mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
123 lines
3.7 KiB
123 lines
3.7 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
Lucas-Kanade homography tracker |
|
=============================== |
|
|
|
Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack |
|
for track initialization and back-tracking for match verification |
|
between frames. Finds homography between reference and current views. |
|
|
|
Usage |
|
----- |
|
lk_homography.py [<video_source>] |
|
|
|
|
|
Keys |
|
---- |
|
ESC - exit |
|
SPACE - start tracking |
|
r - toggle RANSAC |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
import video |
|
from common import draw_str |
|
from video import presets |
|
|
|
lk_params = dict( winSize = (19, 19), |
|
maxLevel = 2, |
|
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03)) |
|
|
|
feature_params = dict( maxCorners = 1000, |
|
qualityLevel = 0.01, |
|
minDistance = 8, |
|
blockSize = 19 ) |
|
|
|
def checkedTrace(img0, img1, p0, back_threshold = 1.0): |
|
p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params) |
|
p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params) |
|
d = abs(p0-p0r).reshape(-1, 2).max(-1) |
|
status = d < back_threshold |
|
return p1, status |
|
|
|
green = (0, 255, 0) |
|
red = (0, 0, 255) |
|
|
|
class App: |
|
def __init__(self, video_src): |
|
self.cam = self.cam = video.create_capture(video_src, presets['book']) |
|
self.p0 = None |
|
self.use_ransac = True |
|
|
|
def run(self): |
|
while True: |
|
_ret, frame = self.cam.read() |
|
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) |
|
vis = frame.copy() |
|
if self.p0 is not None: |
|
p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1) |
|
|
|
self.p1 = p2[trace_status].copy() |
|
self.p0 = self.p0[trace_status].copy() |
|
self.gray1 = frame_gray |
|
|
|
if len(self.p0) < 4: |
|
self.p0 = None |
|
continue |
|
H, status = cv.findHomography(self.p0, self.p1, (0, cv.RANSAC)[self.use_ransac], 10.0) |
|
h, w = frame.shape[:2] |
|
overlay = cv.warpPerspective(self.frame0, H, (w, h)) |
|
vis = cv.addWeighted(vis, 0.5, overlay, 0.5, 0.0) |
|
|
|
for (x0, y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]): |
|
if good: |
|
cv.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (0, 128, 0)) |
|
cv.circle(vis, (int(x1), int(y1)), 2, (red, green)[good], -1) |
|
draw_str(vis, (20, 20), 'track count: %d' % len(self.p1)) |
|
if self.use_ransac: |
|
draw_str(vis, (20, 40), 'RANSAC') |
|
else: |
|
p = cv.goodFeaturesToTrack(frame_gray, **feature_params) |
|
if p is not None: |
|
for x, y in p[:,0]: |
|
cv.circle(vis, (int(x), int(y)), 2, green, -1) |
|
draw_str(vis, (20, 20), 'feature count: %d' % len(p)) |
|
|
|
cv.imshow('lk_homography', vis) |
|
|
|
ch = cv.waitKey(1) |
|
if ch == 27: |
|
break |
|
if ch == ord(' '): |
|
self.frame0 = frame.copy() |
|
self.p0 = cv.goodFeaturesToTrack(frame_gray, **feature_params) |
|
if self.p0 is not None: |
|
self.p1 = self.p0 |
|
self.gray0 = frame_gray |
|
self.gray1 = frame_gray |
|
if ch == ord('r'): |
|
self.use_ransac = not self.use_ransac |
|
|
|
|
|
|
|
def main(): |
|
import sys |
|
try: |
|
video_src = sys.argv[1] |
|
except: |
|
video_src = 0 |
|
|
|
App(video_src).run() |
|
print('Done') |
|
|
|
|
|
if __name__ == '__main__': |
|
print(__doc__) |
|
main() |
|
cv.destroyAllWindows()
|
|
|