Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
7.2 KiB
219 lines
7.2 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <string> |
|
#include <algorithm> |
|
#include <fstream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
void loadImage(string path, Mat &img) |
|
{ |
|
img = imread(path, -1); |
|
ASSERT_FALSE(img.empty()) << "Could not load input image " << path; |
|
} |
|
|
|
void checkEqual(Mat img0, Mat img1, double threshold) |
|
{ |
|
double max = 1.0; |
|
minMaxLoc(abs(img0 - img1), NULL, &max); |
|
ASSERT_FALSE(max > threshold); |
|
} |
|
|
|
TEST(Photo_Tonemap, regression) |
|
{ |
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; |
|
|
|
Mat img, expected, result; |
|
loadImage(test_path + "rle.hdr", img); |
|
float gamma = 2.2f; |
|
test_path += "tonemap/"; |
|
|
|
Ptr<TonemapLinear> linear = createTonemapLinear(gamma); |
|
linear->process(img, result); |
|
loadImage(test_path + "linear.png", expected); |
|
result.convertTo(result, CV_8UC3, 255); |
|
checkEqual(result, expected, 0); |
|
|
|
Ptr<TonemapDrago> drago = createTonemapDrago(gamma); |
|
drago->process(img, result); |
|
loadImage(test_path + "drago.png", expected); |
|
result.convertTo(result, CV_8UC3, 255); |
|
checkEqual(result, expected, 0); |
|
|
|
Ptr<TonemapDurand> durand = createTonemapDurand(gamma); |
|
durand->process(img, result); |
|
loadImage(test_path + "durand.png", expected); |
|
result.convertTo(result, CV_8UC3, 255); |
|
checkEqual(result, expected, 0); |
|
|
|
Ptr<TonemapReinhardDevlin> reinhard_devlin = createTonemapReinhardDevlin(gamma); |
|
reinhard_devlin->process(img, result); |
|
loadImage(test_path + "reinhard_devlin.png", expected); |
|
result.convertTo(result, CV_8UC3, 255); |
|
checkEqual(result, expected, 0); |
|
} |
|
|
|
|
|
|
|
//void loadExposureSeq(String fuse_path, vector<Mat>& images, vector<float>& times = vector<float>()) |
|
//{ |
|
// ifstream list_file(fuse_path + "list.txt"); |
|
// ASSERT_TRUE(list_file.is_open()); |
|
// string name; |
|
// float val; |
|
// while(list_file >> name >> val) { |
|
// Mat img = imread(fuse_path + name); |
|
// ASSERT_FALSE(img.empty()) << "Could not load input image " << fuse_path + name; |
|
// images.push_back(img); |
|
// times.push_back(1 / val); |
|
// } |
|
// list_file.close(); |
|
//} |
|
//// |
|
////TEST(Photo_MergeMertens, regression) |
|
////{ |
|
//// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; |
|
//// string fuse_path = test_path + "fusion/"; |
|
//// |
|
//// vector<Mat> images; |
|
//// loadExposureSeq(fuse_path, images); |
|
//// |
|
//// MergeMertens merge; |
|
//// |
|
//// Mat result, expected; |
|
//// loadImage(test_path + "exp_fusion.png", expected); |
|
//// merge.process(images, result); |
|
//// result.convertTo(result, CV_8UC3, 255); |
|
//// checkEqual(expected, result, 0); |
|
////} |
|
// |
|
//TEST(Photo_Debevec, regression) |
|
//{ |
|
// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; |
|
// string fuse_path = test_path + "fusion/"; |
|
// |
|
// vector<float> times; |
|
// vector<Mat> images; |
|
// |
|
// loadExposureSeq(fuse_path, images, times); |
|
// |
|
// Mat response, expected(256, 3, CV_32F); |
|
// ifstream resp_file(test_path + "response.csv"); |
|
// for(int i = 0; i < 256; i++) { |
|
// for(int channel = 0; channel < 3; channel++) { |
|
// resp_file >> expected.at<float>(i, channel); |
|
// resp_file.ignore(1); |
|
// } |
|
// } |
|
// resp_file.close(); |
|
// |
|
// CalibrateDebevec calib; |
|
// MergeDebevec merge; |
|
// |
|
// //calib.process(images, response, times); |
|
// //checkEqual(expected, response, 0.001); |
|
// // |
|
// Mat result; |
|
// loadImage(test_path + "no_calibration.hdr", expected); |
|
// merge.process(images, result, times); |
|
// checkEqual(expected, result, 0.01); |
|
// |
|
// //loadImage(test_path + "rle.hdr", expected); |
|
// //merge.process(images, result, times, response); |
|
// //checkEqual(expected, result, 0.01); |
|
//} |
|
// |
|
//TEST(Photo_Tonemap, regression) |
|
//{ |
|
// initModule_photo(); |
|
// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/"; |
|
// Mat img; |
|
// loadImage(test_path + "../rle.hdr", img); |
|
// |
|
// vector<String> algorithms; |
|
// Algorithm::getList(algorithms); |
|
// for(size_t i = 0; i < algorithms.size(); i++) { |
|
// String str = algorithms[i]; |
|
// size_t dot = str.find('.'); |
|
// if(dot != String::npos && str.substr(0, dot).compare("Tonemap") == 0) { |
|
// String algo_name = str.substr(dot + 1, str.size()); |
|
// Mat expected; |
|
// loadImage(test_path + algo_name.toLowerCase() + ".png", expected); |
|
// Ptr<Tonemap> mapper = Tonemap::create(algo_name); |
|
// ASSERT_FALSE(mapper.empty()) << algo_name; |
|
// Mat result; |
|
// mapper->process(img, result); |
|
// result.convertTo(result, CV_8UC3, 255); |
|
// checkEqual(expected, result, 0); |
|
// } |
|
// } |
|
////} |
|
//// |
|
////TEST(Photo_AlignMTB, regression) |
|
////{ |
|
//// const int TESTS_COUNT = 100; |
|
//// string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/"; |
|
//// |
|
//// string file_name = folder + "lena.png"; |
|
//// Mat img = imread(file_name); |
|
//// ASSERT_FALSE(img.empty()) << "Could not load input image " << file_name; |
|
//// cvtColor(img, img, COLOR_RGB2GRAY); |
|
//// |
|
//// int max_bits = 5; |
|
//// int max_shift = 32; |
|
//// srand(static_cast<unsigned>(time(0))); |
|
//// int errors = 0; |
|
//// |
|
//// AlignMTB align(max_bits); |
|
//// |
|
//// for(int i = 0; i < TESTS_COUNT; i++) { |
|
//// Point shift(rand() % max_shift, rand() % max_shift); |
|
//// Mat res; |
|
//// align.shiftMat(img, shift, res); |
|
//// Point calc = align.getExpShift(img, res); |
|
//// errors += (calc != -shift); |
|
//// } |
|
//// ASSERT_TRUE(errors < 5); |
|
////}
|
|
|