mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
657 lines
25 KiB
657 lines
25 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#ifdef HAVE_TIFF |
|
|
|
// these defines are used to resolve conflict between tiff.h and opencv2/core/types_c.h |
|
#define uint64 uint64_hack_ |
|
#define int64 int64_hack_ |
|
#include "tiff.h" |
|
|
|
#ifdef __ANDROID__ |
|
// Test disabled as it uses a lot of memory. |
|
// It is killed with SIGKILL by out of memory killer. |
|
TEST(Imgcodecs_Tiff, DISABLED_decode_tile16384x16384) |
|
#else |
|
TEST(Imgcodecs_Tiff, decode_tile16384x16384) |
|
#endif |
|
{ |
|
// see issue #2161 |
|
cv::Mat big(16384, 16384, CV_8UC1, cv::Scalar::all(0)); |
|
string file3 = cv::tempfile(".tiff"); |
|
string file4 = cv::tempfile(".tiff"); |
|
|
|
std::vector<int> params; |
|
params.push_back(TIFFTAG_ROWSPERSTRIP); |
|
params.push_back(big.rows); |
|
EXPECT_NO_THROW(cv::imwrite(file4, big, params)); |
|
EXPECT_NO_THROW(cv::imwrite(file3, big.colRange(0, big.cols - 1), params)); |
|
big.release(); |
|
|
|
try |
|
{ |
|
cv::imread(file3, IMREAD_UNCHANGED); |
|
EXPECT_NO_THROW(cv::imread(file4, IMREAD_UNCHANGED)); |
|
} |
|
catch(const std::bad_alloc&) |
|
{ |
|
// not enough memory |
|
} |
|
|
|
EXPECT_EQ(0, remove(file3.c_str())); |
|
EXPECT_EQ(0, remove(file4.c_str())); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, write_read_16bit_big_little_endian) |
|
{ |
|
// see issue #2601 "16-bit Grayscale TIFF Load Failures Due to Buffer Underflow and Endianness" |
|
|
|
// Setup data for two minimal 16-bit grayscale TIFF files in both endian formats |
|
uchar tiff_sample_data[2][86] = { { |
|
// Little endian |
|
0x49, 0x49, 0x2a, 0x00, 0x0c, 0x00, 0x00, 0x00, 0xad, 0xde, 0xef, 0xbe, 0x06, 0x00, 0x00, 0x01, |
|
0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x01, 0x03, 0x00, 0x01, 0x00, |
|
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, |
|
0x00, 0x00, 0x06, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x11, 0x01, |
|
0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x17, 0x01, 0x04, 0x00, 0x01, 0x00, |
|
0x00, 0x00, 0x04, 0x00, 0x00, 0x00 }, { |
|
// Big endian |
|
0x4d, 0x4d, 0x00, 0x2a, 0x00, 0x00, 0x00, 0x0c, 0xde, 0xad, 0xbe, 0xef, 0x00, 0x06, 0x01, 0x00, |
|
0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x01, 0x01, 0x00, 0x03, 0x00, 0x00, |
|
0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x02, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x10, |
|
0x00, 0x00, 0x01, 0x06, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x11, |
|
0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x01, 0x17, 0x00, 0x04, 0x00, 0x00, |
|
0x00, 0x01, 0x00, 0x00, 0x00, 0x04 } |
|
}; |
|
|
|
// Test imread() for both a little endian TIFF and big endian TIFF |
|
for (int i = 0; i < 2; i++) |
|
{ |
|
string filename = cv::tempfile(".tiff"); |
|
|
|
// Write sample TIFF file |
|
FILE* fp = fopen(filename.c_str(), "wb"); |
|
ASSERT_TRUE(fp != NULL); |
|
ASSERT_EQ((size_t)1, fwrite(tiff_sample_data[i], 86, 1, fp)); |
|
fclose(fp); |
|
|
|
Mat img = imread(filename, IMREAD_UNCHANGED); |
|
|
|
EXPECT_EQ(1, img.rows); |
|
EXPECT_EQ(2, img.cols); |
|
EXPECT_EQ(CV_16U, img.type()); |
|
EXPECT_EQ(sizeof(ushort), img.elemSize()); |
|
EXPECT_EQ(1, img.channels()); |
|
EXPECT_EQ(0xDEAD, img.at<ushort>(0,0)); |
|
EXPECT_EQ(0xBEEF, img.at<ushort>(0,1)); |
|
|
|
EXPECT_EQ(0, remove(filename.c_str())); |
|
} |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, decode_tile_remainder) |
|
{ |
|
/* see issue #3472 - dealing with tiled images where the tile size is |
|
* not a multiple of image size. |
|
* The tiled images were created with 'convert' from ImageMagick, |
|
* using the command 'convert <input> -define tiff:tile-geometry=128x128 -depth [8|16] <output> |
|
* Note that the conversion to 16 bits expands the range from 0-255 to 0-255*255, |
|
* so the test converts back but rounding errors cause small differences. |
|
*/ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
cv::Mat img = imread(root + "readwrite/non_tiled.tif",-1); |
|
ASSERT_FALSE(img.empty()); |
|
ASSERT_TRUE(img.channels() == 3); |
|
cv::Mat tiled8 = imread(root + "readwrite/tiled_8.tif", -1); |
|
ASSERT_FALSE(tiled8.empty()); |
|
ASSERT_PRED_FORMAT2(cvtest::MatComparator(0, 0), img, tiled8); |
|
cv::Mat tiled16 = imread(root + "readwrite/tiled_16.tif", -1); |
|
ASSERT_FALSE(tiled16.empty()); |
|
ASSERT_TRUE(tiled16.elemSize() == 6); |
|
tiled16.convertTo(tiled8, CV_8UC3, 1./256.); |
|
ASSERT_PRED_FORMAT2(cvtest::MatComparator(2, 0), img, tiled8); |
|
// What about 32, 64 bit? |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, decode_10_12_14) |
|
{ |
|
/* see issue #21700 |
|
*/ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
|
|
const double maxDiff = 256;//samples do not have the exact same values because of the tool that created them |
|
cv::Mat tmp; |
|
double diff = 0; |
|
|
|
cv::Mat img8UC1 = imread(root + "readwrite/pattern_8uc1.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img8UC1.empty()); |
|
ASSERT_EQ(img8UC1.type(), CV_8UC1); |
|
|
|
cv::Mat img8UC3 = imread(root + "readwrite/pattern_8uc3.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img8UC3.empty()); |
|
ASSERT_EQ(img8UC3.type(), CV_8UC3); |
|
|
|
cv::Mat img8UC4 = imread(root + "readwrite/pattern_8uc4.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img8UC4.empty()); |
|
ASSERT_EQ(img8UC4.type(), CV_8UC4); |
|
|
|
cv::Mat img16UC1 = imread(root + "readwrite/pattern_16uc1.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img16UC1.empty()); |
|
ASSERT_EQ(img16UC1.type(), CV_16UC1); |
|
ASSERT_EQ(img8UC1.size(), img16UC1.size()); |
|
img8UC1.convertTo(tmp, img16UC1.type(), (1U<<(16-8))); |
|
diff = cv::norm(tmp.reshape(1), img16UC1.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img16UC3 = imread(root + "readwrite/pattern_16uc3.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img16UC3.empty()); |
|
ASSERT_EQ(img16UC3.type(), CV_16UC3); |
|
ASSERT_EQ(img8UC3.size(), img16UC3.size()); |
|
img8UC3.convertTo(tmp, img16UC3.type(), (1U<<(16-8))); |
|
diff = cv::norm(tmp.reshape(1), img16UC3.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img16UC4 = imread(root + "readwrite/pattern_16uc4.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img16UC4.empty()); |
|
ASSERT_EQ(img16UC4.type(), CV_16UC4); |
|
ASSERT_EQ(img8UC4.size(), img16UC4.size()); |
|
img8UC4.convertTo(tmp, img16UC4.type(), (1U<<(16-8))); |
|
diff = cv::norm(tmp.reshape(1), img16UC4.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img10UC1 = imread(root + "readwrite/pattern_10uc1.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img10UC1.empty()); |
|
ASSERT_EQ(img10UC1.type(), CV_16UC1); |
|
ASSERT_EQ(img10UC1.size(), img16UC1.size()); |
|
diff = cv::norm(img10UC1.reshape(1), img16UC1.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img10UC3 = imread(root + "readwrite/pattern_10uc3.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img10UC3.empty()); |
|
ASSERT_EQ(img10UC3.type(), CV_16UC3); |
|
ASSERT_EQ(img10UC3.size(), img16UC3.size()); |
|
diff = cv::norm(img10UC3.reshape(1), img16UC3.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img10UC4 = imread(root + "readwrite/pattern_10uc4.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img10UC4.empty()); |
|
ASSERT_EQ(img10UC4.type(), CV_16UC4); |
|
ASSERT_EQ(img10UC4.size(), img16UC4.size()); |
|
diff = cv::norm(img10UC4.reshape(1), img16UC4.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img12UC1 = imread(root + "readwrite/pattern_12uc1.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img12UC1.empty()); |
|
ASSERT_EQ(img12UC1.type(), CV_16UC1); |
|
ASSERT_EQ(img12UC1.size(), img16UC1.size()); |
|
diff = cv::norm(img12UC1.reshape(1), img16UC1.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img12UC3 = imread(root + "readwrite/pattern_12uc3.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img12UC3.empty()); |
|
ASSERT_EQ(img12UC3.type(), CV_16UC3); |
|
ASSERT_EQ(img12UC3.size(), img16UC3.size()); |
|
diff = cv::norm(img12UC3.reshape(1), img16UC3.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img12UC4 = imread(root + "readwrite/pattern_12uc4.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img12UC4.empty()); |
|
ASSERT_EQ(img12UC4.type(), CV_16UC4); |
|
ASSERT_EQ(img12UC4.size(), img16UC4.size()); |
|
diff = cv::norm(img12UC4.reshape(1), img16UC4.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img14UC1 = imread(root + "readwrite/pattern_14uc1.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img14UC1.empty()); |
|
ASSERT_EQ(img14UC1.type(), CV_16UC1); |
|
ASSERT_EQ(img14UC1.size(), img16UC1.size()); |
|
diff = cv::norm(img14UC1.reshape(1), img16UC1.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img14UC3 = imread(root + "readwrite/pattern_14uc3.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img14UC3.empty()); |
|
ASSERT_EQ(img14UC3.type(), CV_16UC3); |
|
ASSERT_EQ(img14UC3.size(), img16UC3.size()); |
|
diff = cv::norm(img14UC3.reshape(1), img16UC3.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
|
|
cv::Mat img14UC4 = imread(root + "readwrite/pattern_14uc4.tif", cv::IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img14UC4.empty()); |
|
ASSERT_EQ(img14UC4.type(), CV_16UC4); |
|
ASSERT_EQ(img14UC4.size(), img16UC4.size()); |
|
diff = cv::norm(img14UC4.reshape(1), img16UC4.reshape(1), cv::NORM_INF); |
|
ASSERT_LE(diff, maxDiff); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, decode_infinite_rowsperstrip) |
|
{ |
|
const uchar sample_data[142] = { |
|
0x49, 0x49, 0x2a, 0x00, 0x10, 0x00, 0x00, 0x00, 0x56, 0x54, |
|
0x56, 0x5a, 0x59, 0x55, 0x5a, 0x00, 0x0a, 0x00, 0x00, 0x01, |
|
0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, |
|
0x01, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07, 0x00, |
|
0x00, 0x00, 0x02, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, |
|
0x08, 0x00, 0x00, 0x00, 0x03, 0x01, 0x03, 0x00, 0x01, 0x00, |
|
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x06, 0x01, 0x03, 0x00, |
|
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x11, 0x01, |
|
0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, |
|
0x15, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, |
|
0x00, 0x00, 0x16, 0x01, 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, |
|
0xff, 0xff, 0xff, 0xff, 0x17, 0x01, 0x04, 0x00, 0x01, 0x00, |
|
0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x1c, 0x01, 0x03, 0x00, |
|
0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00 |
|
}; |
|
|
|
const string filename = cv::tempfile(".tiff"); |
|
std::ofstream outfile(filename.c_str(), std::ofstream::binary); |
|
outfile.write(reinterpret_cast<const char *>(sample_data), sizeof sample_data); |
|
outfile.close(); |
|
|
|
EXPECT_NO_THROW(cv::imread(filename, IMREAD_UNCHANGED)); |
|
|
|
EXPECT_EQ(0, remove(filename.c_str())); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, readWrite_unsigned) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filenameInput = root + "readwrite/gray_8u.tif"; |
|
const string filenameOutput = cv::tempfile(".tiff"); |
|
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img.empty()); |
|
ASSERT_EQ(CV_8UC1, img.type()); |
|
|
|
Mat matS8; |
|
img.convertTo(matS8, CV_8SC1); |
|
|
|
ASSERT_TRUE(cv::imwrite(filenameOutput, matS8)); |
|
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); |
|
ASSERT_EQ(img2.type(), matS8.type()); |
|
ASSERT_EQ(img2.size(), matS8.size()); |
|
EXPECT_LE(cvtest::norm(matS8, img2, NORM_INF | NORM_RELATIVE), 1e-3); |
|
EXPECT_EQ(0, remove(filenameOutput.c_str())); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, readWrite_32FC1) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filenameInput = root + "readwrite/test32FC1.tiff"; |
|
const string filenameOutput = cv::tempfile(".tiff"); |
|
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img.empty()); |
|
ASSERT_EQ(CV_32FC1,img.type()); |
|
|
|
ASSERT_TRUE(cv::imwrite(filenameOutput, img)); |
|
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); |
|
ASSERT_EQ(img2.type(), img.type()); |
|
ASSERT_EQ(img2.size(), img.size()); |
|
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); |
|
EXPECT_EQ(0, remove(filenameOutput.c_str())); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, readWrite_64FC1) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filenameInput = root + "readwrite/test64FC1.tiff"; |
|
const string filenameOutput = cv::tempfile(".tiff"); |
|
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img.empty()); |
|
ASSERT_EQ(CV_64FC1, img.type()); |
|
|
|
ASSERT_TRUE(cv::imwrite(filenameOutput, img)); |
|
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); |
|
ASSERT_EQ(img2.type(), img.type()); |
|
ASSERT_EQ(img2.size(), img.size()); |
|
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); |
|
EXPECT_EQ(0, remove(filenameOutput.c_str())); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, readWrite_32FC3_SGILOG) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filenameInput = root + "readwrite/test32FC3_sgilog.tiff"; |
|
const string filenameOutput = cv::tempfile(".tiff"); |
|
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img.empty()); |
|
ASSERT_EQ(CV_32FC3, img.type()); |
|
|
|
ASSERT_TRUE(cv::imwrite(filenameOutput, img)); |
|
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); |
|
ASSERT_EQ(img2.type(), img.type()); |
|
ASSERT_EQ(img2.size(), img.size()); |
|
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 0.01); |
|
EXPECT_EQ(0, remove(filenameOutput.c_str())); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, readWrite_32FC3_RAW) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filenameInput = root + "readwrite/test32FC3_raw.tiff"; |
|
const string filenameOutput = cv::tempfile(".tiff"); |
|
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img.empty()); |
|
ASSERT_EQ(CV_32FC3, img.type()); |
|
|
|
std::vector<int> params; |
|
params.push_back(IMWRITE_TIFF_COMPRESSION); |
|
params.push_back(1/*COMPRESSION_NONE*/); |
|
|
|
ASSERT_TRUE(cv::imwrite(filenameOutput, img, params)); |
|
const Mat img2 = cv::imread(filenameOutput, IMREAD_UNCHANGED); |
|
ASSERT_EQ(img2.type(), img.type()); |
|
ASSERT_EQ(img2.size(), img.size()); |
|
EXPECT_LE(cvtest::norm(img, img2, NORM_INF | NORM_RELATIVE), 1e-3); |
|
EXPECT_EQ(0, remove(filenameOutput.c_str())); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, read_palette_color_image) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filenameInput = root + "readwrite/test_palette_color_image.tif"; |
|
|
|
const Mat img = cv::imread(filenameInput, IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img.empty()); |
|
ASSERT_EQ(CV_8UC3, img.type()); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, readWrite_predictor) |
|
{ |
|
/* see issue #21871 |
|
*/ |
|
const uchar sample_data[160] = { |
|
0xff, 0xff, 0xff, 0xff, 0x88, 0x88, 0xff, 0xff, 0x88, 0x88, 0xff, 0xff, 0xff, 0xff, 0xff, 0x88, |
|
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, |
|
0xff, 0x00, 0x00, 0x44, 0xff, 0xff, 0x88, 0xff, 0x33, 0x00, 0x66, 0xff, 0xff, 0x88, 0x00, 0x44, |
|
0x88, 0x00, 0x44, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x44, 0xff, 0xff, 0x11, 0x00, 0xff, |
|
0x11, 0x00, 0x88, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0xff, |
|
0x11, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x33, 0x00, 0x88, 0xff, 0x00, 0x66, 0xff, |
|
0x11, 0x00, 0x66, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x44, 0x33, 0x00, 0xff, 0xff, |
|
0x88, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
|
0xff, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0x33, 0x00, 0x00, 0x66, 0xff, 0xff, |
|
0xff, 0xff, 0x88, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff |
|
}; |
|
|
|
cv::Mat mat(10, 16, CV_8UC1, (void*)sample_data); |
|
int methods[] = { |
|
COMPRESSION_NONE, COMPRESSION_LZW, |
|
COMPRESSION_PACKBITS, COMPRESSION_DEFLATE, COMPRESSION_ADOBE_DEFLATE |
|
}; |
|
for (size_t i = 0; i < sizeof(methods) / sizeof(int); i++) |
|
{ |
|
string out = cv::tempfile(".tif"); |
|
|
|
std::vector<int> params; |
|
params.push_back(TIFFTAG_COMPRESSION); |
|
params.push_back(methods[i]); |
|
params.push_back(TIFFTAG_PREDICTOR); |
|
params.push_back(PREDICTOR_HORIZONTAL); |
|
|
|
EXPECT_NO_THROW(cv::imwrite(out, mat, params)); |
|
|
|
const Mat img = cv::imread(out, IMREAD_UNCHANGED); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
ASSERT_EQ(0, cv::norm(mat, img, cv::NORM_INF)); |
|
|
|
EXPECT_EQ(0, remove(out.c_str())); |
|
} |
|
} |
|
|
|
|
|
//================================================================================================== |
|
|
|
typedef testing::TestWithParam<int> Imgcodecs_Tiff_Modes; |
|
|
|
TEST_P(Imgcodecs_Tiff_Modes, decode_multipage) |
|
{ |
|
const int mode = GetParam(); |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filename = root + "readwrite/multipage.tif"; |
|
const string page_files[] = { |
|
"readwrite/multipage_p1.tif", |
|
"readwrite/multipage_p2.tif", |
|
"readwrite/multipage_p3.tif", |
|
"readwrite/multipage_p4.tif", |
|
"readwrite/multipage_p5.tif", |
|
"readwrite/multipage_p6.tif" |
|
}; |
|
const size_t page_count = sizeof(page_files)/sizeof(page_files[0]); |
|
vector<Mat> pages; |
|
bool res = imreadmulti(filename, pages, mode); |
|
ASSERT_TRUE(res == true); |
|
ASSERT_EQ(page_count, pages.size()); |
|
for (size_t i = 0; i < page_count; i++) |
|
{ |
|
const Mat page = imread(root + page_files[i], mode); |
|
EXPECT_PRED_FORMAT2(cvtest::MatComparator(0, 0), page, pages[i]); |
|
} |
|
} |
|
|
|
const int all_modes[] = |
|
{ |
|
IMREAD_UNCHANGED, |
|
IMREAD_GRAYSCALE, |
|
IMREAD_COLOR, |
|
IMREAD_ANYDEPTH, |
|
IMREAD_ANYCOLOR |
|
}; |
|
|
|
INSTANTIATE_TEST_CASE_P(AllModes, Imgcodecs_Tiff_Modes, testing::ValuesIn(all_modes)); |
|
|
|
//================================================================================================== |
|
|
|
TEST(Imgcodecs_Tiff_Modes, write_multipage) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filename = root + "readwrite/multipage.tif"; |
|
const string page_files[] = { |
|
"readwrite/multipage_p1.tif", |
|
"readwrite/multipage_p2.tif", |
|
"readwrite/multipage_p3.tif", |
|
"readwrite/multipage_p4.tif", |
|
"readwrite/multipage_p5.tif", |
|
"readwrite/multipage_p6.tif" |
|
}; |
|
const size_t page_count = sizeof(page_files) / sizeof(page_files[0]); |
|
vector<Mat> pages; |
|
for (size_t i = 0; i < page_count; i++) |
|
{ |
|
const Mat page = imread(root + page_files[i]); |
|
pages.push_back(page); |
|
} |
|
|
|
string tmp_filename = cv::tempfile(".tiff"); |
|
bool res = imwrite(tmp_filename, pages); |
|
ASSERT_TRUE(res); |
|
|
|
vector<Mat> read_pages; |
|
imreadmulti(tmp_filename, read_pages); |
|
for (size_t i = 0; i < page_count; i++) |
|
{ |
|
EXPECT_PRED_FORMAT2(cvtest::MatComparator(0, 0), read_pages[i], pages[i]); |
|
} |
|
} |
|
|
|
//================================================================================================== |
|
|
|
TEST(Imgcodecs_Tiff, imdecode_no_exception_temporary_file_removed) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filename = root + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(filename); |
|
ASSERT_FALSE(img.empty()); |
|
std::vector<uchar> buf; |
|
EXPECT_NO_THROW(cv::imencode(".tiff", img, buf)); |
|
EXPECT_NO_THROW(cv::imdecode(buf, IMREAD_UNCHANGED)); |
|
} |
|
|
|
|
|
TEST(Imgcodecs_Tiff, decode_black_and_write_image_pr12989_grayscale) |
|
{ |
|
const string filename = cvtest::findDataFile("readwrite/bitsperpixel1.tiff"); |
|
cv::Mat img; |
|
ASSERT_NO_THROW(img = cv::imread(filename, IMREAD_GRAYSCALE)); |
|
ASSERT_FALSE(img.empty()); |
|
EXPECT_EQ(64, img.cols); |
|
EXPECT_EQ(64, img.rows); |
|
EXPECT_EQ(CV_8UC1, img.type()) << cv::typeToString(img.type()); |
|
// Check for 0/255 values only: 267 + 3829 = 64*64 |
|
EXPECT_EQ(267, countNonZero(img == 0)); |
|
EXPECT_EQ(3829, countNonZero(img == 255)); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, decode_black_and_write_image_pr12989_default) |
|
{ |
|
const string filename = cvtest::findDataFile("readwrite/bitsperpixel1.tiff"); |
|
cv::Mat img; |
|
ASSERT_NO_THROW(img = cv::imread(filename)); // by default image type is CV_8UC3 |
|
ASSERT_FALSE(img.empty()); |
|
EXPECT_EQ(64, img.cols); |
|
EXPECT_EQ(64, img.rows); |
|
EXPECT_EQ(CV_8UC3, img.type()) << cv::typeToString(img.type()); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, decode_black_and_write_image_pr17275_grayscale) |
|
{ |
|
const string filename = cvtest::findDataFile("readwrite/bitsperpixel1_min.tiff"); |
|
cv::Mat img; |
|
ASSERT_NO_THROW(img = cv::imread(filename, IMREAD_GRAYSCALE)); |
|
ASSERT_FALSE(img.empty()); |
|
EXPECT_EQ(64, img.cols); |
|
EXPECT_EQ(64, img.rows); |
|
EXPECT_EQ(CV_8UC1, img.type()) << cv::typeToString(img.type()); |
|
// Check for 0/255 values only: 267 + 3829 = 64*64 |
|
EXPECT_EQ(267, countNonZero(img == 0)); |
|
EXPECT_EQ(3829, countNonZero(img == 255)); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, decode_black_and_write_image_pr17275_default) |
|
{ |
|
const string filename = cvtest::findDataFile("readwrite/bitsperpixel1_min.tiff"); |
|
cv::Mat img; |
|
ASSERT_NO_THROW(img = cv::imread(filename)); // by default image type is CV_8UC3 |
|
ASSERT_FALSE(img.empty()); |
|
EXPECT_EQ(64, img.cols); |
|
EXPECT_EQ(64, img.rows); |
|
EXPECT_EQ(CV_8UC3, img.type()) << cv::typeToString(img.type()); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, count_multipage) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
{ |
|
const string filename = root + "readwrite/multipage.tif"; |
|
ASSERT_EQ((size_t)6, imcount(filename)); |
|
} |
|
{ |
|
const string filename = root + "readwrite/test32FC3_raw.tiff"; |
|
ASSERT_EQ((size_t)1, imcount(filename)); |
|
} |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, read_multipage_indexed) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filename = root + "readwrite/multipage.tif"; |
|
const string page_files[] = { |
|
"readwrite/multipage_p1.tif", |
|
"readwrite/multipage_p2.tif", |
|
"readwrite/multipage_p3.tif", |
|
"readwrite/multipage_p4.tif", |
|
"readwrite/multipage_p5.tif", |
|
"readwrite/multipage_p6.tif" |
|
}; |
|
const int page_count = sizeof(page_files) / sizeof(page_files[0]); |
|
vector<Mat> single_pages; |
|
for (int i = 0; i < page_count; i++) |
|
{ |
|
// imread and imreadmulti have different default values for the flag |
|
const Mat page = imread(root + page_files[i], IMREAD_ANYCOLOR); |
|
single_pages.push_back(page); |
|
} |
|
ASSERT_EQ((size_t)page_count, single_pages.size()); |
|
|
|
{ |
|
SCOPED_TRACE("Edge Cases"); |
|
vector<Mat> multi_pages; |
|
bool res = imreadmulti(filename, multi_pages, 0, 0); |
|
// If we asked for 0 images and we successfully read 0 images should this be false ? |
|
ASSERT_TRUE(res == false); |
|
ASSERT_EQ((size_t)0, multi_pages.size()); |
|
res = imreadmulti(filename, multi_pages, 0, 123123); |
|
ASSERT_TRUE(res == true); |
|
ASSERT_EQ((size_t)6, multi_pages.size()); |
|
} |
|
|
|
{ |
|
SCOPED_TRACE("Read all with indices"); |
|
vector<Mat> multi_pages; |
|
bool res = imreadmulti(filename, multi_pages, 0, 6); |
|
ASSERT_TRUE(res == true); |
|
ASSERT_EQ((size_t)page_count, multi_pages.size()); |
|
for (int i = 0; i < page_count; i++) |
|
{ |
|
EXPECT_PRED_FORMAT2(cvtest::MatComparator(0, 0), multi_pages[i], single_pages[i]); |
|
} |
|
} |
|
|
|
{ |
|
SCOPED_TRACE("Read one by one"); |
|
vector<Mat> multi_pages; |
|
for (int i = 0; i < page_count; i++) |
|
{ |
|
bool res = imreadmulti(filename, multi_pages, i, 1); |
|
ASSERT_TRUE(res == true); |
|
ASSERT_EQ((size_t)1, multi_pages.size()); |
|
EXPECT_PRED_FORMAT2(cvtest::MatComparator(0, 0), multi_pages[0], single_pages[i]); |
|
multi_pages.clear(); |
|
} |
|
} |
|
|
|
{ |
|
SCOPED_TRACE("Read multiple at a time"); |
|
vector<Mat> multi_pages; |
|
for (int i = 0; i < page_count/2; i++) |
|
{ |
|
bool res = imreadmulti(filename, multi_pages, i*2, 2); |
|
ASSERT_TRUE(res == true); |
|
ASSERT_EQ((size_t)2, multi_pages.size()); |
|
EXPECT_PRED_FORMAT2(cvtest::MatComparator(0, 0), multi_pages[0], single_pages[i * 2]) << i; |
|
EXPECT_PRED_FORMAT2(cvtest::MatComparator(0, 0), multi_pages[1], single_pages[i * 2 + 1]); |
|
multi_pages.clear(); |
|
} |
|
} |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, read_bigtiff_images) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filenamesInput[] = { |
|
"readwrite/BigTIFF.tif", |
|
"readwrite/BigTIFFMotorola.tif", |
|
"readwrite/BigTIFFLong.tif", |
|
"readwrite/BigTIFFLong8.tif", |
|
"readwrite/BigTIFFMotorolaLongStrips.tif", |
|
"readwrite/BigTIFFLong8Tiles.tif", |
|
"readwrite/BigTIFFSubIFD4.tif", |
|
"readwrite/BigTIFFSubIFD8.tif" |
|
}; |
|
|
|
for (int i = 0; i < 8; i++) |
|
{ |
|
const Mat bigtiff_img = imread(root + filenamesInput[i], IMREAD_UNCHANGED); |
|
ASSERT_FALSE(bigtiff_img.empty()); |
|
EXPECT_EQ(64, bigtiff_img.cols); |
|
EXPECT_EQ(64, bigtiff_img.rows); |
|
ASSERT_EQ(CV_8UC3, bigtiff_img.type()); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
}} // namespace
|
|
|