others,
// but apparently it does not have any noticeable effect,
// so we removed it for the sake of simplicity ...
// add the new cluster
cjk0.rw = arc_j.rw;
cjk0.weight = arc_j.weight;
cjk0.mask = mval;
}
}
// reset the arc statistics.
arc_j.rw = stop_marker ? 0. : rij;
arc_j.weight = 1;
// do not clean arc_j.mval, because we do not alter it.
}
}
// now merge the final clusters for each particular circle center (cx, cy)
for( int j = 0; j < nc; j++ )
{
CircleData* cdata_j = &cdata[j*HOUGH_CIRCLES_ALT_MAX_CLUSTERS];
float cx = cc[j].x, cy = cc[j].y;
for( int k = 0; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++ )
{
CircleData& cjk = cdata_j[k];
if( cjk.weight == 0 )
continue;
// Let in only more or less significant clusters.
// Small clusters more likely correspond to a noise
// (otherwise they would grew more substantial during the
// cluster construction phase).
// Processing those noisy clusters takes time and
// potentially decreases accuracy of computed radiuses
// of good clusters.
double rjk = cjk.rw/cjk.weight;
if( cjk.weight < rjk || circle_popcnt(cjk.mask) < 15 )
cjk.weight = 0;
}
// extensive O(nclusters^2) cluster merge algorithm, but since the number
// of clusters is limited with a modest constant HOUGH_CIRCLES_ALT_MAX_CLUSTERS,
// it's still O(1) algorithm :)
for( int k = 0; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++ )
{
CircleData& cjk = cdata_j[k];
if( cjk.weight == 0 )
continue;
double rk = cjk.rw/cjk.weight;
int l = k+1;
for( ; l < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; l++ )
{
CircleData& cjl = cdata_j[l];
if( l == k || cjl.weight == 0 )
continue;
double rl = cjl.rw/cjl.weight;
// Here we use a simple sum of areas (without "pi" scale) instead of weighted
// sum just for simplicity and potentially for better accuracy.
if( std::abs(rk*rk - rl*rl) < (rk*rk + rl*rl + CIRCLE_AREA_OFFSET)*CLUSTER_MERGE_EPS)
{
cjk.rw += cjl.rw;
cjk.weight += cjl.weight;
cjk.mask |= cjl.mask;
rk = cjk.rw/cjk.weight;
cjl.weight = 0;
l = -1; // try to merge other clusters again with the updated k-th cluster
}
}
}
for( int k = 0; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++ )
{
CircleData& cjk = cdata_j[k];
if( cjk.weight == 0 )
continue;
double rk = cjk.rw/cjk.weight;
uint64 mask_jk = cjk.mask, mask_jk0 = (mask_jk + 1) ^ mask_jk;
int count = 0, count0 = -1, runlen = 0, max_runlen = 0;
int prev_bit = 0;
for( int b = 0; b < 64; b++, mask_jk >>= 1, mask_jk0 >>= 1 )
{
int bit_k = (mask_jk & 1) != 0;
count += bit_k;
count0 += (mask_jk0 & 1) != 0;
if(bit_k == prev_bit) { runlen++; continue; }
if(prev_bit == 1)
max_runlen = std::max(max_runlen, runlen);
runlen = 1;
prev_bit = bit_k;
}
if( prev_bit == 1)
max_runlen = std::max(max_runlen, runlen + (count < 64 ? count0 : 0));
// Those constants are the results of fine-tuning.
// Basically, by lowering thresholds more real circles, as well as fake circles, are accepted.
// By raising the thresholds you get less real circles and less false alarms.
// A better and more safe way to obtain better detection results is to regulate
// [minRadius, maxRadius] range and to play with minCos2 parameter.
// May be some classifier can be trained that takes the weight,
// circle radius and the bit mask as inputs and produces the verdict.
bool accepted = (cjk.weight >= rk*3 && count >= 35 && max_runlen >= 20) || count >= 55;
//if(debug)
//printf("[%c]. cx=%.1f, cy=%.1f, r=%.1f, weight=%d, count=%d, max_runlen=%d, mask=%016llx\n",
// (accepted ? '+' : '-'), cx, cy, rk, cjk.weight, count, max_runlen, cjk.mask);
if( accepted )
local_circles.push_back(EstimatedCircle(Vec3f(cx, cy, (float)rk), cjk.weight));
}
}
}
if(!local_circles.empty())
{
cmutex.lock();
std::copy(local_circles.begin(), local_circles.end(), std::back_inserter(circles));
cmutex.unlock();
}
});
// The final circle merge procedure.
// This is O(ncircles^2) algorithm
// and it can take a long time in some specific scenarious.
// But most of the time it's very fast.
size_t i0 = 0, nc = circles.size();
for( size_t i = 0; i < nc; i++ )
{
if( circles[i].accum == 0 ) continue;
EstimatedCircle& ci = circles[i0] = circles[i];
for( size_t j = i+1; j < nc; j++ )
{
EstimatedCircle cj = circles[j];
if( cj.accum == 0 ) continue;
float dx = ci.c[0] - cj.c[0], dy = ci.c[1] - cj.c[1];
float r2 = dx*dx + dy*dy;
float rs = ci.c[2] + cj.c[2];
if( r2 > rs*rs*FINAL_MERGE_DIST_EPS)
continue;
if( std::abs(ci.c[2]*ci.c[2] - cj.c[2]*cj.c[2]) <
(ci.c[2]*ci.c[2] + cj.c[2]*cj.c[2] + CIRCLE_AREA_OFFSET)*FINAL_MERGE_AREA_EPS )
{
int wi = ci.accum, wj = cj.accum;
if( wi < wj ) std::swap(ci, cj);
circles[j].accum = 0;
}
}
i0++;
}
circles.resize(i0);
}
static void HoughCircles( InputArray _image, OutputArray _circles,
int method, double dp, double minDist,
double param1, double param2,
int minRadius, int maxRadius,
int maxCircles, double param3 )
{
CV_INSTRUMENT_REGION();
int type = CV_32FC3;
if( _circles.fixedType() )
{
type = _circles.type();
CV_CheckType(type, type == CV_32FC3 || type == CV_32FC4, "Wrong type of output circles");
}
CV_Assert(!_image.empty() && _image.type() == CV_8UC1 && (_image.isMat() || _image.isUMat()));
if( dp <= 0 || minDist <= 0 || param1 <= 0)
CV_Error( Error::StsOutOfRange, "dp, min_dist and canny_threshold must be all positive numbers" );
switch( method )
{
case HOUGH_GRADIENT:
{
int cannyThresh = cvRound(param1), accThresh = cvRound(param2), kernelSize = cvRound(param3);
minRadius = std::max(0, minRadius);
if( param2 <= 0 )
CV_Error( Error::StsOutOfRange, "acc_threshold must be a positive number" );
if(maxCircles < 0)
maxCircles = INT_MAX;
bool centersOnly = (maxRadius < 0);
if( maxRadius <= 0 )
maxRadius = std::max( _image.rows(), _image.cols() );
else if( maxRadius <= minRadius )
maxRadius = minRadius + 2;
if (type == CV_32FC3)
HoughCirclesGradient<Vec3f>(_image, _circles, (float)dp, (float)minDist,
minRadius, maxRadius, cannyThresh,
accThresh, maxCircles, kernelSize, centersOnly);
else if (type == CV_32FC4)
HoughCirclesGradient<Vec4f>(_image, _circles, (float)dp, (float)minDist,
minRadius, maxRadius, cannyThresh,
accThresh, maxCircles, kernelSize, centersOnly);
else
CV_Error(Error::StsError, "Internal error");
}
break;
case HOUGH_GRADIENT_ALT:
{
if( param2 >= 1 )
CV_Error( Error::StsOutOfRange, "when using HOUGH_GRADIENT_ALT method, param2 parameter must be smaller than 1.0" );
std::vector<EstimatedCircle> circles;
Mat image = _image.getMat();
HoughCirclesAlt(image, circles, dp, minDist, minRadius, maxRadius, param1, param2);
std::sort(circles.begin(), circles.end(), cmpAccum);
size_t i, ncircles = circles.size();
if( type == CV_32FC4 )
{
std::vector<Vec4f> cw(ncircles);
for( i = 0; i < ncircles; i++ )
cw[i] = GetCircle4f(circles[i]);
if (ncircles > 0)
Mat(1, (int)ncircles, cv::traits::Type<Vec4f>::value, &cw[0]).copyTo(_circles);
}
else if( type == CV_32FC3 )
{
std::vector<Vec3f> cwow(ncircles);
for( i = 0; i < ncircles; i++ )
cwow[i] = GetCircle(circles[i]);
if (ncircles > 0)
Mat(1, (int)ncircles, cv::traits::Type<Vec3f>::value, &cwow[0]).copyTo(_circles);
}
else
CV_Error(Error::StsError, "Internal error");
}
break;
default:
CV_Error( Error::StsBadArg, "Unrecognized method id. Actually supported methods are HOUGH_GRADIENT and HOUGH_GRADIENT_ALT" );
}
}
void HoughCircles( InputArray _image, OutputArray _circles,
int method, double dp, double minDist,
double param1, double param2,
int minRadius, int maxRadius )
{
HoughCircles(_image, _circles, method, dp, minDist, param1, param2, minRadius, maxRadius, -1, 3);
}
} // \namespace cv
/* Wrapper function for standard hough transform */
CV_IMPL CvSeq*
cvHoughLines2( CvArr* src_image, void* lineStorage, int method,
double rho, double theta, int threshold,
double param1, double param2,
double min_theta, double max_theta )
{
cv::Mat image = cv::cvarrToMat(src_image);
std::vector<cv::Vec2f> l2;
std::vector<cv::Vec4i> l4;
CvMat* mat = 0;
CvSeq* lines = 0;
CvSeq lines_header;
CvSeqBlock lines_block;
int lineType, elemSize;
int linesMax = INT_MAX;
int iparam1, iparam2;
if( !lineStorage )
CV_Error(cv::Error::StsNullPtr, "NULL destination" );
if( rho <= 0 || theta <= 0 || threshold <= 0 )
CV_Error( cv::Error::StsOutOfRange, "rho, theta and threshold must be positive" );
if( method != CV_HOUGH_PROBABILISTIC )
{
lineType = CV_32FC2;
elemSize = sizeof(float)*2;
}
else
{
lineType = CV_32SC4;
elemSize = sizeof(int)*4;
}
bool isStorage = isStorageOrMat(lineStorage);
if( isStorage )
{
lines = cvCreateSeq( lineType, sizeof(CvSeq), elemSize, (CvMemStorage*)lineStorage );
}
else
{
mat = (CvMat*)lineStorage;
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) )
CV_Error( CV_StsBadArg,
"The destination matrix should be continuous and have a single row or a single column" );
if( CV_MAT_TYPE( mat->type ) != lineType )
CV_Error( CV_StsBadArg,
"The destination matrix data type is inappropriate, see the manual" );
lines = cvMakeSeqHeaderForArray( lineType, sizeof(CvSeq), elemSize, mat->data.ptr,
mat->rows + mat->cols - 1, &lines_header, &lines_block );
linesMax = lines->total;
cvClearSeq( lines );
}
iparam1 = cvRound(param1);
iparam2 = cvRound(param2);
switch( method )
{
case CV_HOUGH_STANDARD:
HoughLinesStandard( image, l2, CV_32FC2, (float)rho,
(float)theta, threshold, linesMax, min_theta, max_theta );
break;
case CV_HOUGH_MULTI_SCALE:
HoughLinesSDiv( image, l2, CV_32FC2, (float)rho, (float)theta,
threshold, iparam1, iparam2, linesMax, min_theta, max_theta );
break;
case CV_HOUGH_PROBABILISTIC:
HoughLinesProbabilistic( image, (float)rho, (float)theta,
threshold, iparam1, iparam2, l4, linesMax );
break;
default:
CV_Error( CV_StsBadArg, "Unrecognized method id" );
}
int nlines = (int)(l2.size() + l4.size());
if( !isStorage )
{
if( mat->cols > mat->rows )
mat->cols = nlines;
else
mat->rows = nlines;
}
if( nlines )
{
cv::Mat lx = method == CV_HOUGH_STANDARD || method == CV_HOUGH_MULTI_SCALE ?
cv::Mat(nlines, 1, CV_32FC2, &l2[0]) : cv::Mat(nlines, 1, CV_32SC4, &l4[0]);
if (isStorage)
{
cvSeqPushMulti(lines, lx.ptr(), nlines);
}
else
{
cv::Mat dst(nlines, 1, lx.type(), mat->data.ptr);
lx.copyTo(dst);
}
}
if( isStorage )
return lines;
return 0;
}
CV_IMPL CvSeq*
cvHoughCircles( CvArr* src_image, void* circle_storage,
int method, double dp, double min_dist,
double param1, double param2,
int min_radius, int max_radius )
{
CvSeq* circles = NULL;
int circles_max = INT_MAX;
cv::Mat src = cv::cvarrToMat(src_image), circles_mat;
if( !circle_storage )
CV_Error( CV_StsNullPtr, "NULL destination" );
bool isStorage = isStorageOrMat(circle_storage);
if(isStorage)
{
circles = cvCreateSeq( CV_32FC3, sizeof(CvSeq),
sizeof(float)*3, (CvMemStorage*)circle_storage );
}
else
{
CvSeq circles_header;
CvSeqBlock circles_block;
CvMat *mat = (CvMat*)circle_storage;
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) ||
CV_MAT_TYPE(mat->type) != CV_32FC3 )
CV_Error( CV_StsBadArg,
"The destination matrix should be continuous and have a single row or a single column" );
circles = cvMakeSeqHeaderForArray( CV_32FC3, sizeof(CvSeq), sizeof(float)*3,
mat->data.ptr, mat->rows + mat->cols - 1, &circles_header, &circles_block );
circles_max = circles->total;
cvClearSeq( circles );
}
cv::HoughCircles(src, circles_mat, method, dp, min_dist, param1, param2, min_radius, max_radius, circles_max, 3);
cvSeqPushMulti(circles, circles_mat.data, (int)circles_mat.total());
return circles;
}
/* End of file. */