mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
65 lines
1.7 KiB
65 lines
1.7 KiB
#include <opencv2/ml/ml.hpp> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::ml; |
|
|
|
int main() |
|
{ |
|
//create random training data |
|
Mat_<float> data(100, 100); |
|
randn(data, Mat::zeros(1, 1, data.type()), Mat::ones(1, 1, data.type())); |
|
|
|
//half of the samples for each class |
|
Mat_<float> responses(data.rows, 2); |
|
for (int i = 0; i<data.rows; ++i) |
|
{ |
|
if (i < data.rows/2) |
|
{ |
|
responses(i, 0) = 1; |
|
responses(i, 1) = 0; |
|
} |
|
else |
|
{ |
|
responses(i, 0) = 0; |
|
responses(i, 1) = 1; |
|
} |
|
} |
|
|
|
/* |
|
//example code for just a single response (regression) |
|
Mat_<float> responses(data.rows, 1); |
|
for (int i=0; i<responses.rows; ++i) |
|
responses(i, 0) = i < responses.rows / 2 ? 0 : 1; |
|
*/ |
|
|
|
//create the neural network |
|
Mat_<int> layerSizes(1, 3); |
|
layerSizes(0, 0) = data.cols; |
|
layerSizes(0, 1) = 20; |
|
layerSizes(0, 2) = responses.cols; |
|
|
|
Ptr<ANN_MLP> network = ANN_MLP::create(); |
|
network->setLayerSizes(layerSizes); |
|
network->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0.1, 0.1); |
|
network->setTrainMethod(ANN_MLP::BACKPROP, 0.1, 0.1); |
|
Ptr<TrainData> trainData = TrainData::create(data, ROW_SAMPLE, responses); |
|
|
|
network->train(trainData); |
|
if (network->isTrained()) |
|
{ |
|
printf("Predict one-vector:\n"); |
|
Mat result; |
|
network->predict(Mat::ones(1, data.cols, data.type()), result); |
|
cout << result << endl; |
|
|
|
printf("Predict training data:\n"); |
|
for (int i=0; i<data.rows; ++i) |
|
{ |
|
network->predict(data.row(i), result); |
|
cout << result << endl; |
|
} |
|
} |
|
|
|
return 0; |
|
}
|
|
|