Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

219 lines
7.2 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <string>
#include <algorithm>
#include <fstream>
using namespace cv;
using namespace std;
void loadImage(string path, Mat &img)
{
img = imread(path, -1);
ASSERT_FALSE(img.empty()) << "Could not load input image " << path;
}
void checkEqual(Mat img0, Mat img1, double threshold)
{
double max = 1.0;
minMaxLoc(abs(img0 - img1), NULL, &max);
ASSERT_FALSE(max > threshold);
}
TEST(Photo_Tonemap, regression)
{
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
Mat img, expected, result;
loadImage(test_path + "rle.hdr", img);
float gamma = 2.2f;
test_path += "tonemap/";
Ptr<TonemapLinear> linear = createTonemapLinear(gamma);
linear->process(img, result);
loadImage(test_path + "linear.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
Ptr<TonemapDrago> drago = createTonemapDrago(gamma);
drago->process(img, result);
loadImage(test_path + "drago.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
Ptr<TonemapDurand> durand = createTonemapDurand(gamma);
durand->process(img, result);
loadImage(test_path + "durand.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
Ptr<TonemapReinhardDevlin> reinhard_devlin = createTonemapReinhardDevlin(gamma);
reinhard_devlin->process(img, result);
loadImage(test_path + "reinhard_devlin.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
}
//void loadExposureSeq(String fuse_path, vector<Mat>& images, vector<float>& times = vector<float>())
//{
// ifstream list_file(fuse_path + "list.txt");
// ASSERT_TRUE(list_file.is_open());
// string name;
// float val;
// while(list_file >> name >> val) {
// Mat img = imread(fuse_path + name);
// ASSERT_FALSE(img.empty()) << "Could not load input image " << fuse_path + name;
// images.push_back(img);
// times.push_back(1 / val);
// }
// list_file.close();
//}
////
////TEST(Photo_MergeMertens, regression)
////{
//// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
//// string fuse_path = test_path + "fusion/";
////
//// vector<Mat> images;
//// loadExposureSeq(fuse_path, images);
////
//// MergeMertens merge;
////
//// Mat result, expected;
//// loadImage(test_path + "exp_fusion.png", expected);
//// merge.process(images, result);
//// result.convertTo(result, CV_8UC3, 255);
//// checkEqual(expected, result, 0);
////}
//
//TEST(Photo_Debevec, regression)
//{
// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
// string fuse_path = test_path + "fusion/";
//
// vector<float> times;
// vector<Mat> images;
//
// loadExposureSeq(fuse_path, images, times);
//
// Mat response, expected(256, 3, CV_32F);
// ifstream resp_file(test_path + "response.csv");
// for(int i = 0; i < 256; i++) {
// for(int channel = 0; channel < 3; channel++) {
// resp_file >> expected.at<float>(i, channel);
// resp_file.ignore(1);
// }
// }
// resp_file.close();
//
// CalibrateDebevec calib;
// MergeDebevec merge;
//
// //calib.process(images, response, times);
// //checkEqual(expected, response, 0.001);
// //
// Mat result;
// loadImage(test_path + "no_calibration.hdr", expected);
// merge.process(images, result, times);
// checkEqual(expected, result, 0.01);
//
// //loadImage(test_path + "rle.hdr", expected);
// //merge.process(images, result, times, response);
// //checkEqual(expected, result, 0.01);
//}
//
//TEST(Photo_Tonemap, regression)
//{
// initModule_photo();
// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/";
// Mat img;
// loadImage(test_path + "../rle.hdr", img);
//
// vector<String> algorithms;
// Algorithm::getList(algorithms);
// for(size_t i = 0; i < algorithms.size(); i++) {
// String str = algorithms[i];
// size_t dot = str.find('.');
// if(dot != String::npos && str.substr(0, dot).compare("Tonemap") == 0) {
// String algo_name = str.substr(dot + 1, str.size());
// Mat expected;
// loadImage(test_path + algo_name.toLowerCase() + ".png", expected);
// Ptr<Tonemap> mapper = Tonemap::create(algo_name);
// ASSERT_FALSE(mapper.empty()) << algo_name;
// Mat result;
// mapper->process(img, result);
// result.convertTo(result, CV_8UC3, 255);
// checkEqual(expected, result, 0);
// }
// }
////}
////
////TEST(Photo_AlignMTB, regression)
////{
//// const int TESTS_COUNT = 100;
//// string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
////
//// string file_name = folder + "lena.png";
//// Mat img = imread(file_name);
//// ASSERT_FALSE(img.empty()) << "Could not load input image " << file_name;
//// cvtColor(img, img, COLOR_RGB2GRAY);
////
//// int max_bits = 5;
//// int max_shift = 32;
//// srand(static_cast<unsigned>(time(0)));
//// int errors = 0;
////
//// AlignMTB align(max_bits);
////
//// for(int i = 0; i < TESTS_COUNT; i++) {
//// Point shift(rand() % max_shift, rand() % max_shift);
//// Mat res;
//// align.shiftMat(img, shift, res);
//// Point calc = align.getExpShift(img, res);
//// errors += (calc != -shift);
//// }
//// ASSERT_TRUE(errors < 5);
////}