mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
9.4 KiB
262 lines
9.4 KiB
/* |
|
Text detection model: https://github.com/argman/EAST |
|
Download link: https://www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1 |
|
|
|
CRNN Text recognition model taken from here: https://github.com/meijieru/crnn.pytorch |
|
How to convert from pb to onnx: |
|
Using classes from here: https://github.com/meijieru/crnn.pytorch/blob/master/models/crnn.py |
|
|
|
More converted onnx text recognition models can be downloaded directly here: |
|
Download link: https://drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr?usp=sharing |
|
And these models taken from here:https://github.com/clovaai/deep-text-recognition-benchmark |
|
|
|
import torch |
|
from models.crnn import CRNN |
|
|
|
model = CRNN(32, 1, 37, 256) |
|
model.load_state_dict(torch.load('crnn.pth')) |
|
dummy_input = torch.randn(1, 1, 32, 100) |
|
torch.onnx.export(model, dummy_input, "crnn.onnx", verbose=True) |
|
*/ |
|
|
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/dnn.hpp> |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
const char* keys = |
|
"{ help h | | Print help message. }" |
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" |
|
"{ model m | | Path to a binary .pb file contains trained detector network.}" |
|
"{ ocr | | Path to a binary .pb or .onnx file contains trained recognition network.}" |
|
"{ width | 320 | Preprocess input image by resizing to a specific width. It should be multiple by 32. }" |
|
"{ height | 320 | Preprocess input image by resizing to a specific height. It should be multiple by 32. }" |
|
"{ thr | 0.5 | Confidence threshold. }" |
|
"{ nms | 0.4 | Non-maximum suppression threshold. }"; |
|
|
|
void decodeBoundingBoxes(const Mat& scores, const Mat& geometry, float scoreThresh, |
|
std::vector<RotatedRect>& detections, std::vector<float>& confidences); |
|
|
|
void fourPointsTransform(const Mat& frame, Point2f vertices[4], Mat& result); |
|
|
|
void decodeText(const Mat& scores, std::string& text); |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
// Parse command line arguments. |
|
CommandLineParser parser(argc, argv, keys); |
|
parser.about("Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of " |
|
"EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)"); |
|
if (argc == 1 || parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
float confThreshold = parser.get<float>("thr"); |
|
float nmsThreshold = parser.get<float>("nms"); |
|
int inpWidth = parser.get<int>("width"); |
|
int inpHeight = parser.get<int>("height"); |
|
String modelDecoder = parser.get<String>("model"); |
|
String modelRecognition = parser.get<String>("ocr"); |
|
|
|
if (!parser.check()) |
|
{ |
|
parser.printErrors(); |
|
return 1; |
|
} |
|
|
|
CV_Assert(!modelDecoder.empty()); |
|
|
|
// Load networks. |
|
Net detector = readNet(modelDecoder); |
|
Net recognizer; |
|
|
|
if (!modelRecognition.empty()) |
|
recognizer = readNet(modelRecognition); |
|
|
|
// Open a video file or an image file or a camera stream. |
|
VideoCapture cap; |
|
bool openSuccess = parser.has("input") ? cap.open(parser.get<String>("input")) : cap.open(0); |
|
CV_Assert(openSuccess); |
|
|
|
static const std::string kWinName = "EAST: An Efficient and Accurate Scene Text Detector"; |
|
namedWindow(kWinName, WINDOW_NORMAL); |
|
|
|
std::vector<Mat> outs; |
|
std::vector<String> outNames(2); |
|
outNames[0] = "feature_fusion/Conv_7/Sigmoid"; |
|
outNames[1] = "feature_fusion/concat_3"; |
|
|
|
Mat frame, blob; |
|
TickMeter tickMeter; |
|
while (waitKey(1) < 0) |
|
{ |
|
cap >> frame; |
|
if (frame.empty()) |
|
{ |
|
waitKey(); |
|
break; |
|
} |
|
|
|
blobFromImage(frame, blob, 1.0, Size(inpWidth, inpHeight), Scalar(123.68, 116.78, 103.94), true, false); |
|
detector.setInput(blob); |
|
tickMeter.start(); |
|
detector.forward(outs, outNames); |
|
tickMeter.stop(); |
|
|
|
Mat scores = outs[0]; |
|
Mat geometry = outs[1]; |
|
|
|
// Decode predicted bounding boxes. |
|
std::vector<RotatedRect> boxes; |
|
std::vector<float> confidences; |
|
decodeBoundingBoxes(scores, geometry, confThreshold, boxes, confidences); |
|
|
|
// Apply non-maximum suppression procedure. |
|
std::vector<int> indices; |
|
NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); |
|
|
|
Point2f ratio((float)frame.cols / inpWidth, (float)frame.rows / inpHeight); |
|
|
|
// Render text. |
|
for (size_t i = 0; i < indices.size(); ++i) |
|
{ |
|
RotatedRect& box = boxes[indices[i]]; |
|
|
|
Point2f vertices[4]; |
|
box.points(vertices); |
|
|
|
for (int j = 0; j < 4; ++j) |
|
{ |
|
vertices[j].x *= ratio.x; |
|
vertices[j].y *= ratio.y; |
|
} |
|
|
|
if (!modelRecognition.empty()) |
|
{ |
|
Mat cropped; |
|
fourPointsTransform(frame, vertices, cropped); |
|
|
|
cvtColor(cropped, cropped, cv::COLOR_BGR2GRAY); |
|
|
|
Mat blobCrop = blobFromImage(cropped, 1.0/127.5, Size(), Scalar::all(127.5)); |
|
recognizer.setInput(blobCrop); |
|
|
|
tickMeter.start(); |
|
Mat result = recognizer.forward(); |
|
tickMeter.stop(); |
|
|
|
std::string wordRecognized = ""; |
|
decodeText(result, wordRecognized); |
|
putText(frame, wordRecognized, vertices[1], FONT_HERSHEY_SIMPLEX, 1.5, Scalar(0, 0, 255)); |
|
} |
|
|
|
for (int j = 0; j < 4; ++j) |
|
line(frame, vertices[j], vertices[(j + 1) % 4], Scalar(0, 255, 0), 1); |
|
} |
|
|
|
// Put efficiency information. |
|
std::string label = format("Inference time: %.2f ms", tickMeter.getTimeMilli()); |
|
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
|
|
|
imshow(kWinName, frame); |
|
|
|
tickMeter.reset(); |
|
} |
|
return 0; |
|
} |
|
|
|
void decodeBoundingBoxes(const Mat& scores, const Mat& geometry, float scoreThresh, |
|
std::vector<RotatedRect>& detections, std::vector<float>& confidences) |
|
{ |
|
detections.clear(); |
|
CV_Assert(scores.dims == 4); CV_Assert(geometry.dims == 4); CV_Assert(scores.size[0] == 1); |
|
CV_Assert(geometry.size[0] == 1); CV_Assert(scores.size[1] == 1); CV_Assert(geometry.size[1] == 5); |
|
CV_Assert(scores.size[2] == geometry.size[2]); CV_Assert(scores.size[3] == geometry.size[3]); |
|
|
|
const int height = scores.size[2]; |
|
const int width = scores.size[3]; |
|
for (int y = 0; y < height; ++y) |
|
{ |
|
const float* scoresData = scores.ptr<float>(0, 0, y); |
|
const float* x0_data = geometry.ptr<float>(0, 0, y); |
|
const float* x1_data = geometry.ptr<float>(0, 1, y); |
|
const float* x2_data = geometry.ptr<float>(0, 2, y); |
|
const float* x3_data = geometry.ptr<float>(0, 3, y); |
|
const float* anglesData = geometry.ptr<float>(0, 4, y); |
|
for (int x = 0; x < width; ++x) |
|
{ |
|
float score = scoresData[x]; |
|
if (score < scoreThresh) |
|
continue; |
|
|
|
// Decode a prediction. |
|
// Multiple by 4 because feature maps are 4 time less than input image. |
|
float offsetX = x * 4.0f, offsetY = y * 4.0f; |
|
float angle = anglesData[x]; |
|
float cosA = std::cos(angle); |
|
float sinA = std::sin(angle); |
|
float h = x0_data[x] + x2_data[x]; |
|
float w = x1_data[x] + x3_data[x]; |
|
|
|
Point2f offset(offsetX + cosA * x1_data[x] + sinA * x2_data[x], |
|
offsetY - sinA * x1_data[x] + cosA * x2_data[x]); |
|
Point2f p1 = Point2f(-sinA * h, -cosA * h) + offset; |
|
Point2f p3 = Point2f(-cosA * w, sinA * w) + offset; |
|
RotatedRect r(0.5f * (p1 + p3), Size2f(w, h), -angle * 180.0f / (float)CV_PI); |
|
detections.push_back(r); |
|
confidences.push_back(score); |
|
} |
|
} |
|
} |
|
|
|
void fourPointsTransform(const Mat& frame, Point2f vertices[4], Mat& result) |
|
{ |
|
const Size outputSize = Size(100, 32); |
|
|
|
Point2f targetVertices[4] = {Point(0, outputSize.height - 1), |
|
Point(0, 0), Point(outputSize.width - 1, 0), |
|
Point(outputSize.width - 1, outputSize.height - 1), |
|
}; |
|
Mat rotationMatrix = getPerspectiveTransform(vertices, targetVertices); |
|
|
|
warpPerspective(frame, result, rotationMatrix, outputSize); |
|
} |
|
|
|
void decodeText(const Mat& scores, std::string& text) |
|
{ |
|
static const std::string alphabet = "0123456789abcdefghijklmnopqrstuvwxyz"; |
|
Mat scoresMat = scores.reshape(1, scores.size[0]); |
|
|
|
std::vector<char> elements; |
|
elements.reserve(scores.size[0]); |
|
|
|
for (int rowIndex = 0; rowIndex < scoresMat.rows; ++rowIndex) |
|
{ |
|
Point p; |
|
minMaxLoc(scoresMat.row(rowIndex), 0, 0, 0, &p); |
|
if (p.x > 0 && static_cast<size_t>(p.x) <= alphabet.size()) |
|
{ |
|
elements.push_back(alphabet[p.x - 1]); |
|
} |
|
else |
|
{ |
|
elements.push_back('-'); |
|
} |
|
} |
|
|
|
if (elements.size() > 0 && elements[0] != '-') |
|
text += elements[0]; |
|
|
|
for (size_t elementIndex = 1; elementIndex < elements.size(); ++elementIndex) |
|
{ |
|
if (elementIndex > 0 && elements[elementIndex] != '-' && |
|
elements[elementIndex - 1] != elements[elementIndex]) |
|
{ |
|
text += elements[elementIndex]; |
|
} |
|
} |
|
} |