mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
711 lines
30 KiB
711 lines
30 KiB
// Copyright 2015 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// SSE2 variant of methods for lossless encoder |
|
// |
|
// Author: Skal (pascal.massimino@gmail.com) |
|
|
|
#include "./dsp.h" |
|
|
|
#if defined(WEBP_USE_SSE2) |
|
#include <assert.h> |
|
#include <emmintrin.h> |
|
#include "./lossless.h" |
|
#include "./common_sse2.h" |
|
#include "./lossless_common.h" |
|
|
|
// For sign-extended multiplying constants, pre-shifted by 5: |
|
#define CST_5b(X) (((int16_t)((uint16_t)X << 8)) >> 5) |
|
|
|
//------------------------------------------------------------------------------ |
|
// Subtract-Green Transform |
|
|
|
static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) { |
|
int i; |
|
for (i = 0; i + 4 <= num_pixels; i += 4) { |
|
const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb |
|
const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g |
|
const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
|
const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g |
|
const __m128i out = _mm_sub_epi8(in, C); |
|
_mm_storeu_si128((__m128i*)&argb_data[i], out); |
|
} |
|
// fallthrough and finish off with plain-C |
|
if (i != num_pixels) { |
|
VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i); |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Color Transform |
|
|
|
static void TransformColor(const VP8LMultipliers* const m, |
|
uint32_t* argb_data, int num_pixels) { |
|
const __m128i mults_rb = _mm_set_epi16( |
|
CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), |
|
CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), |
|
CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), |
|
CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_)); |
|
const __m128i mults_b2 = _mm_set_epi16( |
|
CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0, |
|
CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0); |
|
const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks |
|
const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff); // red-blue masks |
|
int i; |
|
for (i = 0; i + 4 <= num_pixels; i += 4) { |
|
const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb |
|
const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 |
|
const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
|
const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 |
|
const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 |
|
const __m128i E = _mm_slli_epi16(in, 8); // r 0 b 0 |
|
const __m128i F = _mm_mulhi_epi16(E, mults_b2); // x db2 0 0 |
|
const __m128i G = _mm_srli_epi32(F, 16); // 0 0 x db2 |
|
const __m128i H = _mm_add_epi8(G, D); // x dr x db |
|
const __m128i I = _mm_and_si128(H, mask_rb); // 0 dr 0 db |
|
const __m128i out = _mm_sub_epi8(in, I); |
|
_mm_storeu_si128((__m128i*)&argb_data[i], out); |
|
} |
|
// fallthrough and finish off with plain-C |
|
if (i != num_pixels) { |
|
VP8LTransformColor_C(m, argb_data + i, num_pixels - i); |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
#define SPAN 8 |
|
static void CollectColorBlueTransforms(const uint32_t* argb, int stride, |
|
int tile_width, int tile_height, |
|
int green_to_blue, int red_to_blue, |
|
int histo[]) { |
|
const __m128i mults_r = _mm_set_epi16( |
|
CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0, |
|
CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0); |
|
const __m128i mults_g = _mm_set_epi16( |
|
0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue), |
|
0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue)); |
|
const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask |
|
const __m128i mask_b = _mm_set1_epi32(0x0000ff); // blue mask |
|
int y; |
|
for (y = 0; y < tile_height; ++y) { |
|
const uint32_t* const src = argb + y * stride; |
|
int i, x; |
|
for (x = 0; x + SPAN <= tile_width; x += SPAN) { |
|
uint16_t values[SPAN]; |
|
const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); |
|
const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); |
|
const __m128i A0 = _mm_slli_epi16(in0, 8); // r 0 | b 0 |
|
const __m128i A1 = _mm_slli_epi16(in1, 8); |
|
const __m128i B0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 |
|
const __m128i B1 = _mm_and_si128(in1, mask_g); |
|
const __m128i C0 = _mm_mulhi_epi16(A0, mults_r); // x db | 0 0 |
|
const __m128i C1 = _mm_mulhi_epi16(A1, mults_r); |
|
const __m128i D0 = _mm_mulhi_epi16(B0, mults_g); // 0 0 | x db |
|
const __m128i D1 = _mm_mulhi_epi16(B1, mults_g); |
|
const __m128i E0 = _mm_sub_epi8(in0, D0); // x x | x b' |
|
const __m128i E1 = _mm_sub_epi8(in1, D1); |
|
const __m128i F0 = _mm_srli_epi32(C0, 16); // 0 0 | x db |
|
const __m128i F1 = _mm_srli_epi32(C1, 16); |
|
const __m128i G0 = _mm_sub_epi8(E0, F0); // 0 0 | x b' |
|
const __m128i G1 = _mm_sub_epi8(E1, F1); |
|
const __m128i H0 = _mm_and_si128(G0, mask_b); // 0 0 | 0 b |
|
const __m128i H1 = _mm_and_si128(G1, mask_b); |
|
const __m128i I = _mm_packs_epi32(H0, H1); // 0 b' | 0 b' |
|
_mm_storeu_si128((__m128i*)values, I); |
|
for (i = 0; i < SPAN; ++i) ++histo[values[i]]; |
|
} |
|
} |
|
{ |
|
const int left_over = tile_width & (SPAN - 1); |
|
if (left_over > 0) { |
|
VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride, |
|
left_over, tile_height, |
|
green_to_blue, red_to_blue, histo); |
|
} |
|
} |
|
} |
|
|
|
static void CollectColorRedTransforms(const uint32_t* argb, int stride, |
|
int tile_width, int tile_height, |
|
int green_to_red, int histo[]) { |
|
const __m128i mults_g = _mm_set_epi16( |
|
0, CST_5b(green_to_red), 0, CST_5b(green_to_red), |
|
0, CST_5b(green_to_red), 0, CST_5b(green_to_red)); |
|
const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask |
|
const __m128i mask = _mm_set1_epi32(0xff); |
|
|
|
int y; |
|
for (y = 0; y < tile_height; ++y) { |
|
const uint32_t* const src = argb + y * stride; |
|
int i, x; |
|
for (x = 0; x + SPAN <= tile_width; x += SPAN) { |
|
uint16_t values[SPAN]; |
|
const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); |
|
const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); |
|
const __m128i A0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 |
|
const __m128i A1 = _mm_and_si128(in1, mask_g); |
|
const __m128i B0 = _mm_srli_epi32(in0, 16); // 0 0 | x r |
|
const __m128i B1 = _mm_srli_epi32(in1, 16); |
|
const __m128i C0 = _mm_mulhi_epi16(A0, mults_g); // 0 0 | x dr |
|
const __m128i C1 = _mm_mulhi_epi16(A1, mults_g); |
|
const __m128i E0 = _mm_sub_epi8(B0, C0); // x x | x r' |
|
const __m128i E1 = _mm_sub_epi8(B1, C1); |
|
const __m128i F0 = _mm_and_si128(E0, mask); // 0 0 | 0 r' |
|
const __m128i F1 = _mm_and_si128(E1, mask); |
|
const __m128i I = _mm_packs_epi32(F0, F1); |
|
_mm_storeu_si128((__m128i*)values, I); |
|
for (i = 0; i < SPAN; ++i) ++histo[values[i]]; |
|
} |
|
} |
|
{ |
|
const int left_over = tile_width & (SPAN - 1); |
|
if (left_over > 0) { |
|
VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride, |
|
left_over, tile_height, |
|
green_to_red, histo); |
|
} |
|
} |
|
} |
|
#undef SPAN |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
#define LINE_SIZE 16 // 8 or 16 |
|
static void AddVector(const uint32_t* a, const uint32_t* b, uint32_t* out, |
|
int size) { |
|
int i; |
|
assert(size % LINE_SIZE == 0); |
|
for (i = 0; i < size; i += LINE_SIZE) { |
|
const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); |
|
const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); |
|
#if (LINE_SIZE == 16) |
|
const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); |
|
const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); |
|
#endif |
|
const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]); |
|
const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]); |
|
#if (LINE_SIZE == 16) |
|
const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i + 8]); |
|
const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]); |
|
#endif |
|
_mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); |
|
_mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); |
|
#if (LINE_SIZE == 16) |
|
_mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); |
|
_mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); |
|
#endif |
|
} |
|
} |
|
|
|
static void AddVectorEq(const uint32_t* a, uint32_t* out, int size) { |
|
int i; |
|
assert(size % LINE_SIZE == 0); |
|
for (i = 0; i < size; i += LINE_SIZE) { |
|
const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); |
|
const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); |
|
#if (LINE_SIZE == 16) |
|
const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); |
|
const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); |
|
#endif |
|
const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]); |
|
const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]); |
|
#if (LINE_SIZE == 16) |
|
const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i + 8]); |
|
const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]); |
|
#endif |
|
_mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); |
|
_mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); |
|
#if (LINE_SIZE == 16) |
|
_mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); |
|
_mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); |
|
#endif |
|
} |
|
} |
|
#undef LINE_SIZE |
|
|
|
// Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But |
|
// that's ok since the histogram values are less than 1<<28 (max picture size). |
|
static void HistogramAdd(const VP8LHistogram* const a, |
|
const VP8LHistogram* const b, |
|
VP8LHistogram* const out) { |
|
int i; |
|
const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_); |
|
assert(a->palette_code_bits_ == b->palette_code_bits_); |
|
if (b != out) { |
|
AddVector(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES); |
|
AddVector(a->red_, b->red_, out->red_, NUM_LITERAL_CODES); |
|
AddVector(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES); |
|
AddVector(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES); |
|
} else { |
|
AddVectorEq(a->literal_, out->literal_, NUM_LITERAL_CODES); |
|
AddVectorEq(a->red_, out->red_, NUM_LITERAL_CODES); |
|
AddVectorEq(a->blue_, out->blue_, NUM_LITERAL_CODES); |
|
AddVectorEq(a->alpha_, out->alpha_, NUM_LITERAL_CODES); |
|
} |
|
for (i = NUM_LITERAL_CODES; i < literal_size; ++i) { |
|
out->literal_[i] = a->literal_[i] + b->literal_[i]; |
|
} |
|
for (i = 0; i < NUM_DISTANCE_CODES; ++i) { |
|
out->distance_[i] = a->distance_[i] + b->distance_[i]; |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Entropy |
|
|
|
// Checks whether the X or Y contribution is worth computing and adding. |
|
// Used in loop unrolling. |
|
#define ANALYZE_X_OR_Y(x_or_y, j) \ |
|
do { \ |
|
if (x_or_y[i + j] != 0) retval -= VP8LFastSLog2(x_or_y[i + j]); \ |
|
} while (0) |
|
|
|
// Checks whether the X + Y contribution is worth computing and adding. |
|
// Used in loop unrolling. |
|
#define ANALYZE_XY(j) \ |
|
do { \ |
|
if (tmp[j] != 0) { \ |
|
retval -= VP8LFastSLog2(tmp[j]); \ |
|
ANALYZE_X_OR_Y(X, j); \ |
|
} \ |
|
} while (0) |
|
|
|
static float CombinedShannonEntropy(const int X[256], const int Y[256]) { |
|
int i; |
|
double retval = 0.; |
|
int sumX, sumXY; |
|
int32_t tmp[4]; |
|
__m128i zero = _mm_setzero_si128(); |
|
// Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY). |
|
__m128i sumXY_128 = zero; |
|
__m128i sumX_128 = zero; |
|
|
|
for (i = 0; i < 256; i += 4) { |
|
const __m128i x = _mm_loadu_si128((const __m128i*)(X + i)); |
|
const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i)); |
|
|
|
// Check if any X is non-zero: this actually provides a speedup as X is |
|
// usually sparse. |
|
if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) { |
|
const __m128i xy_128 = _mm_add_epi32(x, y); |
|
sumXY_128 = _mm_add_epi32(sumXY_128, xy_128); |
|
|
|
sumX_128 = _mm_add_epi32(sumX_128, x); |
|
|
|
// Analyze the different X + Y. |
|
_mm_storeu_si128((__m128i*)tmp, xy_128); |
|
|
|
ANALYZE_XY(0); |
|
ANALYZE_XY(1); |
|
ANALYZE_XY(2); |
|
ANALYZE_XY(3); |
|
} else { |
|
// X is fully 0, so only deal with Y. |
|
sumXY_128 = _mm_add_epi32(sumXY_128, y); |
|
|
|
ANALYZE_X_OR_Y(Y, 0); |
|
ANALYZE_X_OR_Y(Y, 1); |
|
ANALYZE_X_OR_Y(Y, 2); |
|
ANALYZE_X_OR_Y(Y, 3); |
|
} |
|
} |
|
|
|
// Sum up sumX_128 to get sumX. |
|
_mm_storeu_si128((__m128i*)tmp, sumX_128); |
|
sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0]; |
|
|
|
// Sum up sumXY_128 to get sumXY. |
|
_mm_storeu_si128((__m128i*)tmp, sumXY_128); |
|
sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0]; |
|
|
|
retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); |
|
return (float)retval; |
|
} |
|
#undef ANALYZE_X_OR_Y |
|
#undef ANALYZE_XY |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
static int VectorMismatch(const uint32_t* const array1, |
|
const uint32_t* const array2, int length) { |
|
int match_len; |
|
|
|
if (length >= 12) { |
|
__m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]); |
|
__m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]); |
|
match_len = 0; |
|
do { |
|
// Loop unrolling and early load both provide a speedup of 10% for the |
|
// current function. Also, max_limit can be MAX_LENGTH=4096 at most. |
|
const __m128i cmpA = _mm_cmpeq_epi32(A0, A1); |
|
const __m128i B0 = |
|
_mm_loadu_si128((const __m128i*)&array1[match_len + 4]); |
|
const __m128i B1 = |
|
_mm_loadu_si128((const __m128i*)&array2[match_len + 4]); |
|
if (_mm_movemask_epi8(cmpA) != 0xffff) break; |
|
match_len += 4; |
|
|
|
{ |
|
const __m128i cmpB = _mm_cmpeq_epi32(B0, B1); |
|
A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); |
|
A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); |
|
if (_mm_movemask_epi8(cmpB) != 0xffff) break; |
|
match_len += 4; |
|
} |
|
} while (match_len + 12 < length); |
|
} else { |
|
match_len = 0; |
|
// Unroll the potential first two loops. |
|
if (length >= 4 && |
|
_mm_movemask_epi8(_mm_cmpeq_epi32( |
|
_mm_loadu_si128((const __m128i*)&array1[0]), |
|
_mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) { |
|
match_len = 4; |
|
if (length >= 8 && |
|
_mm_movemask_epi8(_mm_cmpeq_epi32( |
|
_mm_loadu_si128((const __m128i*)&array1[4]), |
|
_mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) { |
|
match_len = 8; |
|
} |
|
} |
|
} |
|
|
|
while (match_len < length && array1[match_len] == array2[match_len]) { |
|
++match_len; |
|
} |
|
return match_len; |
|
} |
|
|
|
// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. |
|
static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits, |
|
uint32_t* dst) { |
|
int x; |
|
assert(xbits >= 0); |
|
assert(xbits <= 3); |
|
switch (xbits) { |
|
case 0: { |
|
const __m128i ff = _mm_set1_epi16(0xff00); |
|
const __m128i zero = _mm_setzero_si128(); |
|
// Store 0xff000000 | (row[x] << 8). |
|
for (x = 0; x + 16 <= width; x += 16, dst += 16) { |
|
const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
|
const __m128i in_lo = _mm_unpacklo_epi8(zero, in); |
|
const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff); |
|
const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff); |
|
const __m128i in_hi = _mm_unpackhi_epi8(zero, in); |
|
const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff); |
|
const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff); |
|
_mm_storeu_si128((__m128i*)&dst[0], dst0); |
|
_mm_storeu_si128((__m128i*)&dst[4], dst1); |
|
_mm_storeu_si128((__m128i*)&dst[8], dst2); |
|
_mm_storeu_si128((__m128i*)&dst[12], dst3); |
|
} |
|
break; |
|
} |
|
case 1: { |
|
const __m128i ff = _mm_set1_epi16(0xff00); |
|
const __m128i mul = _mm_set1_epi16(0x110); |
|
for (x = 0; x + 16 <= width; x += 16, dst += 8) { |
|
// 0a0b | (where a/b are 4 bits). |
|
const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
|
const __m128i tmp = _mm_mullo_epi16(in, mul); // aba0 |
|
const __m128i pack = _mm_and_si128(tmp, ff); // ab00 |
|
const __m128i dst0 = _mm_unpacklo_epi16(pack, ff); |
|
const __m128i dst1 = _mm_unpackhi_epi16(pack, ff); |
|
_mm_storeu_si128((__m128i*)&dst[0], dst0); |
|
_mm_storeu_si128((__m128i*)&dst[4], dst1); |
|
} |
|
break; |
|
} |
|
case 2: { |
|
const __m128i mask_or = _mm_set1_epi32(0xff000000); |
|
const __m128i mul_cst = _mm_set1_epi16(0x0104); |
|
const __m128i mask_mul = _mm_set1_epi16(0x0f00); |
|
for (x = 0; x + 16 <= width; x += 16, dst += 4) { |
|
// 000a000b000c000d | (where a/b/c/d are 2 bits). |
|
const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
|
const __m128i mul = _mm_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0 |
|
const __m128i tmp = _mm_and_si128(mul, mask_mul); // 00ab000000cd0000 |
|
const __m128i shift = _mm_srli_epi32(tmp, 12); // 00000000ab000000 |
|
const __m128i pack = _mm_or_si128(shift, tmp); // 00000000abcd0000 |
|
// Convert to 0xff00**00. |
|
const __m128i res = _mm_or_si128(pack, mask_or); |
|
_mm_storeu_si128((__m128i*)dst, res); |
|
} |
|
break; |
|
} |
|
default: { |
|
assert(xbits == 3); |
|
for (x = 0; x + 16 <= width; x += 16, dst += 2) { |
|
// 0000000a00000000b... | (where a/b are 1 bit). |
|
const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
|
const __m128i shift = _mm_slli_epi64(in, 7); |
|
const uint32_t move = _mm_movemask_epi8(shift); |
|
dst[0] = 0xff000000 | ((move & 0xff) << 8); |
|
dst[1] = 0xff000000 | (move & 0xff00); |
|
} |
|
break; |
|
} |
|
} |
|
if (x != width) { |
|
VP8LBundleColorMap_C(row + x, width - x, xbits, dst); |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Batch version of Predictor Transform subtraction |
|
|
|
static WEBP_INLINE void Average2_m128i(const __m128i* const a0, |
|
const __m128i* const a1, |
|
__m128i* const avg) { |
|
// (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
|
const __m128i ones = _mm_set1_epi8(1); |
|
const __m128i avg1 = _mm_avg_epu8(*a0, *a1); |
|
const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); |
|
*avg = _mm_sub_epi8(avg1, one); |
|
} |
|
|
|
// Predictor0: ARGB_BLACK. |
|
static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper, |
|
int num_pixels, uint32_t* out) { |
|
int i; |
|
const __m128i black = _mm_set1_epi32(ARGB_BLACK); |
|
for (i = 0; i + 4 <= num_pixels; i += 4) { |
|
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
|
const __m128i res = _mm_sub_epi8(src, black); |
|
_mm_storeu_si128((__m128i*)&out[i], res); |
|
} |
|
if (i != num_pixels) { |
|
VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i); |
|
} |
|
} |
|
|
|
#define GENERATE_PREDICTOR_1(X, IN) \ |
|
static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
|
int num_pixels, uint32_t* out) { \ |
|
int i; \ |
|
for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
|
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
|
const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN)); \ |
|
const __m128i res = _mm_sub_epi8(src, pred); \ |
|
_mm_storeu_si128((__m128i*)&out[i], res); \ |
|
} \ |
|
if (i != num_pixels) { \ |
|
VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
|
} \ |
|
} |
|
|
|
GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L |
|
GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T |
|
GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR |
|
GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL |
|
#undef GENERATE_PREDICTOR_1 |
|
|
|
// Predictor5: avg2(avg2(L, TR), T) |
|
static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper, |
|
int num_pixels, uint32_t* out) { |
|
int i; |
|
for (i = 0; i + 4 <= num_pixels; i += 4) { |
|
const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
|
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
|
const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
|
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
|
__m128i avg, pred, res; |
|
Average2_m128i(&L, &TR, &avg); |
|
Average2_m128i(&avg, &T, &pred); |
|
res = _mm_sub_epi8(src, pred); |
|
_mm_storeu_si128((__m128i*)&out[i], res); |
|
} |
|
if (i != num_pixels) { |
|
VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i); |
|
} |
|
} |
|
|
|
#define GENERATE_PREDICTOR_2(X, A, B) \ |
|
static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
|
int num_pixels, uint32_t* out) { \ |
|
int i; \ |
|
for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
|
const __m128i tA = _mm_loadu_si128((const __m128i*)&(A)); \ |
|
const __m128i tB = _mm_loadu_si128((const __m128i*)&(B)); \ |
|
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
|
__m128i pred, res; \ |
|
Average2_m128i(&tA, &tB, &pred); \ |
|
res = _mm_sub_epi8(src, pred); \ |
|
_mm_storeu_si128((__m128i*)&out[i], res); \ |
|
} \ |
|
if (i != num_pixels) { \ |
|
VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
|
} \ |
|
} |
|
|
|
GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL) |
|
GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T) |
|
GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T) |
|
GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR) |
|
#undef GENERATE_PREDICTOR_2 |
|
|
|
// Predictor10: avg(avg(L,TL), avg(T, TR)). |
|
static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper, |
|
int num_pixels, uint32_t* out) { |
|
int i; |
|
for (i = 0; i + 4 <= num_pixels; i += 4) { |
|
const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
|
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
|
const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
|
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
|
const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
|
__m128i avgTTR, avgLTL, avg, res; |
|
Average2_m128i(&T, &TR, &avgTTR); |
|
Average2_m128i(&L, &TL, &avgLTL); |
|
Average2_m128i(&avgTTR, &avgLTL, &avg); |
|
res = _mm_sub_epi8(src, avg); |
|
_mm_storeu_si128((__m128i*)&out[i], res); |
|
} |
|
if (i != num_pixels) { |
|
VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i); |
|
} |
|
} |
|
|
|
// Predictor11: select. |
|
static void GetSumAbsDiff32(const __m128i* const A, const __m128i* const B, |
|
__m128i* const out) { |
|
// We can unpack with any value on the upper 32 bits, provided it's the same |
|
// on both operands (to that their sum of abs diff is zero). Here we use *A. |
|
const __m128i A_lo = _mm_unpacklo_epi32(*A, *A); |
|
const __m128i B_lo = _mm_unpacklo_epi32(*B, *A); |
|
const __m128i A_hi = _mm_unpackhi_epi32(*A, *A); |
|
const __m128i B_hi = _mm_unpackhi_epi32(*B, *A); |
|
const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo); |
|
const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi); |
|
*out = _mm_packs_epi32(s_lo, s_hi); |
|
} |
|
|
|
static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper, |
|
int num_pixels, uint32_t* out) { |
|
int i; |
|
for (i = 0; i + 4 <= num_pixels; i += 4) { |
|
const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
|
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
|
const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
|
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
|
__m128i pa, pb; |
|
GetSumAbsDiff32(&T, &TL, &pa); // pa = sum |T-TL| |
|
GetSumAbsDiff32(&L, &TL, &pb); // pb = sum |L-TL| |
|
{ |
|
const __m128i mask = _mm_cmpgt_epi32(pb, pa); |
|
const __m128i A = _mm_and_si128(mask, L); |
|
const __m128i B = _mm_andnot_si128(mask, T); |
|
const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T |
|
const __m128i res = _mm_sub_epi8(src, pred); |
|
_mm_storeu_si128((__m128i*)&out[i], res); |
|
} |
|
} |
|
if (i != num_pixels) { |
|
VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i); |
|
} |
|
} |
|
|
|
// Predictor12: ClampedSubSubtractFull. |
|
static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper, |
|
int num_pixels, uint32_t* out) { |
|
int i; |
|
const __m128i zero = _mm_setzero_si128(); |
|
for (i = 0; i + 4 <= num_pixels; i += 4) { |
|
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
|
const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
|
const __m128i L_lo = _mm_unpacklo_epi8(L, zero); |
|
const __m128i L_hi = _mm_unpackhi_epi8(L, zero); |
|
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
|
const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
|
const __m128i T_hi = _mm_unpackhi_epi8(T, zero); |
|
const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
|
const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
|
const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); |
|
const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); |
|
const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); |
|
const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo); |
|
const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi); |
|
const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi); |
|
const __m128i res = _mm_sub_epi8(src, pred); |
|
_mm_storeu_si128((__m128i*)&out[i], res); |
|
} |
|
if (i != num_pixels) { |
|
VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i); |
|
} |
|
} |
|
|
|
// Predictors13: ClampedAddSubtractHalf |
|
static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper, |
|
int num_pixels, uint32_t* out) { |
|
int i; |
|
const __m128i zero = _mm_setzero_si128(); |
|
for (i = 0; i + 2 <= num_pixels; i += 2) { |
|
// we can only process two pixels at a time |
|
const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]); |
|
const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]); |
|
const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]); |
|
const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]); |
|
const __m128i L_lo = _mm_unpacklo_epi8(L, zero); |
|
const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
|
const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
|
const __m128i sum = _mm_add_epi16(T_lo, L_lo); |
|
const __m128i avg = _mm_srli_epi16(sum, 1); |
|
const __m128i A1 = _mm_sub_epi16(avg, TL_lo); |
|
const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg); |
|
const __m128i A2 = _mm_sub_epi16(A1, bit_fix); |
|
const __m128i A3 = _mm_srai_epi16(A2, 1); |
|
const __m128i A4 = _mm_add_epi16(avg, A3); |
|
const __m128i pred = _mm_packus_epi16(A4, A4); |
|
const __m128i res = _mm_sub_epi8(src, pred); |
|
_mm_storel_epi64((__m128i*)&out[i], res); |
|
} |
|
if (i != num_pixels) { |
|
VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i); |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Entry point |
|
|
|
extern void VP8LEncDspInitSSE2(void); |
|
|
|
WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) { |
|
VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed; |
|
VP8LTransformColor = TransformColor; |
|
VP8LCollectColorBlueTransforms = CollectColorBlueTransforms; |
|
VP8LCollectColorRedTransforms = CollectColorRedTransforms; |
|
VP8LHistogramAdd = HistogramAdd; |
|
VP8LCombinedShannonEntropy = CombinedShannonEntropy; |
|
VP8LVectorMismatch = VectorMismatch; |
|
VP8LBundleColorMap = BundleColorMap_SSE2; |
|
|
|
VP8LPredictorsSub[0] = PredictorSub0_SSE2; |
|
VP8LPredictorsSub[1] = PredictorSub1_SSE2; |
|
VP8LPredictorsSub[2] = PredictorSub2_SSE2; |
|
VP8LPredictorsSub[3] = PredictorSub3_SSE2; |
|
VP8LPredictorsSub[4] = PredictorSub4_SSE2; |
|
VP8LPredictorsSub[5] = PredictorSub5_SSE2; |
|
VP8LPredictorsSub[6] = PredictorSub6_SSE2; |
|
VP8LPredictorsSub[7] = PredictorSub7_SSE2; |
|
VP8LPredictorsSub[8] = PredictorSub8_SSE2; |
|
VP8LPredictorsSub[9] = PredictorSub9_SSE2; |
|
VP8LPredictorsSub[10] = PredictorSub10_SSE2; |
|
VP8LPredictorsSub[11] = PredictorSub11_SSE2; |
|
VP8LPredictorsSub[12] = PredictorSub12_SSE2; |
|
VP8LPredictorsSub[13] = PredictorSub13_SSE2; |
|
VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels |
|
VP8LPredictorsSub[15] = PredictorSub0_SSE2; |
|
} |
|
|
|
#else // !WEBP_USE_SSE2 |
|
|
|
WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2) |
|
|
|
#endif // WEBP_USE_SSE2
|
|
|