mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
191 lines
7.3 KiB
191 lines
7.3 KiB
/* |
|
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>. |
|
* Released to public domain under terms of the BSD Simplified license. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* * Neither the name of the organization nor the names of its contributors |
|
* may be used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* See <http://www.opensource.org/licenses/bsd-license> |
|
*/ |
|
|
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/contrib/contrib.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
#include <sstream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
static Mat norm_0_255(InputArray _src) { |
|
Mat src = _src.getMat(); |
|
// Create and return normalized image: |
|
Mat dst; |
|
switch(src.channels()) { |
|
case 1: |
|
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1); |
|
break; |
|
case 3: |
|
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3); |
|
break; |
|
default: |
|
src.copyTo(dst); |
|
break; |
|
} |
|
return dst; |
|
} |
|
|
|
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') { |
|
std::ifstream file(filename.c_str(), ifstream::in); |
|
if (!file) { |
|
string error_message = "No valid input file was given, please check the given filename."; |
|
CV_Error(CV_StsBadArg, error_message); |
|
} |
|
string line, path, classlabel; |
|
while (getline(file, line)) { |
|
stringstream liness(line); |
|
getline(liness, path, separator); |
|
getline(liness, classlabel); |
|
if(!path.empty() && !classlabel.empty()) { |
|
images.push_back(imread(path, 0)); |
|
labels.push_back(atoi(classlabel.c_str())); |
|
} |
|
} |
|
} |
|
|
|
int main(int argc, const char *argv[]) { |
|
// Check for valid command line arguments, print usage |
|
// if no arguments were given. |
|
if (argc < 2) { |
|
cout << "usage: " << argv[0] << " <csv.ext> <output_folder> " << endl; |
|
exit(1); |
|
} |
|
string output_folder; |
|
if (argc == 3) { |
|
output_folder = string(argv[2]); |
|
} |
|
// Get the path to your CSV. |
|
string fn_csv = string(argv[1]); |
|
// These vectors hold the images and corresponding labels. |
|
vector<Mat> images; |
|
vector<int> labels; |
|
// Read in the data. This can fail if no valid |
|
// input filename is given. |
|
try { |
|
read_csv(fn_csv, images, labels); |
|
} catch (cv::Exception& e) { |
|
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl; |
|
// nothing more we can do |
|
exit(1); |
|
} |
|
// Quit if there are not enough images for this demo. |
|
if(images.size() <= 1) { |
|
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!"; |
|
CV_Error(CV_StsError, error_message); |
|
} |
|
// Get the height from the first image. We'll need this |
|
// later in code to reshape the images to their original |
|
// size: |
|
int height = images[0].rows; |
|
// The following lines simply get the last images from |
|
// your dataset and remove it from the vector. This is |
|
// done, so that the training data (which we learn the |
|
// cv::FaceRecognizer on) and the test data we test |
|
// the model with, do not overlap. |
|
Mat testSample = images[images.size() - 1]; |
|
int testLabel = labels[labels.size() - 1]; |
|
images.pop_back(); |
|
labels.pop_back(); |
|
// The following lines create an Fisherfaces model for |
|
// face recognition and train it with the images and |
|
// labels read from the given CSV file. |
|
// If you just want to keep 10 Fisherfaces, then call |
|
// the factory method like this: |
|
// |
|
// cv::createFisherFaceRecognizer(10); |
|
// |
|
// However it is not useful to discard Fisherfaces! Please |
|
// always try to use _all_ available Fisherfaces for |
|
// classification. |
|
// |
|
// If you want to create a FaceRecognizer with a |
|
// confidence threshold (e.g. 123.0) and use _all_ |
|
// Fisherfaces, then call it with: |
|
// |
|
// cv::createFisherFaceRecognizer(0, 123.0); |
|
// |
|
Ptr<FaceRecognizer> model = createFisherFaceRecognizer(); |
|
model->train(images, labels); |
|
// The following line predicts the label of a given |
|
// test image: |
|
int predictedLabel = model->predict(testSample); |
|
// |
|
// To get the confidence of a prediction call the model with: |
|
// |
|
// int predictedLabel = -1; |
|
// double confidence = 0.0; |
|
// model->predict(testSample, predictedLabel, confidence); |
|
// |
|
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel); |
|
cout << result_message << endl; |
|
// Here is how to get the eigenvalues of this Eigenfaces model: |
|
Mat eigenvalues = model->getMat("eigenvalues"); |
|
// And we can do the same to display the Eigenvectors (read Eigenfaces): |
|
Mat W = model->getMat("eigenvectors"); |
|
// Get the sample mean from the training data |
|
Mat mean = model->getMat("mean"); |
|
// Display or save: |
|
if(argc == 2) { |
|
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows))); |
|
} else { |
|
imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows))); |
|
} |
|
// Display or save the first, at most 16 Fisherfaces: |
|
for (int i = 0; i < min(16, W.cols); i++) { |
|
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i)); |
|
cout << msg << endl; |
|
// get eigenvector #i |
|
Mat ev = W.col(i).clone(); |
|
// Reshape to original size & normalize to [0...255] for imshow. |
|
Mat grayscale = norm_0_255(ev.reshape(1, height)); |
|
// Show the image & apply a Bone colormap for better sensing. |
|
Mat cgrayscale; |
|
applyColorMap(grayscale, cgrayscale, COLORMAP_BONE); |
|
// Display or save: |
|
if(argc == 2) { |
|
imshow(format("fisherface_%d", i), cgrayscale); |
|
} else { |
|
imwrite(format("%s/fisherface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale)); |
|
} |
|
} |
|
// Display or save the image reconstruction at some predefined steps: |
|
for(int num_component = 0; num_component < min(16, W.cols); num_component++) { |
|
// Slice the Fisherface from the model: |
|
Mat ev = W.col(num_component); |
|
Mat projection = subspaceProject(ev, mean, images[0].reshape(1,1)); |
|
Mat reconstruction = subspaceReconstruct(ev, mean, projection); |
|
// Normalize the result: |
|
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows)); |
|
// Display or save: |
|
if(argc == 2) { |
|
imshow(format("fisherface_reconstruction_%d", num_component), reconstruction); |
|
} else { |
|
imwrite(format("%s/fisherface_reconstruction_%d.png", output_folder.c_str(), num_component), reconstruction); |
|
} |
|
} |
|
// Display if we are not writing to an output folder: |
|
if(argc == 2) { |
|
waitKey(0); |
|
} |
|
return 0; |
|
}
|
|
|