mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.6 KiB
69 lines
2.6 KiB
import cv2 as cv |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser( |
|
description='This sample shows how to define custom OpenCV deep learning layers in Python. ' |
|
'Holistically-Nested Edge Detection (https://arxiv.org/abs/1504.06375) neural network ' |
|
'is used as an example model. Find a pre-trained model at https://github.com/s9xie/hed.') |
|
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') |
|
parser.add_argument('--prototxt', help='Path to deploy.prototxt', required=True) |
|
parser.add_argument('--caffemodel', help='Path to hed_pretrained_bsds.caffemodel', required=True) |
|
parser.add_argument('--width', help='Resize input image to a specific width', default=500, type=int) |
|
parser.add_argument('--height', help='Resize input image to a specific height', default=500, type=int) |
|
args = parser.parse_args() |
|
|
|
#! [CropLayer] |
|
class CropLayer(object): |
|
def __init__(self, params, blobs): |
|
self.xstart = 0 |
|
self.xend = 0 |
|
self.ystart = 0 |
|
self.yend = 0 |
|
|
|
# Our layer receives two inputs. We need to crop the first input blob |
|
# to match a shape of the second one (keeping batch size and number of channels) |
|
def getMemoryShapes(self, inputs): |
|
inputShape, targetShape = inputs[0], inputs[1] |
|
batchSize, numChannels = inputShape[0], inputShape[1] |
|
height, width = targetShape[2], targetShape[3] |
|
|
|
self.ystart = (inputShape[2] - targetShape[2]) / 2 |
|
self.xstart = (inputShape[3] - targetShape[3]) / 2 |
|
self.yend = self.ystart + height |
|
self.xend = self.xstart + width |
|
|
|
return [[batchSize, numChannels, height, width]] |
|
|
|
def forward(self, inputs): |
|
return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]] |
|
#! [CropLayer] |
|
|
|
#! [Register] |
|
cv.dnn_registerLayer('Crop', CropLayer) |
|
#! [Register] |
|
|
|
# Load the model. |
|
net = cv.dnn.readNet(args.prototxt, args.caffemodel) |
|
|
|
kWinName = 'Holistically-Nested Edge Detection' |
|
cv.namedWindow('Input', cv.WINDOW_NORMAL) |
|
cv.namedWindow(kWinName, cv.WINDOW_NORMAL) |
|
|
|
cap = cv.VideoCapture(args.input if args.input else 0) |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
cv.waitKey() |
|
break |
|
|
|
cv.imshow('Input', frame) |
|
|
|
inp = cv.dnn.blobFromImage(frame, scalefactor=1.0, size=(args.width, args.height), |
|
mean=(104.00698793, 116.66876762, 122.67891434), |
|
swapRB=False, crop=False) |
|
net.setInput(inp) |
|
|
|
out = net.forward() |
|
out = out[0, 0] |
|
out = cv.resize(out, (frame.shape[1], frame.shape[0])) |
|
cv.imshow(kWinName, out)
|
|
|