mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
408 lines
16 KiB
408 lines
16 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2019-2020 Intel Corporation |
|
|
|
#include "../test_precomp.hpp" |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
|
|
#include <stdexcept> |
|
|
|
#include <inference_engine.hpp> |
|
|
|
#include <ade/util/iota_range.hpp> |
|
|
|
#include <opencv2/gapi/infer/ie.hpp> |
|
|
|
#include "backends/ie/util.hpp" |
|
#include "backends/ie/giebackend/giewrapper.hpp" |
|
|
|
namespace opencv_test |
|
{ |
|
namespace { |
|
|
|
// FIXME: taken from DNN module |
|
static void initDLDTDataPath() |
|
{ |
|
#ifndef WINRT |
|
static bool initialized = false; |
|
if (!initialized) |
|
{ |
|
const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH"); |
|
if (omzDataPath) |
|
cvtest::addDataSearchPath(omzDataPath); |
|
const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH"); |
|
if (dnnDataPath) { |
|
// Add the dnnDataPath itself - G-API is using some images there directly |
|
cvtest::addDataSearchPath(dnnDataPath); |
|
cvtest::addDataSearchPath(dnnDataPath + std::string("/omz_intel_models")); |
|
} |
|
initialized = true; |
|
} |
|
#endif // WINRT |
|
} |
|
|
|
#if INF_ENGINE_RELEASE >= 2020010000 |
|
static const std::string SUBDIR = "intel/age-gender-recognition-retail-0013/FP32/"; |
|
#else |
|
static const std::string SUBDIR = "Retail/object_attributes/age_gender/dldt/"; |
|
#endif |
|
|
|
// FIXME: taken from the DNN module |
|
void normAssert(cv::InputArray ref, cv::InputArray test, |
|
const char *comment /*= ""*/, |
|
double l1 = 0.00001, double lInf = 0.0001) |
|
{ |
|
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); |
|
EXPECT_LE(normL1, l1) << comment; |
|
|
|
double normInf = cvtest::norm(ref, test, cv::NORM_INF); |
|
EXPECT_LE(normInf, lInf) << comment; |
|
} |
|
|
|
namespace IE = InferenceEngine; |
|
|
|
void setNetParameters(IE::CNNNetwork& net) { |
|
auto &ii = net.getInputsInfo().at("data"); |
|
ii->setPrecision(IE::Precision::U8); |
|
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR); |
|
} |
|
} // anonymous namespace |
|
|
|
// TODO: Probably DNN/IE part can be further parametrized with a template |
|
// NOTE: here ".." is used to leave the default "gapi/" search scope |
|
TEST(TestAgeGenderIE, InferBasicTensor) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// Load IE network, initialize input data using that. |
|
cv::Mat in_mat; |
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
|
|
const auto &iedims = net.getInputsInfo().begin()->second->getTensorDesc().getDims(); |
|
auto cvdims = cv::gapi::ie::util::to_ocv(iedims); |
|
in_mat.create(cvdims, CV_32F); |
|
cv::randu(in_mat, -1, 1); |
|
|
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(TestAgeGenderIE, InferBasicImage) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// FIXME: Ideally it should be an image from disk |
|
// cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png")); |
|
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
struct ROIList: public ::testing::Test { |
|
cv::gapi::ie::detail::ParamDesc params; |
|
|
|
cv::Mat m_in_mat; |
|
std::vector<cv::Rect> m_roi_list; |
|
|
|
std::vector<cv::Mat> m_out_ie_ages; |
|
std::vector<cv::Mat> m_out_ie_genders; |
|
|
|
std::vector<cv::Mat> m_out_gapi_ages; |
|
std::vector<cv::Mat> m_out_gapi_genders; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
void SetUp() { |
|
initDLDTDataPath(); |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false)); |
|
m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(m_in_mat, 0, 255); |
|
|
|
// both ROIs point to the same face, with a slightly changed geometry |
|
m_roi_list = { |
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), |
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), |
|
}; |
|
|
|
// Load & run IE network |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
auto frame_blob = cv::gapi::ie::util::to_ie(m_in_mat); |
|
|
|
for (auto &&rc : m_roi_list) { |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rc.x) |
|
, static_cast<std::size_t>(rc.y) |
|
, static_cast<std::size_t>(rc.width) |
|
, static_cast<std::size_t>(rc.height) |
|
}; |
|
infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); |
|
infer_request.Infer(); |
|
|
|
using namespace cv::gapi::ie::util; |
|
m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} |
|
} // namespace IE = .. |
|
} // ROIList() |
|
|
|
void validate() { |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
ASSERT_EQ(2u, m_out_ie_ages.size()); |
|
ASSERT_EQ(2u, m_out_ie_genders.size()); |
|
ASSERT_EQ(2u, m_out_gapi_ages.size()); |
|
ASSERT_EQ(2u, m_out_gapi_genders.size()); |
|
|
|
normAssert(m_out_ie_ages [0], m_out_gapi_ages [0], "0: Test age output"); |
|
normAssert(m_out_ie_genders[0], m_out_gapi_genders[0], "0: Test gender output"); |
|
normAssert(m_out_ie_ages [1], m_out_gapi_ages [1], "1: Test age output"); |
|
normAssert(m_out_ie_genders[1], m_out_gapi_genders[1], "1: Test gender output"); |
|
} |
|
}; // ROIList |
|
|
|
TEST_F(ROIList, TestInfer) |
|
{ |
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(m_in_mat, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
TEST_F(ROIList, TestInfer2) |
|
{ |
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(m_in_mat, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
TEST(DISABLED_TestTwoIENNPipeline, InferBasicImage) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc AGparams; |
|
AGparams.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml", false); |
|
AGparams.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin", false); |
|
AGparams.device_id = "MYRIAD"; |
|
|
|
// FIXME: Ideally it should be an image from disk |
|
// cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png")); |
|
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
|
|
cv::Mat gapi_age1, gapi_gender1, gapi_age2, gapi_gender2; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age1, ie_gender1, ie_age2, ie_gender2; |
|
{ |
|
auto AGplugin1 = cv::gimpl::ie::wrap::getPlugin(AGparams); |
|
auto AGnet1 = cv::gimpl::ie::wrap::readNetwork(AGparams); |
|
setNetParameters(AGnet1); |
|
auto AGplugin_network1 = cv::gimpl::ie::wrap::loadNetwork(AGplugin1, AGnet1, AGparams); |
|
auto AGinfer_request1 = AGplugin_network1.CreateInferRequest(); |
|
AGinfer_request1.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
AGinfer_request1.Infer(); |
|
ie_age1 = AGinfer_request1.GetBlob("age_conv3"); |
|
ie_gender1 = AGinfer_request1.GetBlob("prob"); |
|
|
|
auto AGplugin2 = cv::gimpl::ie::wrap::getPlugin(AGparams); |
|
auto AGnet2 = cv::gimpl::ie::wrap::readNetwork(AGparams); |
|
setNetParameters(AGnet2); |
|
auto AGplugin_network2 = cv::gimpl::ie::wrap::loadNetwork(AGplugin2, AGnet2, AGparams); |
|
auto AGinfer_request2 = AGplugin_network2.CreateInferRequest(); |
|
AGinfer_request2.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
AGinfer_request2.Infer(); |
|
ie_age2 = AGinfer_request2.GetBlob("age_conv3"); |
|
ie_gender2 = AGinfer_request2.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender1, <AGInfo(cv::GMat)>, "test-age-gender1"); |
|
G_API_NET(AgeGender2, <AGInfo(cv::GMat)>, "test-age-gender2"); |
|
cv::GMat in; |
|
cv::GMat age1, gender1; |
|
std::tie(age1, gender1) = cv::gapi::infer<AgeGender1>(in); |
|
|
|
cv::GMat age2, gender2; |
|
// FIXME: "Multi-node inference is not supported!", workarounded 'till enabling proper tools |
|
std::tie(age2, gender2) = cv::gapi::infer<AgeGender2>(cv::gapi::copy(in)); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age1, gender1, age2, gender2)); |
|
|
|
auto age_net1 = cv::gapi::ie::Params<AgeGender1> { |
|
AGparams.model_path, AGparams.weights_path, AGparams.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
auto age_net2 = cv::gapi::ie::Params<AgeGender2> { |
|
AGparams.model_path, AGparams.weights_path, AGparams.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age1, gapi_gender1, gapi_age2, gapi_gender2), |
|
cv::compile_args(cv::gapi::networks(age_net1, age_net2))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age1), gapi_age1, "Test age output 1"); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender1), gapi_gender1, "Test gender output 1"); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age2), gapi_age2, "Test age output 2"); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender2), gapi_gender2, "Test gender output 2"); |
|
} |
|
|
|
TEST(TestAgeGenderIE, GenericInfer) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
cv::GMat in; |
|
GInferInputs inputs; |
|
inputs["data"] = in; |
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", inputs); |
|
|
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{"age-gender-generic", |
|
params.model_path, |
|
params.weights_path, |
|
params.device_id}; |
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
} // namespace opencv_test |
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|