mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
277 lines
11 KiB
277 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
|
|
|
Ptr<cuda::BackgroundSubtractorGMG> cv::cuda::createBackgroundSubtractorGMG(int, double) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorGMG>(); } |
|
|
|
#else |
|
|
|
namespace cv { namespace cuda { namespace device { |
|
namespace gmg |
|
{ |
|
void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior, |
|
float decisionThreshold, int maxFeatures, int numInitializationFrames); |
|
|
|
template <typename SrcT> |
|
void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, |
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
class GMGImpl : public cuda::BackgroundSubtractorGMG |
|
{ |
|
public: |
|
GMGImpl(int initializationFrames, double decisionThreshold); |
|
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate=-1); |
|
void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream); |
|
|
|
void getBackgroundImage(OutputArray backgroundImage) const; |
|
|
|
int getMaxFeatures() const { return maxFeatures_; } |
|
void setMaxFeatures(int maxFeatures) { maxFeatures_ = maxFeatures; } |
|
|
|
double getDefaultLearningRate() const { return learningRate_; } |
|
void setDefaultLearningRate(double lr) { learningRate_ = (float) lr; } |
|
|
|
int getNumFrames() const { return numInitializationFrames_; } |
|
void setNumFrames(int nframes) { numInitializationFrames_ = nframes; } |
|
|
|
int getQuantizationLevels() const { return quantizationLevels_; } |
|
void setQuantizationLevels(int nlevels) { quantizationLevels_ = nlevels; } |
|
|
|
double getBackgroundPrior() const { return backgroundPrior_; } |
|
void setBackgroundPrior(double bgprior) { backgroundPrior_ = (float) bgprior; } |
|
|
|
int getSmoothingRadius() const { return smoothingRadius_; } |
|
void setSmoothingRadius(int radius) { smoothingRadius_ = radius; } |
|
|
|
double getDecisionThreshold() const { return decisionThreshold_; } |
|
void setDecisionThreshold(double thresh) { decisionThreshold_ = (float) thresh; } |
|
|
|
bool getUpdateBackgroundModel() const { return updateBackgroundModel_; } |
|
void setUpdateBackgroundModel(bool update) { updateBackgroundModel_ = update; } |
|
|
|
double getMinVal() const { return minVal_; } |
|
void setMinVal(double val) { minVal_ = (float) val; } |
|
|
|
double getMaxVal() const { return maxVal_; } |
|
void setMaxVal(double val) { maxVal_ = (float) val; } |
|
|
|
private: |
|
void initialize(Size frameSize, float min, float max); |
|
|
|
//! Total number of distinct colors to maintain in histogram. |
|
int maxFeatures_; |
|
|
|
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms. |
|
float learningRate_; |
|
|
|
//! Number of frames of video to use to initialize histograms. |
|
int numInitializationFrames_; |
|
|
|
//! Number of discrete levels in each channel to be used in histograms. |
|
int quantizationLevels_; |
|
|
|
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter. |
|
float backgroundPrior_; |
|
|
|
//! Smoothing radius, in pixels, for cleaning up FG image. |
|
int smoothingRadius_; |
|
|
|
//! Value above which pixel is determined to be FG. |
|
float decisionThreshold_; |
|
|
|
//! Perform background model update. |
|
bool updateBackgroundModel_; |
|
|
|
float minVal_, maxVal_; |
|
|
|
Size frameSize_; |
|
int frameNum_; |
|
|
|
GpuMat nfeatures_; |
|
GpuMat colors_; |
|
GpuMat weights_; |
|
|
|
#if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM) |
|
Ptr<cuda::Filter> boxFilter_; |
|
GpuMat buf_; |
|
#endif |
|
}; |
|
|
|
GMGImpl::GMGImpl(int initializationFrames, double decisionThreshold) |
|
{ |
|
maxFeatures_ = 64; |
|
learningRate_ = 0.025f; |
|
numInitializationFrames_ = initializationFrames; |
|
quantizationLevels_ = 16; |
|
backgroundPrior_ = 0.8f; |
|
decisionThreshold_ = (float) decisionThreshold; |
|
smoothingRadius_ = 7; |
|
updateBackgroundModel_ = true; |
|
minVal_ = maxVal_ = 0; |
|
} |
|
|
|
void GMGImpl::apply(InputArray image, OutputArray fgmask, double learningRate) |
|
{ |
|
apply(image, fgmask, learningRate, Stream::Null()); |
|
} |
|
|
|
void GMGImpl::apply(InputArray _frame, OutputArray _fgmask, double newLearningRate, Stream& stream) |
|
{ |
|
using namespace cv::cuda::device::gmg; |
|
|
|
typedef void (*func_t)(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, |
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
|
static const func_t funcs[6][4] = |
|
{ |
|
{update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>}, |
|
{0,0,0,0}, |
|
{update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>}, |
|
{0,0,0,0}, |
|
{0,0,0,0}, |
|
{update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>} |
|
}; |
|
|
|
GpuMat frame = _frame.getGpuMat(); |
|
|
|
CV_Assert( frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F ); |
|
CV_Assert( frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4 ); |
|
|
|
if (newLearningRate != -1.0) |
|
{ |
|
CV_Assert( newLearningRate >= 0.0 && newLearningRate <= 1.0 ); |
|
learningRate_ = (float) newLearningRate; |
|
} |
|
|
|
if (frame.size() != frameSize_) |
|
{ |
|
double minVal = minVal_; |
|
double maxVal = maxVal_; |
|
|
|
if (minVal_ == 0 && maxVal_ == 0) |
|
{ |
|
minVal = 0; |
|
maxVal = frame.depth() == CV_8U ? 255.0 : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0; |
|
} |
|
|
|
initialize(frame.size(), (float) minVal, (float) maxVal); |
|
} |
|
|
|
_fgmask.create(frameSize_, CV_8UC1); |
|
GpuMat fgmask = _fgmask.getGpuMat(); |
|
|
|
fgmask.setTo(Scalar::all(0), stream); |
|
|
|
funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_, |
|
learningRate_, updateBackgroundModel_, StreamAccessor::getStream(stream)); |
|
|
|
#if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM) |
|
// medianBlur |
|
if (smoothingRadius_ > 0) |
|
{ |
|
boxFilter_->apply(fgmask, buf_, stream); |
|
const int minCount = (smoothingRadius_ * smoothingRadius_ + 1) / 2; |
|
const double thresh = 255.0 * minCount / (smoothingRadius_ * smoothingRadius_); |
|
cuda::threshold(buf_, fgmask, thresh, 255.0, THRESH_BINARY, stream); |
|
} |
|
#endif |
|
|
|
// keep track of how many frames we have processed |
|
++frameNum_; |
|
} |
|
|
|
void GMGImpl::getBackgroundImage(OutputArray backgroundImage) const |
|
{ |
|
(void) backgroundImage; |
|
CV_Error(Error::StsNotImplemented, "Not implemented"); |
|
} |
|
|
|
void GMGImpl::initialize(Size frameSize, float min, float max) |
|
{ |
|
using namespace cv::cuda::device::gmg; |
|
|
|
CV_Assert( maxFeatures_ > 0 ); |
|
CV_Assert( learningRate_ >= 0.0f && learningRate_ <= 1.0f); |
|
CV_Assert( numInitializationFrames_ >= 1); |
|
CV_Assert( quantizationLevels_ >= 1 && quantizationLevels_ <= 255); |
|
CV_Assert( backgroundPrior_ >= 0.0f && backgroundPrior_ <= 1.0f); |
|
|
|
minVal_ = min; |
|
maxVal_ = max; |
|
CV_Assert( minVal_ < maxVal_ ); |
|
|
|
frameSize_ = frameSize; |
|
|
|
frameNum_ = 0; |
|
|
|
nfeatures_.create(frameSize_, CV_32SC1); |
|
colors_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32SC1); |
|
weights_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32FC1); |
|
|
|
nfeatures_.setTo(Scalar::all(0)); |
|
|
|
#if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM) |
|
if (smoothingRadius_ > 0) |
|
boxFilter_ = cuda::createBoxFilter(CV_8UC1, -1, Size(smoothingRadius_, smoothingRadius_)); |
|
#endif |
|
|
|
loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_, |
|
quantizationLevels_, backgroundPrior_, decisionThreshold_, maxFeatures_, numInitializationFrames_); |
|
} |
|
} |
|
|
|
Ptr<cuda::BackgroundSubtractorGMG> cv::cuda::createBackgroundSubtractorGMG(int initializationFrames, double decisionThreshold) |
|
{ |
|
return makePtr<GMGImpl>(initializationFrames, decisionThreshold); |
|
} |
|
|
|
#endif
|
|
|