mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
714 lines
33 KiB
714 lines
33 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2015, Itseez Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#define CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE 1 |
|
#define CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF 2 |
|
#define CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF 3 |
|
#define CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK 4 |
|
#define CALIB3D_HOMOGRAPHY_ERROR_RANSAC_DIFF 5 |
|
|
|
#define MESSAGE_MATRIX_SIZE "Homography matrix must have 3*3 sizes." |
|
#define MESSAGE_MATRIX_DIFF "Accuracy of homography transformation matrix less than required." |
|
#define MESSAGE_REPROJ_DIFF_1 "Reprojection error for current pair of points more than required." |
|
#define MESSAGE_REPROJ_DIFF_2 "Reprojection error is not optimal." |
|
#define MESSAGE_RANSAC_MASK_1 "Sizes of inliers/outliers mask are incorrect." |
|
#define MESSAGE_RANSAC_MASK_2 "Mask mustn't have any outliers." |
|
#define MESSAGE_RANSAC_MASK_3 "All values of mask must be 1 (true) or 0 (false)." |
|
#define MESSAGE_RANSAC_MASK_4 "Mask of inliers/outliers is incorrect." |
|
#define MESSAGE_RANSAC_MASK_5 "Inlier in original mask shouldn't be outlier in found mask." |
|
#define MESSAGE_RANSAC_DIFF "Reprojection error for current pair of points more than required." |
|
|
|
#define MAX_COUNT_OF_POINTS 303 |
|
#define COUNT_NORM_TYPES 3 |
|
#define METHODS_COUNT 4 |
|
|
|
int NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF}; |
|
int METHOD[METHODS_COUNT] = {0, cv::RANSAC, cv::LMEDS, cv::RHO}; |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
class CV_HomographyTest: public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_HomographyTest(); |
|
~CV_HomographyTest(); |
|
|
|
void run (int); |
|
|
|
protected: |
|
|
|
int method; |
|
int image_size; |
|
double reproj_threshold; |
|
double sigma; |
|
|
|
private: |
|
float max_diff, max_2diff; |
|
bool check_matrix_size(const cv::Mat& H); |
|
bool check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff); |
|
int check_ransac_mask_1(const Mat& src, const Mat& mask); |
|
int check_ransac_mask_2(const Mat& original_mask, const Mat& found_mask); |
|
|
|
void print_information_1(int j, int N, int method, const Mat& H); |
|
void print_information_2(int j, int N, int method, const Mat& H, const Mat& H_res, int k, double diff); |
|
void print_information_3(int method, int j, int N, const Mat& mask); |
|
void print_information_4(int method, int j, int N, int k, int l, double diff); |
|
void print_information_5(int method, int j, int N, int l, double diff); |
|
void print_information_6(int method, int j, int N, int k, double diff, bool value); |
|
void print_information_7(int method, int j, int N, int k, double diff, bool original_value, bool found_value); |
|
void print_information_8(int method, int j, int N, int k, int l, double diff); |
|
}; |
|
|
|
CV_HomographyTest::CV_HomographyTest() : max_diff(1e-2f), max_2diff(2e-2f) |
|
{ |
|
method = 0; |
|
image_size = 100; |
|
reproj_threshold = 3.0; |
|
sigma = 0.01; |
|
} |
|
|
|
CV_HomographyTest::~CV_HomographyTest() {} |
|
|
|
bool CV_HomographyTest::check_matrix_size(const cv::Mat& H) |
|
{ |
|
return (H.rows == 3) && (H.cols == 3); |
|
} |
|
|
|
bool CV_HomographyTest::check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff) |
|
{ |
|
diff = cvtest::norm(original, found, norm_type); |
|
return diff <= max_diff; |
|
} |
|
|
|
int CV_HomographyTest::check_ransac_mask_1(const Mat& src, const Mat& mask) |
|
{ |
|
if (!(mask.cols == 1) && (mask.rows == src.cols)) return 1; |
|
if (countNonZero(mask) < mask.rows) return 2; |
|
for (int i = 0; i < mask.rows; ++i) if (mask.at<uchar>(i, 0) > 1) return 3; |
|
return 0; |
|
} |
|
|
|
int CV_HomographyTest::check_ransac_mask_2(const Mat& original_mask, const Mat& found_mask) |
|
{ |
|
if (!(found_mask.cols == 1) && (found_mask.rows == original_mask.rows)) return 1; |
|
for (int i = 0; i < found_mask.rows; ++i) if (found_mask.at<uchar>(i, 0) > 1) return 2; |
|
return 0; |
|
} |
|
|
|
void CV_HomographyTest::print_information_1(int j, int N, int _method, const Mat& H) |
|
{ |
|
cout << endl; cout << "Checking for homography matrix sizes..." << endl; cout << endl; |
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; |
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl; |
|
cout << "Count of points: " << N << endl; cout << endl; |
|
cout << "Method: "; if (_method == 0) cout << 0; else if (_method == 8) cout << "RANSAC"; else if (_method == cv::RHO) cout << "RHO"; else cout << "LMEDS"; cout << endl; |
|
cout << "Homography matrix:" << endl; cout << endl; |
|
cout << H << endl; cout << endl; |
|
cout << "Number of rows: " << H.rows << " Number of cols: " << H.cols << endl; cout << endl; |
|
} |
|
|
|
void CV_HomographyTest::print_information_2(int j, int N, int _method, const Mat& H, const Mat& H_res, int k, double diff) |
|
{ |
|
cout << endl; cout << "Checking for accuracy of homography matrix computing..." << endl; cout << endl; |
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; |
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl; |
|
cout << "Count of points: " << N << endl; cout << endl; |
|
cout << "Method: "; if (_method == 0) cout << 0; else if (_method == 8) cout << "RANSAC"; else if (_method == cv::RHO) cout << "RHO"; else cout << "LMEDS"; cout << endl; |
|
cout << "Original matrix:" << endl; cout << endl; |
|
cout << H << endl; cout << endl; |
|
cout << "Found matrix:" << endl; cout << endl; |
|
cout << H_res << endl; cout << endl; |
|
cout << "Norm type using in criteria: "; if (NORM_TYPE[k] == 1) cout << "INF"; else if (NORM_TYPE[k] == 2) cout << "L1"; else cout << "L2"; cout << endl; |
|
cout << "Difference between matrices: " << diff << endl; |
|
cout << "Maximum allowed difference: " << max_diff << endl; cout << endl; |
|
} |
|
|
|
void CV_HomographyTest::print_information_3(int _method, int j, int N, const Mat& mask) |
|
{ |
|
cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl; |
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; |
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl; |
|
cout << "Count of points: " << N << endl; cout << endl; |
|
cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl; |
|
cout << "Found mask:" << endl; cout << endl; |
|
cout << mask << endl; cout << endl; |
|
cout << "Number of rows: " << mask.rows << " Number of cols: " << mask.cols << endl; cout << endl; |
|
} |
|
|
|
void CV_HomographyTest::print_information_4(int _method, int j, int N, int k, int l, double diff) |
|
{ |
|
cout << endl; cout << "Checking for accuracy of reprojection error computing..." << endl; cout << endl; |
|
cout << "Method: "; if (_method == 0) cout << 0 << endl; else cout << "CV_LMEDS" << endl; |
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; |
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl; |
|
cout << "Sigma of normal noise: " << sigma << endl; |
|
cout << "Count of points: " << N << endl; |
|
cout << "Number of point: " << k << endl; |
|
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl; |
|
cout << "Difference with noise of point: " << diff << endl; |
|
cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl; |
|
} |
|
|
|
void CV_HomographyTest::print_information_5(int _method, int j, int N, int l, double diff) |
|
{ |
|
cout << endl; cout << "Checking for accuracy of reprojection error computing..." << endl; cout << endl; |
|
cout << "Method: "; if (_method == 0) cout << 0 << endl; else cout << "CV_LMEDS" << endl; |
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; |
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl; |
|
cout << "Sigma of normal noise: " << sigma << endl; |
|
cout << "Count of points: " << N << endl; |
|
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl; |
|
cout << "Difference with noise of points: " << diff << endl; |
|
cout << "Maxumum allowed difference: " << max_diff << endl; cout << endl; |
|
} |
|
|
|
void CV_HomographyTest::print_information_6(int _method, int j, int N, int k, double diff, bool value) |
|
{ |
|
cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl; |
|
cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl; |
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; |
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl; |
|
cout << "Count of points: " << N << " " << endl; |
|
cout << "Number of point: " << k << " " << endl; |
|
cout << "Reprojection error for this point: " << diff << " " << endl; |
|
cout << "Reprojection error threshold: " << reproj_threshold << " " << endl; |
|
cout << "Value of found mask: "<< value << endl; cout << endl; |
|
} |
|
|
|
void CV_HomographyTest::print_information_7(int _method, int j, int N, int k, double diff, bool original_value, bool found_value) |
|
{ |
|
cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl; |
|
cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl; |
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; |
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl; |
|
cout << "Count of points: " << N << " " << endl; |
|
cout << "Number of point: " << k << " " << endl; |
|
cout << "Reprojection error for this point: " << diff << " " << endl; |
|
cout << "Reprojection error threshold: " << reproj_threshold << " " << endl; |
|
cout << "Value of original mask: "<< original_value << " Value of found mask: " << found_value << endl; cout << endl; |
|
} |
|
|
|
void CV_HomographyTest::print_information_8(int _method, int j, int N, int k, int l, double diff) |
|
{ |
|
cout << endl; cout << "Checking for reprojection error of inlier..." << endl; cout << endl; |
|
cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl; |
|
cout << "Sigma of normal noise: " << sigma << endl; |
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; |
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl; |
|
cout << "Count of points: " << N << " " << endl; |
|
cout << "Number of point: " << k << " " << endl; |
|
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl; |
|
cout << "Difference with noise of point: " << diff << endl; |
|
cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl; |
|
} |
|
|
|
void CV_HomographyTest::run(int) |
|
{ |
|
for (int N = 4; N <= MAX_COUNT_OF_POINTS; ++N) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
|
|
float *src_data = new float [2*N]; |
|
|
|
for (int i = 0; i < N; ++i) |
|
{ |
|
src_data[2*i] = (float)cvtest::randReal(rng)*image_size; |
|
src_data[2*i+1] = (float)cvtest::randReal(rng)*image_size; |
|
} |
|
|
|
cv::Mat src_mat_2f(1, N, CV_32FC2, src_data), |
|
src_mat_2d(2, N, CV_32F, src_data), |
|
src_mat_3d(3, N, CV_32F); |
|
cv::Mat dst_mat_2f, dst_mat_2d, dst_mat_3d; |
|
|
|
vector <Point2f> src_vec, dst_vec; |
|
|
|
for (int i = 0; i < N; ++i) |
|
{ |
|
float *tmp = src_mat_2d.ptr<float>()+2*i; |
|
src_mat_3d.at<float>(0, i) = tmp[0]; |
|
src_mat_3d.at<float>(1, i) = tmp[1]; |
|
src_mat_3d.at<float>(2, i) = 1.0f; |
|
|
|
src_vec.push_back(Point2f(tmp[0], tmp[1])); |
|
} |
|
|
|
double fi = cvtest::randReal(rng)*2*CV_PI; |
|
|
|
double t_x = cvtest::randReal(rng)*sqrt(image_size*1.0), |
|
t_y = cvtest::randReal(rng)*sqrt(image_size*1.0); |
|
|
|
double Hdata[9] = { cos(fi), -sin(fi), t_x, |
|
sin(fi), cos(fi), t_y, |
|
0.0f, 0.0f, 1.0f }; |
|
|
|
cv::Mat H_64(3, 3, CV_64F, Hdata), H_32; |
|
|
|
H_64.convertTo(H_32, CV_32F); |
|
|
|
dst_mat_3d = H_32*src_mat_3d; |
|
|
|
dst_mat_2d.create(2, N, CV_32F); dst_mat_2f.create(1, N, CV_32FC2); |
|
|
|
for (int i = 0; i < N; ++i) |
|
{ |
|
float *tmp_2f = dst_mat_2f.ptr<float>()+2*i; |
|
tmp_2f[0] = dst_mat_2d.at<float>(0, i) = dst_mat_3d.at<float>(0, i) /= dst_mat_3d.at<float>(2, i); |
|
tmp_2f[1] = dst_mat_2d.at<float>(1, i) = dst_mat_3d.at<float>(1, i) /= dst_mat_3d.at<float>(2, i); |
|
dst_mat_3d.at<float>(2, i) = 1.0f; |
|
|
|
dst_vec.push_back(Point2f(tmp_2f[0], tmp_2f[1])); |
|
} |
|
|
|
for (int i = 0; i < METHODS_COUNT; ++i) |
|
{ |
|
method = METHOD[i]; |
|
switch (method) |
|
{ |
|
case 0: |
|
case LMEDS: |
|
{ |
|
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method), |
|
cv::findHomography(src_mat_2f, dst_vec, method), |
|
cv::findHomography(src_vec, dst_mat_2f, method), |
|
cv::findHomography(src_vec, dst_vec, method) }; |
|
|
|
for (int j = 0; j < 4; ++j) |
|
{ |
|
|
|
if (!check_matrix_size(H_res_64[j])) |
|
{ |
|
print_information_1(j, N, method, H_res_64[j]); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE); |
|
return; |
|
} |
|
|
|
double diff; |
|
|
|
for (int k = 0; k < COUNT_NORM_TYPES; ++k) |
|
if (!check_matrix_diff(H_64, H_res_64[j], NORM_TYPE[k], diff)) |
|
{ |
|
print_information_2(j, N, method, H_64, H_res_64[j], k, diff); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF, MESSAGE_MATRIX_DIFF); |
|
return; |
|
} |
|
} |
|
|
|
continue; |
|
} |
|
case cv::RHO: |
|
case RANSAC: |
|
{ |
|
cv::Mat mask [4]; double diff; |
|
|
|
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method, reproj_threshold, mask[0]), |
|
cv::findHomography(src_mat_2f, dst_vec, method, reproj_threshold, mask[1]), |
|
cv::findHomography(src_vec, dst_mat_2f, method, reproj_threshold, mask[2]), |
|
cv::findHomography(src_vec, dst_vec, method, reproj_threshold, mask[3]) }; |
|
|
|
for (int j = 0; j < 4; ++j) |
|
{ |
|
|
|
if (!check_matrix_size(H_res_64[j])) |
|
{ |
|
print_information_1(j, N, method, H_res_64[j]); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE); |
|
return; |
|
} |
|
|
|
for (int k = 0; k < COUNT_NORM_TYPES; ++k) |
|
if (!check_matrix_diff(H_64, H_res_64[j], NORM_TYPE[k], diff)) |
|
{ |
|
print_information_2(j, N, method, H_64, H_res_64[j], k, diff); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF, MESSAGE_MATRIX_DIFF); |
|
return; |
|
} |
|
|
|
int code = check_ransac_mask_1(src_mat_2f, mask[j]); |
|
|
|
if (code) |
|
{ |
|
print_information_3(method, j, N, mask[j]); |
|
|
|
switch (code) |
|
{ |
|
case 1: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_1); break; } |
|
case 2: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_2); break; } |
|
case 3: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_3); break; } |
|
|
|
default: break; |
|
} |
|
|
|
return; |
|
} |
|
|
|
} |
|
|
|
continue; |
|
} |
|
|
|
default: continue; |
|
} |
|
} |
|
|
|
Mat noise_2f(1, N, CV_32FC2); |
|
rng.fill(noise_2f, RNG::NORMAL, Scalar::all(0), Scalar::all(sigma)); |
|
|
|
cv::Mat mask(N, 1, CV_8UC1); |
|
|
|
for (int i = 0; i < N; ++i) |
|
{ |
|
float *a = noise_2f.ptr<float>()+2*i, *_2f = dst_mat_2f.ptr<float>()+2*i; |
|
_2f[0] += a[0]; _2f[1] += a[1]; |
|
mask.at<bool>(i, 0) = !(sqrt(a[0]*a[0]+a[1]*a[1]) > reproj_threshold); |
|
} |
|
|
|
for (int i = 0; i < METHODS_COUNT; ++i) |
|
{ |
|
method = METHOD[i]; |
|
switch (method) |
|
{ |
|
case 0: |
|
case LMEDS: |
|
{ |
|
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f), |
|
cv::findHomography(src_mat_2f, dst_vec), |
|
cv::findHomography(src_vec, dst_mat_2f), |
|
cv::findHomography(src_vec, dst_vec) }; |
|
|
|
for (int j = 0; j < 4; ++j) |
|
{ |
|
|
|
if (!check_matrix_size(H_res_64[j])) |
|
{ |
|
print_information_1(j, N, method, H_res_64[j]); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE); |
|
return; |
|
} |
|
|
|
Mat H_res_32; H_res_64[j].convertTo(H_res_32, CV_32F); |
|
|
|
cv::Mat dst_res_3d(3, N, CV_32F), noise_2d(2, N, CV_32F); |
|
|
|
for (int k = 0; k < N; ++k) |
|
{ |
|
|
|
Mat tmp_mat_3d = H_res_32*src_mat_3d.col(k); |
|
|
|
dst_res_3d.at<float>(0, k) = tmp_mat_3d.at<float>(0, 0) /= tmp_mat_3d.at<float>(2, 0); |
|
dst_res_3d.at<float>(1, k) = tmp_mat_3d.at<float>(1, 0) /= tmp_mat_3d.at<float>(2, 0); |
|
dst_res_3d.at<float>(2, k) = tmp_mat_3d.at<float>(2, 0) = 1.0f; |
|
|
|
float *a = noise_2f.ptr<float>()+2*k; |
|
noise_2d.at<float>(0, k) = a[0]; noise_2d.at<float>(1, k) = a[1]; |
|
|
|
for (int l = 0; l < COUNT_NORM_TYPES; ++l) |
|
if (cv::norm(tmp_mat_3d, dst_mat_3d.col(k), NORM_TYPE[l]) - cv::norm(noise_2d.col(k), NORM_TYPE[l]) > max_2diff) |
|
{ |
|
print_information_4(method, j, N, k, l, cv::norm(tmp_mat_3d, dst_mat_3d.col(k), NORM_TYPE[l]) - cv::norm(noise_2d.col(k), NORM_TYPE[l])); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF, MESSAGE_REPROJ_DIFF_1); |
|
return; |
|
} |
|
|
|
} |
|
|
|
for (int l = 0; l < COUNT_NORM_TYPES; ++l) |
|
if (cv::norm(dst_res_3d, dst_mat_3d, NORM_TYPE[l]) - cv::norm(noise_2d, NORM_TYPE[l]) > max_diff) |
|
{ |
|
print_information_5(method, j, N, l, cv::norm(dst_res_3d, dst_mat_3d, NORM_TYPE[l]) - cv::norm(noise_2d, NORM_TYPE[l])); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF, MESSAGE_REPROJ_DIFF_2); |
|
return; |
|
} |
|
|
|
} |
|
|
|
continue; |
|
} |
|
case cv::RHO: |
|
case RANSAC: |
|
{ |
|
cv::Mat mask_res [4]; |
|
|
|
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method, reproj_threshold, mask_res[0]), |
|
cv::findHomography(src_mat_2f, dst_vec, method, reproj_threshold, mask_res[1]), |
|
cv::findHomography(src_vec, dst_mat_2f, method, reproj_threshold, mask_res[2]), |
|
cv::findHomography(src_vec, dst_vec, method, reproj_threshold, mask_res[3]) }; |
|
|
|
for (int j = 0; j < 4; ++j) |
|
{ |
|
if (!check_matrix_size(H_res_64[j])) |
|
{ |
|
print_information_1(j, N, method, H_res_64[j]); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE); |
|
return; |
|
} |
|
|
|
int code = check_ransac_mask_2(mask, mask_res[j]); |
|
|
|
if (code) |
|
{ |
|
print_information_3(method, j, N, mask_res[j]); |
|
|
|
switch (code) |
|
{ |
|
case 1: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_1); break; } |
|
case 2: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_3); break; } |
|
|
|
default: break; |
|
} |
|
|
|
return; |
|
} |
|
|
|
cv::Mat H_res_32; H_res_64[j].convertTo(H_res_32, CV_32F); |
|
|
|
cv::Mat dst_res_3d = H_res_32*src_mat_3d; |
|
|
|
for (int k = 0; k < N; ++k) |
|
{ |
|
dst_res_3d.at<float>(0, k) /= dst_res_3d.at<float>(2, k); |
|
dst_res_3d.at<float>(1, k) /= dst_res_3d.at<float>(2, k); |
|
dst_res_3d.at<float>(2, k) = 1.0f; |
|
|
|
float *p = dst_mat_2f.ptr<float>()+2*k; |
|
|
|
dst_mat_3d.at<float>(0, k) = p[0]; |
|
dst_mat_3d.at<float>(1, k) = p[1]; |
|
|
|
double diff = cv::norm(dst_res_3d.col(k), dst_mat_3d.col(k), NORM_L2); |
|
|
|
if (mask_res[j].at<bool>(k, 0) != (diff <= reproj_threshold)) |
|
{ |
|
print_information_6(method, j, N, k, diff, mask_res[j].at<bool>(k, 0)); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_4); |
|
return; |
|
} |
|
|
|
if (mask.at<bool>(k, 0) && !mask_res[j].at<bool>(k, 0)) |
|
{ |
|
print_information_7(method, j, N, k, diff, mask.at<bool>(k, 0), mask_res[j].at<bool>(k, 0)); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_5); |
|
return; |
|
} |
|
|
|
if (mask_res[j].at<bool>(k, 0)) |
|
{ |
|
float *a = noise_2f.ptr<float>()+2*k; |
|
dst_mat_3d.at<float>(0, k) -= a[0]; |
|
dst_mat_3d.at<float>(1, k) -= a[1]; |
|
|
|
cv::Mat noise_2d(2, 1, CV_32F); |
|
noise_2d.at<float>(0, 0) = a[0]; noise_2d.at<float>(1, 0) = a[1]; |
|
|
|
for (int l = 0; l < COUNT_NORM_TYPES; ++l) |
|
{ |
|
diff = cv::norm(dst_res_3d.col(k), dst_mat_3d.col(k), NORM_TYPE[l]); |
|
|
|
if (diff - cv::norm(noise_2d, NORM_TYPE[l]) > max_2diff) |
|
{ |
|
print_information_8(method, j, N, k, l, diff - cv::norm(noise_2d, NORM_TYPE[l])); |
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_DIFF, MESSAGE_RANSAC_DIFF); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
continue; |
|
} |
|
|
|
default: continue; |
|
} |
|
} |
|
|
|
delete[]src_data; |
|
src_data = NULL; |
|
} |
|
} |
|
|
|
TEST(Calib3d_Homography, accuracy) { CV_HomographyTest test; test.safe_run(); } |
|
|
|
TEST(Calib3d_Homography, EKcase) |
|
{ |
|
float pt1data[] = |
|
{ |
|
2.80073029e+002f, 2.39591217e+002f, 2.21912201e+002f, 2.59783997e+002f, |
|
2.16053192e+002f, 2.78826569e+002f, 2.22782532e+002f, 2.82330383e+002f, |
|
2.09924820e+002f, 2.89122559e+002f, 2.11077698e+002f, 2.89384674e+002f, |
|
2.25287689e+002f, 2.88795532e+002f, 2.11180801e+002f, 2.89653503e+002f, |
|
2.24126404e+002f, 2.90466064e+002f, 2.10914429e+002f, 2.90886963e+002f, |
|
2.23439362e+002f, 2.91657715e+002f, 2.24809387e+002f, 2.91891602e+002f, |
|
2.09809082e+002f, 2.92891113e+002f, 2.08771164e+002f, 2.93093231e+002f, |
|
2.23160095e+002f, 2.93259460e+002f, 2.07874023e+002f, 2.93989990e+002f, |
|
2.08963638e+002f, 2.94209839e+002f, 2.23963165e+002f, 2.94479645e+002f, |
|
2.23241791e+002f, 2.94887817e+002f, 2.09438782e+002f, 2.95233337e+002f, |
|
2.08901886e+002f, 2.95762878e+002f, 2.21867981e+002f, 2.95747711e+002f, |
|
2.24195511e+002f, 2.98270905e+002f, 2.09331345e+002f, 3.05958191e+002f, |
|
2.24727875e+002f, 3.07186035e+002f, 2.26718842e+002f, 3.08095795e+002f, |
|
2.25363953e+002f, 3.08200226e+002f, 2.19897797e+002f, 3.13845093e+002f, |
|
2.25013474e+002f, 3.15558777e+002f |
|
}; |
|
|
|
float pt2data[] = |
|
{ |
|
1.84072723e+002f, 1.43591202e+002f, 1.25912483e+002f, 1.63783859e+002f, |
|
2.06439407e+002f, 2.20573929e+002f, 1.43801437e+002f, 1.80703903e+002f, |
|
9.77904129e+000f, 2.49660202e+002f, 1.38458405e+001f, 2.14502701e+002f, |
|
1.50636337e+002f, 2.15597183e+002f, 6.43103180e+001f, 2.51667648e+002f, |
|
1.54952499e+002f, 2.20780014e+002f, 1.26638412e+002f, 2.43040924e+002f, |
|
3.67568909e+002f, 1.83624954e+001f, 1.60657944e+002f, 2.21794052e+002f, |
|
-1.29507828e+000f, 3.32472443e+002f, 8.51442242e+000f, 4.15561554e+002f, |
|
1.27161377e+002f, 1.97260361e+002f, 5.40714645e+000f, 4.90978302e+002f, |
|
2.25571690e+001f, 3.96912415e+002f, 2.95664978e+002f, 7.36064959e+000f, |
|
1.27241104e+002f, 1.98887573e+002f, -1.25569367e+000f, 3.87713226e+002f, |
|
1.04194012e+001f, 4.31495758e+002f, 1.25868874e+002f, 1.99751617e+002f, |
|
1.28195480e+002f, 2.02270355e+002f, 2.23436356e+002f, 1.80489182e+002f, |
|
1.28727692e+002f, 2.11185410e+002f, 2.03336639e+002f, 2.52182083e+002f, |
|
1.29366486e+002f, 2.12201904e+002f, 1.23897598e+002f, 2.17847351e+002f, |
|
1.29015259e+002f, 2.19560623e+002f |
|
}; |
|
|
|
int npoints = (int)(sizeof(pt1data)/sizeof(pt1data[0])/2); |
|
|
|
Mat p1(1, npoints, CV_32FC2, pt1data); |
|
Mat p2(1, npoints, CV_32FC2, pt2data); |
|
Mat mask; |
|
|
|
Mat h = findHomography(p1, p2, RANSAC, 0.01, mask); |
|
ASSERT_TRUE(!h.empty()); |
|
|
|
cv::transpose(mask, mask); |
|
Mat p3, mask2; |
|
int ninliers = countNonZero(mask); |
|
Mat nmask[] = { mask, mask }; |
|
merge(nmask, 2, mask2); |
|
perspectiveTransform(p1, p3, h); |
|
mask2 = mask2.reshape(1); |
|
p2 = p2.reshape(1); |
|
p3 = p3.reshape(1); |
|
double err = cvtest::norm(p2, p3, NORM_INF, mask2); |
|
|
|
printf("ninliers: %d, inliers err: %.2g\n", ninliers, err); |
|
ASSERT_GE(ninliers, 10); |
|
ASSERT_LE(err, 0.01); |
|
} |
|
|
|
TEST(Calib3d_Homography, fromImages) |
|
{ |
|
Mat img_1 = imread(cvtest::TS::ptr()->get_data_path() + "cv/optflow/image1.png", 0); |
|
Mat img_2 = imread(cvtest::TS::ptr()->get_data_path() + "cv/optflow/image2.png", 0); |
|
Ptr<ORB> orb = ORB::create(); |
|
vector<KeyPoint> keypoints_1, keypoints_2; |
|
Mat descriptors_1, descriptors_2; |
|
orb->detectAndCompute( img_1, Mat(), keypoints_1, descriptors_1, false ); |
|
orb->detectAndCompute( img_2, Mat(), keypoints_2, descriptors_2, false ); |
|
|
|
//-- Step 3: Matching descriptor vectors using Brute Force matcher |
|
BFMatcher matcher(NORM_HAMMING,false); |
|
std::vector< DMatch > matches; |
|
matcher.match( descriptors_1, descriptors_2, matches ); |
|
|
|
double max_dist = 0; double min_dist = 100; |
|
//-- Quick calculation of max and min distances between keypoints |
|
for( int i = 0; i < descriptors_1.rows; i++ ) |
|
{ |
|
double dist = matches[i].distance; |
|
if( dist < min_dist ) min_dist = dist; |
|
if( dist > max_dist ) max_dist = dist; |
|
} |
|
|
|
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist ) |
|
std::vector< DMatch > good_matches; |
|
for( int i = 0; i < descriptors_1.rows; i++ ) |
|
{ |
|
if( matches[i].distance <= 100 ) |
|
good_matches.push_back( matches[i]); |
|
} |
|
|
|
//-- Localize the model |
|
std::vector<Point2f> pointframe1; |
|
std::vector<Point2f> pointframe2; |
|
for( int i = 0; i < (int)good_matches.size(); i++ ) |
|
{ |
|
//-- Get the keypoints from the good matches |
|
pointframe1.push_back( keypoints_1[ good_matches[i].queryIdx ].pt ); |
|
pointframe2.push_back( keypoints_2[ good_matches[i].trainIdx ].pt ); |
|
} |
|
|
|
Mat H0, H1, inliers0, inliers1; |
|
double min_t0 = DBL_MAX, min_t1 = DBL_MAX; |
|
for( int i = 0; i < 10; i++ ) |
|
{ |
|
double t = (double)getTickCount(); |
|
H0 = findHomography( pointframe1, pointframe2, RANSAC, 3.0, inliers0 ); |
|
t = (double)getTickCount() - t; |
|
min_t0 = std::min(min_t0, t); |
|
} |
|
int ninliers0 = countNonZero(inliers0); |
|
for( int i = 0; i < 10; i++ ) |
|
{ |
|
double t = (double)getTickCount(); |
|
H1 = findHomography( pointframe1, pointframe2, RHO, 3.0, inliers1 ); |
|
t = (double)getTickCount() - t; |
|
min_t1 = std::min(min_t1, t); |
|
} |
|
int ninliers1 = countNonZero(inliers1); |
|
double freq = getTickFrequency(); |
|
printf("nfeatures1 = %d, nfeatures2=%d, matches=%d, ninliers(RANSAC)=%d, " |
|
"time(RANSAC)=%.2fmsec, ninliers(RHO)=%d, time(RHO)=%.2fmsec\n", |
|
(int)keypoints_1.size(), (int)keypoints_2.size(), |
|
(int)good_matches.size(), ninliers0, min_t0*1000./freq, ninliers1, min_t1*1000./freq); |
|
|
|
ASSERT_TRUE(!H0.empty()); |
|
ASSERT_GE(ninliers0, 80); |
|
ASSERT_TRUE(!H1.empty()); |
|
ASSERT_GE(ninliers1, 80); |
|
} |
|
|
|
}} // namespace
|
|
|