mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
263 lines
7.5 KiB
263 lines
7.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright( C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
//(including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort(including negligence or otherwise) arising in any way out of |
|
// the use of this software, even ifadvised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
|
|
CvEMParams::CvEMParams() : nclusters(10), cov_mat_type(CvEM::COV_MAT_DIAGONAL), |
|
start_step(CvEM::START_AUTO_STEP), probs(0), weights(0), means(0), covs(0) |
|
{ |
|
term_crit=cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON ); |
|
} |
|
|
|
CvEMParams::CvEMParams( int _nclusters, int _cov_mat_type, int _start_step, |
|
CvTermCriteria _term_crit, const CvMat* _probs, |
|
const CvMat* _weights, const CvMat* _means, const CvMat** _covs ) : |
|
nclusters(_nclusters), cov_mat_type(_cov_mat_type), start_step(_start_step), |
|
probs(_probs), weights(_weights), means(_means), covs(_covs), term_crit(_term_crit) |
|
{} |
|
|
|
CvEM::CvEM() : logLikelihood(DBL_MAX) |
|
{ |
|
} |
|
|
|
CvEM::CvEM( const CvMat* samples, const CvMat* sample_idx, |
|
CvEMParams params, CvMat* labels ) : logLikelihood(DBL_MAX) |
|
{ |
|
train(samples, sample_idx, params, labels); |
|
} |
|
|
|
CvEM::~CvEM() |
|
{ |
|
clear(); |
|
} |
|
|
|
void CvEM::clear() |
|
{ |
|
emObj.clear(); |
|
} |
|
|
|
void CvEM::read( CvFileStorage* fs, CvFileNode* node ) |
|
{ |
|
FileNode fn(fs, node); |
|
emObj.read(fn); |
|
set_mat_hdrs(); |
|
} |
|
|
|
void CvEM::write( CvFileStorage* _fs, const char* name ) const |
|
{ |
|
FileStorage fs = _fs; |
|
if(name) |
|
fs << name << "{"; |
|
emObj.write(fs); |
|
if(name) |
|
fs << "}"; |
|
fs.fs.obj = 0; |
|
} |
|
|
|
double CvEM::calcLikelihood( const Mat &input_sample ) const |
|
{ |
|
return emObj.predict(input_sample)[0]; |
|
} |
|
|
|
float |
|
CvEM::predict( const CvMat* _sample, CvMat* _probs ) const |
|
{ |
|
Mat prbs0 = cvarrToMat(_probs), prbs = prbs0, sample = cvarrToMat(_sample); |
|
int cls = static_cast<int>(emObj.predict(sample, _probs ? _OutputArray(prbs) : cv::noArray())[1]); |
|
if(_probs) |
|
{ |
|
if( prbs.data != prbs0.data ) |
|
{ |
|
CV_Assert( prbs.size == prbs0.size ); |
|
prbs.convertTo(prbs0, prbs0.type()); |
|
} |
|
} |
|
return (float)cls; |
|
} |
|
|
|
void CvEM::set_mat_hdrs() |
|
{ |
|
if(emObj.isTrained()) |
|
{ |
|
meansHdr = emObj.get<Mat>("means"); |
|
int K = emObj.get<int>("nclusters"); |
|
covsHdrs.resize(K); |
|
covsPtrs.resize(K); |
|
const std::vector<Mat>& covs = emObj.get<vector<Mat> >("covs"); |
|
for(size_t i = 0; i < covsHdrs.size(); i++) |
|
{ |
|
covsHdrs[i] = covs[i]; |
|
covsPtrs[i] = &covsHdrs[i]; |
|
} |
|
weightsHdr = emObj.get<Mat>("weights"); |
|
probsHdr = probs; |
|
} |
|
} |
|
|
|
static |
|
void init_params(const CvEMParams& src, |
|
Mat& prbs, Mat& weights, |
|
Mat& means, vector<Mat>& covsHdrs) |
|
{ |
|
prbs = src.probs; |
|
weights = src.weights; |
|
means = src.means; |
|
|
|
if(src.covs) |
|
{ |
|
covsHdrs.resize(src.nclusters); |
|
for(size_t i = 0; i < covsHdrs.size(); i++) |
|
covsHdrs[i] = src.covs[i]; |
|
} |
|
} |
|
|
|
bool CvEM::train( const CvMat* _samples, const CvMat* _sample_idx, |
|
CvEMParams _params, CvMat* _labels ) |
|
{ |
|
CV_Assert(_sample_idx == 0); |
|
Mat samples = cvarrToMat(_samples), labels0, labels; |
|
if( _labels ) |
|
labels0 = labels = cvarrToMat(_labels); |
|
|
|
bool isOk = train(samples, Mat(), _params, _labels ? &labels : 0); |
|
CV_Assert( labels0.data == labels.data ); |
|
|
|
return isOk; |
|
} |
|
|
|
int CvEM::get_nclusters() const |
|
{ |
|
return emObj.get<int>("nclusters"); |
|
} |
|
|
|
const CvMat* CvEM::get_means() const |
|
{ |
|
return emObj.isTrained() ? &meansHdr : 0; |
|
} |
|
|
|
const CvMat** CvEM::get_covs() const |
|
{ |
|
return emObj.isTrained() ? (const CvMat**)&covsPtrs[0] : 0; |
|
} |
|
|
|
const CvMat* CvEM::get_weights() const |
|
{ |
|
return emObj.isTrained() ? &weightsHdr : 0; |
|
} |
|
|
|
const CvMat* CvEM::get_probs() const |
|
{ |
|
return emObj.isTrained() ? &probsHdr : 0; |
|
} |
|
|
|
using namespace cv; |
|
|
|
CvEM::CvEM( const Mat& samples, const Mat& sample_idx, CvEMParams params ) |
|
{ |
|
train(samples, sample_idx, params, 0); |
|
} |
|
|
|
bool CvEM::train( const Mat& _samples, const Mat& _sample_idx, |
|
CvEMParams _params, Mat* _labels ) |
|
{ |
|
CV_Assert(_sample_idx.empty()); |
|
Mat prbs, weights, means, logLikelihoods; |
|
std::vector<Mat> covsHdrs; |
|
init_params(_params, prbs, weights, means, covsHdrs); |
|
|
|
emObj = EM(_params.nclusters, _params.cov_mat_type, _params.term_crit); |
|
bool isOk = false; |
|
if( _params.start_step == EM::START_AUTO_STEP ) |
|
isOk = emObj.train(_samples, |
|
logLikelihoods, _labels ? _OutputArray(*_labels) : cv::noArray(), probs); |
|
else if( _params.start_step == EM::START_E_STEP ) |
|
isOk = emObj.trainE(_samples, means, covsHdrs, weights, |
|
logLikelihoods, _labels ? _OutputArray(*_labels) : cv::noArray(), probs); |
|
else if( _params.start_step == EM::START_M_STEP ) |
|
isOk = emObj.trainM(_samples, prbs, |
|
logLikelihoods, _labels ? _OutputArray(*_labels) : cv::noArray(), probs); |
|
else |
|
CV_Error(CV_StsBadArg, "Bad start type of EM algorithm"); |
|
|
|
if(isOk) |
|
{ |
|
logLikelihood = sum(logLikelihoods).val[0]; |
|
set_mat_hdrs(); |
|
} |
|
|
|
return isOk; |
|
} |
|
|
|
float |
|
CvEM::predict( const Mat& _sample, Mat* _probs ) const |
|
{ |
|
return static_cast<float>(emObj.predict(_sample, _probs ? _OutputArray(*_probs) : cv::noArray())[1]); |
|
} |
|
|
|
int CvEM::getNClusters() const |
|
{ |
|
return emObj.get<int>("nclusters"); |
|
} |
|
|
|
Mat CvEM::getMeans() const |
|
{ |
|
return emObj.get<Mat>("means"); |
|
} |
|
|
|
void CvEM::getCovs(vector<Mat>& _covs) const |
|
{ |
|
_covs = emObj.get<vector<Mat> >("covs"); |
|
} |
|
|
|
Mat CvEM::getWeights() const |
|
{ |
|
return emObj.get<Mat>("weights"); |
|
} |
|
|
|
Mat CvEM::getProbs() const |
|
{ |
|
return probs; |
|
} |
|
|
|
|
|
/* End of file. */
|
|
|