Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
117 lines
4.3 KiB
117 lines
4.3 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
// To download the onnx model, see: https://storage.googleapis.com/ailia-models/colorization/colorizer.onnx |
|
|
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
#include "common.hpp" |
|
#include <opencv2/highgui.hpp> |
|
#include <iostream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
using namespace cv::dnn; |
|
|
|
|
|
int main(int argc, char** argv) { |
|
const string about = |
|
"This sample demonstrates recoloring grayscale images with dnn.\n" |
|
"This program is based on:\n" |
|
" http://richzhang.github.io/colorization\n" |
|
" https://github.com/richzhang/colorization\n" |
|
"To download the onnx model:\n" |
|
" https://storage.googleapis.com/ailia-models/colorization/colorizer.onnx\n"; |
|
|
|
const string param_keys = |
|
"{ help h | | Print help message. }" |
|
"{ input i | baboon.jpg | Path to the input image }" |
|
"{ onnx_model_path | | Path to the ONNX model. Required. }"; |
|
|
|
const string backend_keys = format( |
|
"{ backend | 0 | Choose one of computation backends: " |
|
"%d: automatically (by default), " |
|
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
|
"%d: OpenCV implementation, " |
|
"%d: VKCOM, " |
|
"%d: CUDA, " |
|
"%d: WebNN }", |
|
cv::dnn::DNN_BACKEND_DEFAULT, cv::dnn::DNN_BACKEND_INFERENCE_ENGINE, cv::dnn::DNN_BACKEND_OPENCV, |
|
cv::dnn::DNN_BACKEND_VKCOM, cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_BACKEND_WEBNN); |
|
const string target_keys = format( |
|
"{ target | 0 | Choose one of target computation devices: " |
|
"%d: CPU target (by default), " |
|
"%d: OpenCL, " |
|
"%d: OpenCL fp16 (half-float precision), " |
|
"%d: VPU, " |
|
"%d: Vulkan, " |
|
"%d: CUDA, " |
|
"%d: CUDA fp16 (half-float preprocess) }", |
|
cv::dnn::DNN_TARGET_CPU, cv::dnn::DNN_TARGET_OPENCL, cv::dnn::DNN_TARGET_OPENCL_FP16, |
|
cv::dnn::DNN_TARGET_MYRIAD, cv::dnn::DNN_TARGET_VULKAN, cv::dnn::DNN_TARGET_CUDA, |
|
cv::dnn::DNN_TARGET_CUDA_FP16); |
|
|
|
const string keys = param_keys + backend_keys + target_keys; |
|
CommandLineParser parser(argc, argv, keys); |
|
parser.about(about); |
|
|
|
if (parser.has("help")) { |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
string inputImagePath = parser.get<string>("input"); |
|
string onnxModelPath = parser.get<string>("onnx_model_path"); |
|
int backendId = parser.get<int>("backend"); |
|
int targetId = parser.get<int>("target"); |
|
|
|
if (onnxModelPath.empty()) { |
|
cerr << "The path to the ONNX model is required!" << endl; |
|
return -1; |
|
} |
|
|
|
Mat imgGray = imread(samples::findFile(inputImagePath), IMREAD_GRAYSCALE); |
|
if (imgGray.empty()) { |
|
cerr << "Could not read the image: " << inputImagePath << endl; |
|
return -1; |
|
} |
|
|
|
Mat imgL = imgGray; |
|
imgL.convertTo(imgL, CV_32F, 100.0/255.0); |
|
Mat imgLResized; |
|
resize(imgL, imgLResized, Size(256, 256), 0, 0, INTER_CUBIC); |
|
|
|
// Prepare the model |
|
dnn::Net net = dnn::readNetFromONNX(onnxModelPath); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
//! [Read and initialize network] |
|
|
|
// Create blob from the image |
|
Mat blob = dnn::blobFromImage(imgLResized, 1.0, Size(256, 256), Scalar(), false, false); |
|
|
|
net.setInput(blob); |
|
|
|
// Run inference |
|
Mat result = net.forward(); |
|
Size siz(result.size[2], result.size[3]); |
|
Mat a(siz, CV_32F, result.ptr(0,0)); |
|
Mat b(siz, CV_32F, result.ptr(0,1)); |
|
resize(a, a, imgGray.size()); |
|
resize(b, b, imgGray.size()); |
|
|
|
// merge, and convert back to BGR |
|
Mat color, chn[] = {imgL, a, b}; |
|
|
|
// Proc |
|
Mat lab; |
|
merge(chn, 3, lab); |
|
cvtColor(lab, color, COLOR_Lab2BGR); |
|
|
|
imshow("input image", imgGray); |
|
imshow("output image", color); |
|
waitKey(); |
|
|
|
return 0; |
|
}
|
|
|