mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
4.4 KiB
122 lines
4.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
// Trating application for Soft Cascades. |
|
|
|
#include <sft/common.hpp> |
|
#include <sft/octave.hpp> |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
// hard coded now |
|
int nfeatures = 50; |
|
int npositives = 10; |
|
int nnegatives = 10; |
|
|
|
int nsamples = npositives + nnegatives; |
|
cv::Size model(64, 128); |
|
std::string path = "/home/kellan/cuda-dev/opencv_extra/testdata/sctrain/rescaled-train-2012-10-27-19-02-52"; |
|
|
|
sft::Octave boost(0); |
|
cv::Mat train_data(nfeatures, nsamples, CV_32FC1); |
|
|
|
sft::FeaturePool pool(model, nfeatures); |
|
sft::Dataset(path, boost.logScale); |
|
|
|
cv::RNG rng; |
|
|
|
for (int y = 0; y < nfeatures; ++y) |
|
for (int x = 0; x < nsamples; ++x) |
|
train_data.at<float>(y, x) = rng.uniform(0.f, 1.f); |
|
|
|
int tflag = CV_COL_SAMPLE; |
|
cv::Mat responses(nsamples, 1, CV_32FC1); |
|
for (int y = 0; y < nsamples; ++y) |
|
responses.at<float>(y, 0) = (y < npositives) ? 1.f : 0.f; |
|
|
|
|
|
cv::Mat var_idx(1, nfeatures, CV_32SC1); |
|
for (int x = 0; x < nfeatures; ++x) |
|
var_idx.at<int>(0, x) = x; |
|
|
|
// Mat sample_idx; |
|
cv::Mat sample_idx(1, nsamples, CV_32SC1); |
|
for (int x = 0; x < nsamples; ++x) |
|
sample_idx.at<int>(0, x) = x; |
|
|
|
cv::Mat var_type(1, nfeatures + 1, CV_8UC1); |
|
for (int x = 0; x < nfeatures; ++x) |
|
var_type.at<uchar>(0, x) = CV_VAR_ORDERED; |
|
|
|
var_type.at<uchar>(0, nfeatures) = CV_VAR_CATEGORICAL; |
|
|
|
cv::Mat missing_mask; |
|
|
|
CvBoostParams params; |
|
{ |
|
params.max_categories = 10; |
|
params.max_depth = 2; |
|
params.min_sample_count = 2; |
|
params.cv_folds = 0; |
|
params.truncate_pruned_tree = false; |
|
|
|
/// ?????????????????? |
|
params.regression_accuracy = 0.01; |
|
params.use_surrogates = false; |
|
params.use_1se_rule = false; |
|
|
|
///////// boost params |
|
params.boost_type = CvBoost::GENTLE; |
|
params.weak_count = 1; |
|
params.split_criteria = CvBoost::SQERR; |
|
params.weight_trim_rate = 0.95; |
|
} |
|
|
|
bool update = false; |
|
|
|
boost.train(train_data, responses, var_idx, sample_idx, var_type, missing_mask); |
|
|
|
// CvFileStorage* fs = cvOpenFileStorage( "/home/kellan/train_res.xml", 0, CV_STORAGE_WRITE ); |
|
// boost.write(fs, "test_res"); |
|
|
|
// cvReleaseFileStorage( &fs ); |
|
} |