mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
6.6 KiB
173 lines
6.6 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
/*======================= KALMAN FILTER AS TRACKER =========================*/ |
|
/* State vector is (x,y,w,h,dx,dy,dw,dh). */ |
|
/* Measurement is (x,y,w,h) */ |
|
|
|
/* Dynamic matrix A: */ |
|
const float A8[] = { 1, 0, 0, 0, 1, 0, 0, 0, |
|
0, 1, 0, 0, 0, 1, 0, 0, |
|
0, 0, 1, 0, 0, 0, 1, 0, |
|
0, 0, 0, 1, 0, 0, 0, 1, |
|
0, 0, 0, 0, 1, 0, 0, 0, |
|
0, 0, 0, 0, 0, 1, 0, 0, |
|
0, 0, 0, 0, 0, 0, 1, 0, |
|
0, 0, 0, 0, 0, 0, 0, 1}; |
|
|
|
/* Measurement matrix H: */ |
|
const float H8[] = { 1, 0, 0, 0, 0, 0, 0, 0, |
|
0, 1, 0, 0, 0, 0, 0, 0, |
|
0, 0, 1, 0, 0, 0, 0, 0, |
|
0, 0, 0, 1, 0, 0, 0, 0}; |
|
|
|
/* Matices for zero size velocity: */ |
|
/* Dynamic matrix A: */ |
|
const float A6[] = { 1, 0, 0, 0, 1, 0, |
|
0, 1, 0, 0, 0, 1, |
|
0, 0, 1, 0, 0, 0, |
|
0, 0, 0, 1, 0, 0, |
|
0, 0, 0, 0, 1, 0, |
|
0, 0, 0, 0, 0, 1}; |
|
|
|
/* Measurement matrix H: */ |
|
const float H6[] = { 1, 0, 0, 0, 0, 0, |
|
0, 1, 0, 0, 0, 0, |
|
0, 0, 1, 0, 0, 0, |
|
0, 0, 0, 1, 0, 0}; |
|
|
|
#define STATE_NUM 6 |
|
#define A A6 |
|
#define H H6 |
|
class CvBlobTrackerOneKalman:public CvBlobTrackerOne |
|
{ |
|
private: |
|
CvBlob m_Blob; |
|
CvKalman* m_pKalman; |
|
int m_Frame; |
|
|
|
public: |
|
CvBlobTrackerOneKalman() |
|
{ |
|
m_Frame = 0; |
|
m_pKalman = cvCreateKalman(STATE_NUM,4); |
|
memcpy( m_pKalman->transition_matrix->data.fl, A, sizeof(A)); |
|
memcpy( m_pKalman->measurement_matrix->data.fl, H, sizeof(H)); |
|
cvSetIdentity( m_pKalman->process_noise_cov, cvRealScalar(1e-5) ); |
|
cvSetIdentity( m_pKalman->measurement_noise_cov, cvRealScalar(1e-1) ); |
|
// CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 2,2) *= (float)pow(20,2); |
|
// CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 3,3) *= (float)pow(20,2); |
|
cvSetIdentity( m_pKalman->error_cov_post, cvRealScalar(1)); |
|
cvZero(m_pKalman->state_post); |
|
cvZero(m_pKalman->state_pre); |
|
|
|
SetModuleName("Kalman"); |
|
} |
|
|
|
~CvBlobTrackerOneKalman() |
|
{ |
|
cvReleaseKalman(&m_pKalman); |
|
} |
|
|
|
virtual void Init(CvBlob* pBlob, IplImage* /*pImg*/, IplImage* /*pImgFG*/ = NULL) |
|
{ |
|
m_Blob = pBlob[0]; |
|
m_pKalman->state_post->data.fl[0] = CV_BLOB_X(pBlob); |
|
m_pKalman->state_post->data.fl[1] = CV_BLOB_Y(pBlob); |
|
m_pKalman->state_post->data.fl[2] = CV_BLOB_WX(pBlob); |
|
m_pKalman->state_post->data.fl[3] = CV_BLOB_WY(pBlob); |
|
} |
|
|
|
virtual CvBlob* Process(CvBlob* pBlob, IplImage* /*pImg*/, IplImage* /*pImgFG*/ = NULL) |
|
{ |
|
CvBlob* pBlobRes = &m_Blob; |
|
float Z[4]; |
|
CvMat Zmat = cvMat(4,1,CV_32F,Z); |
|
m_Blob = pBlob[0]; |
|
|
|
if(m_Frame < 2) |
|
{ /* First call: */ |
|
m_pKalman->state_post->data.fl[0+4] = CV_BLOB_X(pBlob)-m_pKalman->state_post->data.fl[0]; |
|
m_pKalman->state_post->data.fl[1+4] = CV_BLOB_Y(pBlob)-m_pKalman->state_post->data.fl[1]; |
|
if(m_pKalman->DP>6) |
|
{ |
|
m_pKalman->state_post->data.fl[2+4] = CV_BLOB_WX(pBlob)-m_pKalman->state_post->data.fl[2]; |
|
m_pKalman->state_post->data.fl[3+4] = CV_BLOB_WY(pBlob)-m_pKalman->state_post->data.fl[3]; |
|
} |
|
m_pKalman->state_post->data.fl[0] = CV_BLOB_X(pBlob); |
|
m_pKalman->state_post->data.fl[1] = CV_BLOB_Y(pBlob); |
|
m_pKalman->state_post->data.fl[2] = CV_BLOB_WX(pBlob); |
|
m_pKalman->state_post->data.fl[3] = CV_BLOB_WY(pBlob); |
|
memcpy(m_pKalman->state_pre->data.fl,m_pKalman->state_post->data.fl,sizeof(float)*STATE_NUM); |
|
} |
|
else |
|
{ /* Another call: */ |
|
Z[0] = CV_BLOB_X(pBlob); |
|
Z[1] = CV_BLOB_Y(pBlob); |
|
Z[2] = CV_BLOB_WX(pBlob); |
|
Z[3] = CV_BLOB_WY(pBlob); |
|
cvKalmanCorrect(m_pKalman,&Zmat); |
|
cvKalmanPredict(m_pKalman,0); |
|
cvMatMulAdd(m_pKalman->measurement_matrix, m_pKalman->state_pre, NULL, &Zmat); |
|
CV_BLOB_X(pBlobRes) = Z[0]; |
|
CV_BLOB_Y(pBlobRes) = Z[1]; |
|
CV_BLOB_WX(pBlobRes) = Z[2]; |
|
CV_BLOB_WY(pBlobRes) = Z[3]; |
|
} |
|
m_Frame++; |
|
return pBlobRes; |
|
} |
|
virtual void Release() |
|
{ |
|
delete this; |
|
} |
|
}; /* class CvBlobTrackerOneKalman */ |
|
|
|
static CvBlobTrackerOne* cvCreateModuleBlobTrackerOneKalman() |
|
{ |
|
return (CvBlobTrackerOne*) new CvBlobTrackerOneKalman; |
|
} |
|
|
|
CvBlobTracker* cvCreateBlobTrackerKalman() |
|
{ |
|
return cvCreateBlobTrackerList(cvCreateModuleBlobTrackerOneKalman); |
|
}
|
|
|