mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
124 lines
3.1 KiB
124 lines
3.1 KiB
/** |
|
* @file Sobel_Demo.cpp |
|
* @brief Sample code uses Sobel or Scharr OpenCV functions for edge detection |
|
* @author OpenCV team |
|
*/ |
|
|
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/highgui.hpp" |
|
|
|
#include <iostream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
/** |
|
* @function main |
|
*/ |
|
int main( int argc, char** argv ) |
|
{ |
|
cv::CommandLineParser parser(argc, argv, |
|
"{@input |lena.jpg|input image}" |
|
"{ksize k|1|ksize (hit 'K' to increase its value at run time)}" |
|
"{scale s|1|scale (hit 'S' to increase its value at run time)}" |
|
"{delta d|0|delta (hit 'D' to increase its value at run time)}" |
|
"{help h|false|show help message}"); |
|
|
|
cout << "The sample uses Sobel or Scharr OpenCV functions for edge detection\n\n"; |
|
parser.printMessage(); |
|
cout << "\nPress 'ESC' to exit program.\nPress 'R' to reset values ( ksize will be -1 equal to Scharr function )"; |
|
|
|
//![variables] |
|
// First we declare the variables we are going to use |
|
Mat image,src, src_gray; |
|
Mat grad; |
|
const String window_name = "Sobel Demo - Simple Edge Detector"; |
|
int ksize = parser.get<int>("ksize"); |
|
int scale = parser.get<int>("scale"); |
|
int delta = parser.get<int>("delta"); |
|
int ddepth = CV_16S; |
|
//![variables] |
|
|
|
//![load] |
|
String imageName = parser.get<String>("@input"); |
|
// As usual we load our source image (src) |
|
image = imread( samples::findFile( imageName ), IMREAD_COLOR ); // Load an image |
|
|
|
// Check if image is loaded fine |
|
if( image.empty() ) |
|
{ |
|
printf("Error opening image: %s\n", imageName.c_str()); |
|
return EXIT_FAILURE; |
|
} |
|
//![load] |
|
|
|
for (;;) |
|
{ |
|
//![reduce_noise] |
|
// Remove noise by blurring with a Gaussian filter ( kernel size = 3 ) |
|
GaussianBlur(image, src, Size(3, 3), 0, 0, BORDER_DEFAULT); |
|
//![reduce_noise] |
|
|
|
//![convert_to_gray] |
|
// Convert the image to grayscale |
|
cvtColor(src, src_gray, COLOR_BGR2GRAY); |
|
//![convert_to_gray] |
|
|
|
//![sobel] |
|
/// Generate grad_x and grad_y |
|
Mat grad_x, grad_y; |
|
Mat abs_grad_x, abs_grad_y; |
|
|
|
/// Gradient X |
|
Sobel(src_gray, grad_x, ddepth, 1, 0, ksize, scale, delta, BORDER_DEFAULT); |
|
|
|
/// Gradient Y |
|
Sobel(src_gray, grad_y, ddepth, 0, 1, ksize, scale, delta, BORDER_DEFAULT); |
|
//![sobel] |
|
|
|
//![convert] |
|
// converting back to CV_8U |
|
convertScaleAbs(grad_x, abs_grad_x); |
|
convertScaleAbs(grad_y, abs_grad_y); |
|
//![convert] |
|
|
|
//![blend] |
|
/// Total Gradient (approximate) |
|
addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad); |
|
//![blend] |
|
|
|
//![display] |
|
imshow(window_name, grad); |
|
char key = (char)waitKey(0); |
|
//![display] |
|
|
|
if(key == 27) |
|
{ |
|
return EXIT_SUCCESS; |
|
} |
|
|
|
if (key == 'k' || key == 'K') |
|
{ |
|
ksize = ksize < 30 ? ksize+2 : -1; |
|
} |
|
|
|
if (key == 's' || key == 'S') |
|
{ |
|
scale++; |
|
} |
|
|
|
if (key == 'd' || key == 'D') |
|
{ |
|
delta++; |
|
} |
|
|
|
if (key == 'r' || key == 'R') |
|
{ |
|
scale = 1; |
|
ksize = -1; |
|
delta = 0; |
|
} |
|
} |
|
return EXIT_SUCCESS; |
|
}
|
|
|