Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
8.3 KiB
215 lines
8.3 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
TEST(Imgproc_Hist_Calc, calcHist_regression_11544) |
|
{ |
|
cv::Mat1w m = cv::Mat1w::zeros(10, 10); |
|
int n_images = 1; |
|
int channels[] = { 0 }; |
|
cv::Mat mask; |
|
cv::MatND hist1, hist2; |
|
cv::MatND hist1_opt, hist2_opt; |
|
int dims = 1; |
|
int hist_size[] = { 1000 }; |
|
float range1[] = { 0, 900 }; |
|
float range2[] = { 0, 1000 }; |
|
const float* ranges1[] = { range1 }; |
|
const float* ranges2[] = { range2 }; |
|
|
|
setUseOptimized(false); |
|
cv::calcHist(&m, n_images, channels, mask, hist1, dims, hist_size, ranges1); |
|
cv::calcHist(&m, n_images, channels, mask, hist2, dims, hist_size, ranges2); |
|
|
|
setUseOptimized(true); |
|
cv::calcHist(&m, n_images, channels, mask, hist1_opt, dims, hist_size, ranges1); |
|
cv::calcHist(&m, n_images, channels, mask, hist2_opt, dims, hist_size, ranges2); |
|
|
|
for(int i = 0; i < 1000; i++) |
|
{ |
|
EXPECT_EQ(hist1.at<float>(i), hist1_opt.at<float>(i)) << i; |
|
EXPECT_EQ(hist2.at<float>(i), hist2_opt.at<float>(i)) << i; |
|
} |
|
} |
|
|
|
TEST(Imgproc_Hist_Calc, badarg) |
|
{ |
|
const int channels[] = {0}; |
|
float range1[] = {0, 10}; |
|
float range2[] = {10, 20}; |
|
const float * ranges[] = {range1, range2}; |
|
Mat img = cv::Mat::zeros(10, 10, CV_8UC1); |
|
Mat imgInt = cv::Mat::zeros(10, 10, CV_32SC1); |
|
Mat hist; |
|
const int hist_size[] = { 100, 100 }; |
|
// base run |
|
EXPECT_NO_THROW(cv::calcHist(&img, 1, channels, noArray(), hist, 1, hist_size, ranges, true)); |
|
// bad parameters |
|
EXPECT_THROW(cv::calcHist(NULL, 1, channels, noArray(), hist, 1, hist_size, ranges, true), cv::Exception); |
|
EXPECT_THROW(cv::calcHist(&img, 0, channels, noArray(), hist, 1, hist_size, ranges, true), cv::Exception); |
|
EXPECT_THROW(cv::calcHist(&img, 1, NULL, noArray(), hist, 2, hist_size, ranges, true), cv::Exception); |
|
EXPECT_THROW(cv::calcHist(&img, 1, channels, noArray(), noArray(), 1, hist_size, ranges, true), cv::Exception); |
|
EXPECT_THROW(cv::calcHist(&img, 1, channels, noArray(), hist, -1, hist_size, ranges, true), cv::Exception); |
|
EXPECT_THROW(cv::calcHist(&img, 1, channels, noArray(), hist, 1, NULL, ranges, true), cv::Exception); |
|
EXPECT_THROW(cv::calcHist(&imgInt, 1, channels, noArray(), hist, 1, hist_size, NULL, true), cv::Exception); |
|
// special case |
|
EXPECT_NO_THROW(cv::calcHist(&img, 1, channels, noArray(), hist, 1, hist_size, NULL, true)); |
|
|
|
Mat backProj; |
|
// base run |
|
EXPECT_NO_THROW(cv::calcBackProject(&img, 1, channels, hist, backProj, ranges, 1, true)); |
|
// bad parameters |
|
EXPECT_THROW(cv::calcBackProject(NULL, 1, channels, hist, backProj, ranges, 1, true), cv::Exception); |
|
EXPECT_THROW(cv::calcBackProject(&img, 0, channels, hist, backProj, ranges, 1, true), cv::Exception); |
|
EXPECT_THROW(cv::calcBackProject(&img, 1, channels, noArray(), backProj, ranges, 1, true), cv::Exception); |
|
EXPECT_THROW(cv::calcBackProject(&img, 1, channels, hist, noArray(), ranges, 1, true), cv::Exception); |
|
EXPECT_THROW(cv::calcBackProject(&imgInt, 1, channels, hist, backProj, NULL, 1, true), cv::Exception); |
|
// special case |
|
EXPECT_NO_THROW(cv::calcBackProject(&img, 1, channels, hist, backProj, NULL, 1, true)); |
|
} |
|
|
|
TEST(Imgproc_Hist_Calc, IPP_ranges_with_equal_exponent_21595) |
|
{ |
|
const int channels[] = { 0 }; |
|
float range1[] = { -0.5f, 1.5f }; |
|
const float* ranges[] = { range1 }; |
|
const int hist_size[] = { 2 }; |
|
|
|
uint8_t m[1][6] = { { 0, 1, 0, 1 , 1, 1 } }; |
|
cv::Mat images_u = Mat(1, 6, CV_8UC1, m); |
|
cv::Mat histogram_u; |
|
cv::calcHist(&images_u, 1, channels, noArray(), histogram_u, 1, hist_size, ranges); |
|
|
|
ASSERT_EQ(histogram_u.at<float>(0), 2.f) << "0 not counts correctly, res: " << histogram_u.at<float>(0); |
|
ASSERT_EQ(histogram_u.at<float>(1), 4.f) << "1 not counts correctly, res: " << histogram_u.at<float>(0); |
|
} |
|
|
|
TEST(Imgproc_Hist_Calc, IPP_ranges_with_nonequal_exponent_21595) |
|
{ |
|
const int channels[] = { 0 }; |
|
float range1[] = { -1.3f, 1.5f }; |
|
const float* ranges[] = { range1 }; |
|
const int hist_size[] = { 3 }; |
|
|
|
uint8_t m[1][6] = { { 0, 1, 0, 1 , 1, 1 } }; |
|
cv::Mat images_u = Mat(1, 6, CV_8UC1, m); |
|
cv::Mat histogram_u; |
|
cv::calcHist(&images_u, 1, channels, noArray(), histogram_u, 1, hist_size, ranges); |
|
|
|
ASSERT_EQ(histogram_u.at<float>(0), 0.f) << "not equal to zero, res: " << histogram_u.at<float>(0); |
|
ASSERT_EQ(histogram_u.at<float>(1), 2.f) << "0 not counts correctly, res: " << histogram_u.at<float>(1); |
|
ASSERT_EQ(histogram_u.at<float>(2), 4.f) << "1 not counts correctly, res: " << histogram_u.at<float>(2); |
|
} |
|
|
|
////////////////////////////////////////// equalizeHist() ///////////////////////////////////////// |
|
|
|
void equalizeHistReference(const Mat& src, Mat& dst) |
|
{ |
|
std::vector<int> hist(256, 0); |
|
for (int y = 0; y < src.rows; y++) |
|
{ |
|
const uchar* srow = src.ptr(y); |
|
for (int x = 0; x < src.cols; x++) |
|
{ |
|
hist[srow[x]]++; |
|
} |
|
} |
|
|
|
int first = 0; |
|
while (!hist[first]) ++first; |
|
|
|
int total = (int)src.total(); |
|
if (hist[first] == total) |
|
{ |
|
dst.setTo(first); |
|
return; |
|
} |
|
|
|
std::vector<uchar> lut(256); |
|
lut[first] = 0; |
|
float scale = (255.f)/(total - hist[first]); |
|
|
|
int sum = 0; |
|
for (int i = first + 1; i < 256; ++i) |
|
{ |
|
sum += hist[i]; |
|
lut[i] = saturate_cast<uchar>(sum * scale); |
|
} |
|
|
|
cv::LUT(src, lut, dst); |
|
} |
|
|
|
typedef ::testing::TestWithParam<std::tuple<cv::Size, int>> Imgproc_Equalize_Hist; |
|
|
|
TEST_P(Imgproc_Equalize_Hist, accuracy) |
|
{ |
|
auto p = GetParam(); |
|
cv::Size size = std::get<0>(p); |
|
int idx = std::get<1>(p); |
|
|
|
RNG &rng = cvtest::TS::ptr()->get_rng(); |
|
rng.state += idx; |
|
|
|
cv::Mat src(size, CV_8U); |
|
cvtest::randUni(rng, src, Scalar::all(0), Scalar::all(255)); |
|
|
|
cv::Mat dst, gold; |
|
|
|
equalizeHistReference(src, gold); |
|
|
|
cv::equalizeHist(src, dst); |
|
|
|
ASSERT_EQ(CV_8UC1, dst.type()); |
|
ASSERT_EQ(gold.size(), dst.size()); |
|
|
|
EXPECT_MAT_NEAR(dst, gold, 1); |
|
EXPECT_MAT_N_DIFF(dst, gold, 0.05 * size.area()); // The 5% range could be accomodated to HAL |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Imgproc_Hist, Imgproc_Equalize_Hist, ::testing::Combine( |
|
::testing::Values(cv::Size(123, 321), cv::Size(256, 256), cv::Size(1024, 768)), |
|
::testing::Range(0, 10))); |
|
|
|
}} // namespace |
|
/* End Of File */
|
|
|