mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
213 lines
7.0 KiB
213 lines
7.0 KiB
#include "opencv2/objdetect.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
static void help() |
|
{ |
|
cout << "\nThis program demonstrates the smile detector.\n" |
|
"Usage:\n" |
|
"./smiledetect [--cascade=<cascade_path> this is the frontal face classifier]\n" |
|
" [--smile-cascade=[<smile_cascade_path>]]\n" |
|
" [--scale=<image scale greater or equal to 1, try 2.0 for example. The larger the faster the processing>]\n" |
|
" [--try-flip]\n" |
|
" [video_filename|camera_index]\n\n" |
|
"Example:\n" |
|
"./smiledetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"../../data/haarcascades/haarcascade_smile.xml\" --scale=2.0\n\n" |
|
"During execution:\n\tHit any key to quit.\n" |
|
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl; |
|
} |
|
|
|
void detectAndDraw( Mat& img, CascadeClassifier& cascade, |
|
CascadeClassifier& nestedCascade, |
|
double scale, bool tryflip ); |
|
|
|
string cascadeName; |
|
string nestedCascadeName; |
|
|
|
int main( int argc, const char** argv ) |
|
{ |
|
VideoCapture capture; |
|
Mat frame, image; |
|
string inputName; |
|
bool tryflip; |
|
|
|
help(); |
|
|
|
CascadeClassifier cascade, nestedCascade; |
|
double scale; |
|
cv::CommandLineParser parser(argc, argv, |
|
"{help h||}{scale|1|}" |
|
"{cascade|../../data/haarcascades/haarcascade_frontalface_alt.xml|}" |
|
"{smile-cascade|../../data/haarcascades/haarcascade_smile.xml|}" |
|
"{try-flip||}{@input||}"); |
|
if (parser.has("help")) |
|
{ |
|
help(); |
|
return 0; |
|
} |
|
cascadeName = parser.get<string>("cascade"); |
|
nestedCascadeName = parser.get<string>("smile-cascade"); |
|
tryflip = parser.has("try-flip"); |
|
inputName = parser.get<string>("@input"); |
|
scale = parser.get<int>("scale"); |
|
if (!parser.check()) |
|
{ |
|
help(); |
|
return 1; |
|
} |
|
if (scale < 1) |
|
scale = 1; |
|
if( !cascade.load( cascadeName ) ) |
|
{ |
|
cerr << "ERROR: Could not load face cascade" << endl; |
|
help(); |
|
return -1; |
|
} |
|
if( !nestedCascade.load( nestedCascadeName ) ) |
|
{ |
|
cerr << "ERROR: Could not load smile cascade" << endl; |
|
help(); |
|
return -1; |
|
} |
|
if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) ) |
|
{ |
|
int c = inputName.empty() ? 0 : inputName[0] - '0' ; |
|
if(!capture.open(c)) |
|
cout << "Capture from camera #" << c << " didn't work" << endl; |
|
} |
|
else if( inputName.size() ) |
|
{ |
|
if(!capture.open( inputName )) |
|
cout << "Could not read " << inputName << endl; |
|
} |
|
|
|
if( capture.isOpened() ) |
|
{ |
|
cout << "Video capturing has been started ..." << endl; |
|
cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl; |
|
|
|
for(;;) |
|
{ |
|
capture >> frame; |
|
if( frame.empty() ) |
|
break; |
|
|
|
Mat frame1 = frame.clone(); |
|
detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip ); |
|
|
|
char c = (char)waitKey(10); |
|
if( c == 27 || c == 'q' || c == 'Q' ) |
|
break; |
|
} |
|
} |
|
else |
|
{ |
|
cerr << "ERROR: Could not initiate capture" << endl; |
|
help(); |
|
return -1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
void detectAndDraw( Mat& img, CascadeClassifier& cascade, |
|
CascadeClassifier& nestedCascade, |
|
double scale, bool tryflip) |
|
{ |
|
vector<Rect> faces, faces2; |
|
const static Scalar colors[] = |
|
{ |
|
Scalar(255,0,0), |
|
Scalar(255,128,0), |
|
Scalar(255,255,0), |
|
Scalar(0,255,0), |
|
Scalar(0,128,255), |
|
Scalar(0,255,255), |
|
Scalar(0,0,255), |
|
Scalar(255,0,255) |
|
}; |
|
Mat gray, smallImg; |
|
|
|
cvtColor( img, gray, COLOR_BGR2GRAY ); |
|
|
|
double fx = 1 / scale; |
|
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR_EXACT ); |
|
equalizeHist( smallImg, smallImg ); |
|
|
|
cascade.detectMultiScale( smallImg, faces, |
|
1.1, 2, 0 |
|
//|CASCADE_FIND_BIGGEST_OBJECT |
|
//|CASCADE_DO_ROUGH_SEARCH |
|
|CASCADE_SCALE_IMAGE, |
|
Size(30, 30) ); |
|
if( tryflip ) |
|
{ |
|
flip(smallImg, smallImg, 1); |
|
cascade.detectMultiScale( smallImg, faces2, |
|
1.1, 2, 0 |
|
//|CASCADE_FIND_BIGGEST_OBJECT |
|
//|CASCADE_DO_ROUGH_SEARCH |
|
|CASCADE_SCALE_IMAGE, |
|
Size(30, 30) ); |
|
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); ++r ) |
|
{ |
|
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height)); |
|
} |
|
} |
|
|
|
for ( size_t i = 0; i < faces.size(); i++ ) |
|
{ |
|
Rect r = faces[i]; |
|
Mat smallImgROI; |
|
vector<Rect> nestedObjects; |
|
Point center; |
|
Scalar color = colors[i%8]; |
|
int radius; |
|
|
|
double aspect_ratio = (double)r.width/r.height; |
|
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 ) |
|
{ |
|
center.x = cvRound((r.x + r.width*0.5)*scale); |
|
center.y = cvRound((r.y + r.height*0.5)*scale); |
|
radius = cvRound((r.width + r.height)*0.25*scale); |
|
circle( img, center, radius, color, 3, 8, 0 ); |
|
} |
|
else |
|
rectangle( img, Point(cvRound(r.x*scale), cvRound(r.y*scale)), |
|
Point(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)), |
|
color, 3, 8, 0); |
|
|
|
const int half_height=cvRound((float)r.height/2); |
|
r.y=r.y + half_height; |
|
r.height = half_height-1; |
|
smallImgROI = smallImg( r ); |
|
nestedCascade.detectMultiScale( smallImgROI, nestedObjects, |
|
1.1, 0, 0 |
|
//|CASCADE_FIND_BIGGEST_OBJECT |
|
//|CASCADE_DO_ROUGH_SEARCH |
|
//|CASCADE_DO_CANNY_PRUNING |
|
|CASCADE_SCALE_IMAGE, |
|
Size(30, 30) ); |
|
|
|
// The number of detected neighbors depends on image size (and also illumination, etc.). The |
|
// following steps use a floating minimum and maximum of neighbors. Intensity thus estimated will be |
|
//accurate only after a first smile has been displayed by the user. |
|
const int smile_neighbors = (int)nestedObjects.size(); |
|
static int max_neighbors=-1; |
|
static int min_neighbors=-1; |
|
if (min_neighbors == -1) min_neighbors = smile_neighbors; |
|
max_neighbors = MAX(max_neighbors, smile_neighbors); |
|
|
|
// Draw rectangle on the left side of the image reflecting smile intensity |
|
float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1); |
|
int rect_height = cvRound((float)img.rows * intensityZeroOne); |
|
Scalar col = Scalar((float)255 * intensityZeroOne, 0, 0); |
|
rectangle(img, Point(0, img.rows), Point(img.cols/10, img.rows - rect_height), col, -1); |
|
} |
|
|
|
imshow( "result", img ); |
|
}
|
|
|