mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
5.7 KiB
176 lines
5.7 KiB
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/gapi/infer/ie.hpp> |
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> |
|
#include <opencv2/gapi/streaming/cap.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
const std::string keys = |
|
"{ h help | | Print this help message }" |
|
"{ input | | Path to the input video file }" |
|
"{ output | | Path to the output video file }" |
|
"{ ssm | semantic-segmentation-adas-0001.xml | Path to OpenVINO IE semantic segmentation model (.xml) }"; |
|
|
|
// 20 colors for 20 classes of semantic-segmentation-adas-0001 |
|
const std::vector<cv::Vec3b> colors = { |
|
{ 128, 64, 128 }, |
|
{ 232, 35, 244 }, |
|
{ 70, 70, 70 }, |
|
{ 156, 102, 102 }, |
|
{ 153, 153, 190 }, |
|
{ 153, 153, 153 }, |
|
{ 30, 170, 250 }, |
|
{ 0, 220, 220 }, |
|
{ 35, 142, 107 }, |
|
{ 152, 251, 152 }, |
|
{ 180, 130, 70 }, |
|
{ 60, 20, 220 }, |
|
{ 0, 0, 255 }, |
|
{ 142, 0, 0 }, |
|
{ 70, 0, 0 }, |
|
{ 100, 60, 0 }, |
|
{ 90, 0, 0 }, |
|
{ 230, 0, 0 }, |
|
{ 32, 11, 119 }, |
|
{ 0, 74, 111 }, |
|
}; |
|
|
|
namespace { |
|
std::string get_weights_path(const std::string &model_path) { |
|
const auto EXT_LEN = 4u; |
|
const auto sz = model_path.size(); |
|
CV_Assert(sz > EXT_LEN); |
|
|
|
auto ext = model_path.substr(sz - EXT_LEN); |
|
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){ |
|
return static_cast<unsigned char>(std::tolower(c)); |
|
}); |
|
CV_Assert(ext == ".xml"); |
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin"; |
|
} |
|
|
|
void classesToColors(const cv::Mat &out_blob, |
|
cv::Mat &mask_img) { |
|
const int H = out_blob.size[0]; |
|
const int W = out_blob.size[1]; |
|
|
|
mask_img.create(H, W, CV_8UC3); |
|
GAPI_Assert(out_blob.type() == CV_8UC1); |
|
const uint8_t* const classes = out_blob.ptr<uint8_t>(); |
|
|
|
for (int rowId = 0; rowId < H; ++rowId) { |
|
for (int colId = 0; colId < W; ++colId) { |
|
uint8_t class_id = classes[rowId * W + colId]; |
|
mask_img.at<cv::Vec3b>(rowId, colId) = |
|
class_id < colors.size() |
|
? colors[class_id] |
|
: cv::Vec3b{0, 0, 0}; // NB: sample supports 20 classes |
|
} |
|
} |
|
} |
|
|
|
void probsToClasses(const cv::Mat& probs, cv::Mat& classes) { |
|
const int C = probs.size[1]; |
|
const int H = probs.size[2]; |
|
const int W = probs.size[3]; |
|
|
|
classes.create(H, W, CV_8UC1); |
|
GAPI_Assert(probs.depth() == CV_32F); |
|
float* out_p = reinterpret_cast<float*>(probs.data); |
|
uint8_t* classes_p = reinterpret_cast<uint8_t*>(classes.data); |
|
|
|
for (int h = 0; h < H; ++h) { |
|
for (int w = 0; w < W; ++w) { |
|
double max = 0; |
|
int class_id = 0; |
|
for (int c = 0; c < C; ++c) { |
|
int idx = c * H * W + h * W + w; |
|
if (out_p[idx] > max) { |
|
max = out_p[idx]; |
|
class_id = c; |
|
} |
|
} |
|
classes_p[h * W + w] = static_cast<uint8_t>(class_id); |
|
} |
|
} |
|
} |
|
|
|
} // anonymous namespace |
|
|
|
namespace custom { |
|
G_API_OP(PostProcessing, <cv::GMat(cv::GMat, cv::GMat)>, "sample.custom.post_processing") { |
|
static cv::GMatDesc outMeta(const cv::GMatDesc &in, const cv::GMatDesc &) { |
|
return in; |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVPostProcessing, PostProcessing) { |
|
static void run(const cv::Mat &in, const cv::Mat &out_blob, cv::Mat &out) { |
|
cv::Mat classes; |
|
// NB: If output has more than single plane, it contains probabilities |
|
// otherwise class id. |
|
if (out_blob.size[1] > 1) { |
|
probsToClasses(out_blob, classes); |
|
} else { |
|
out_blob.convertTo(classes, CV_8UC1); |
|
classes = classes.reshape(1, out_blob.size[2]); |
|
} |
|
|
|
cv::Mat mask_img; |
|
classesToColors(classes, mask_img); |
|
|
|
cv::resize(mask_img, out, in.size()); |
|
const float blending = 0.3f; |
|
out = in * blending + out * (1 - blending); |
|
} |
|
}; |
|
} // namespace custom |
|
|
|
int main(int argc, char *argv[]) { |
|
cv::CommandLineParser cmd(argc, argv, keys); |
|
if (cmd.has("help")) { |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
|
|
// Prepare parameters first |
|
const std::string input = cmd.get<std::string>("input"); |
|
const std::string output = cmd.get<std::string>("output"); |
|
const auto model_path = cmd.get<std::string>("ssm"); |
|
const auto weights_path = get_weights_path(model_path); |
|
const auto device = "CPU"; |
|
G_API_NET(SemSegmNet, <cv::GMat(cv::GMat)>, "semantic-segmentation"); |
|
const auto net = cv::gapi::ie::Params<SemSegmNet> { |
|
model_path, weights_path, device |
|
}; |
|
const auto kernels = cv::gapi::kernels<custom::OCVPostProcessing>(); |
|
const auto networks = cv::gapi::networks(net); |
|
|
|
// Now build the graph |
|
cv::GMat in; |
|
cv::GMat out_blob = cv::gapi::infer<SemSegmNet>(in); |
|
cv::GMat out = custom::PostProcessing::on(in, out_blob); |
|
|
|
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out)) |
|
.compileStreaming(cv::compile_args(kernels, networks)); |
|
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input)); |
|
|
|
// The execution part |
|
pipeline.setSource(std::move(inputs)); |
|
pipeline.start(); |
|
|
|
cv::VideoWriter writer; |
|
cv::Mat outMat; |
|
while (pipeline.pull(cv::gout(outMat))) { |
|
cv::imshow("Out", outMat); |
|
cv::waitKey(1); |
|
if (!output.empty()) { |
|
if (!writer.isOpened()) { |
|
const auto sz = cv::Size{outMat.cols, outMat.rows}; |
|
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz); |
|
CV_Assert(writer.isOpened()); |
|
} |
|
writer << outMat; |
|
} |
|
} |
|
return 0; |
|
}
|
|
|