mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
532 lines
18 KiB
532 lines
18 KiB
#ifndef CV2_CONVERT_HPP |
|
#define CV2_CONVERT_HPP |
|
|
|
#include "cv2.hpp" |
|
#include "cv2_util.hpp" |
|
#include "cv2_numpy.hpp" |
|
#include <vector> |
|
#include <string> |
|
#include <type_traits> // std::enable_if |
|
|
|
extern PyTypeObject* pyopencv_Mat_TypePtr; |
|
|
|
#define CV_HAS_CONVERSION_ERROR(x) (((x) == -1) && PyErr_Occurred()) |
|
|
|
inline bool isBool(PyObject* obj) CV_NOEXCEPT |
|
{ |
|
return PyArray_IsScalar(obj, Bool) || PyBool_Check(obj); |
|
} |
|
|
|
//====================================================================================================================== |
|
|
|
|
|
// exception-safe pyopencv_to |
|
template<typename _Tp> static |
|
bool pyopencv_to_safe(PyObject* obj, _Tp& value, const ArgInfo& info) |
|
{ |
|
try |
|
{ |
|
return pyopencv_to(obj, value, info); |
|
} |
|
catch (const std::exception &e) |
|
{ |
|
PyErr_SetString(opencv_error, cv::format("Conversion error: %s, what: %s", info.name, e.what()).c_str()); |
|
return false; |
|
} |
|
catch (...) |
|
{ |
|
PyErr_SetString(opencv_error, cv::format("Conversion error: %s", info.name).c_str()); |
|
return false; |
|
} |
|
} |
|
|
|
//====================================================================================================================== |
|
|
|
template<typename T, class TEnable = void> // TEnable is used for SFINAE checks |
|
struct PyOpenCV_Converter |
|
{ |
|
//static inline bool to(PyObject* obj, T& p, const ArgInfo& info); |
|
//static inline PyObject* from(const T& src); |
|
}; |
|
|
|
// --- Generic |
|
|
|
template<typename T> |
|
bool pyopencv_to(PyObject* obj, T& p, const ArgInfo& info) { return PyOpenCV_Converter<T>::to(obj, p, info); } |
|
|
|
template<typename T> |
|
PyObject* pyopencv_from(const T& src) { return PyOpenCV_Converter<T>::from(src); } |
|
|
|
// --- Matx |
|
|
|
template<typename _Tp, int m, int n> |
|
bool pyopencv_to(PyObject* o, cv::Matx<_Tp, m, n>& mx, const ArgInfo& info) |
|
{ |
|
cv::Mat tmp; |
|
if (!pyopencv_to(o, tmp, info)) { |
|
return false; |
|
} |
|
|
|
tmp.copyTo(mx); |
|
return true; |
|
} |
|
|
|
template<typename _Tp, int m, int n> |
|
PyObject* pyopencv_from(const cv::Matx<_Tp, m, n>& matx) |
|
{ |
|
return pyopencv_from(cv::Mat(matx)); |
|
} |
|
|
|
// --- bool |
|
template<> bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const bool& value); |
|
|
|
// --- Mat |
|
template<> bool pyopencv_to(PyObject* o, cv::Mat& m, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Mat& m); |
|
|
|
// --- Ptr |
|
template<typename T> |
|
struct PyOpenCV_Converter< cv::Ptr<T> > |
|
{ |
|
static PyObject* from(const cv::Ptr<T>& p) |
|
{ |
|
if (!p) |
|
Py_RETURN_NONE; |
|
return pyopencv_from(*p); |
|
} |
|
static bool to(PyObject *o, cv::Ptr<T>& p, const ArgInfo& info) |
|
{ |
|
if (!o || o == Py_None) |
|
return true; |
|
p = cv::makePtr<T>(); |
|
return pyopencv_to(o, *p, info); |
|
} |
|
}; |
|
|
|
// --- ptr |
|
template<> bool pyopencv_to(PyObject* obj, void*& ptr, const ArgInfo& info); |
|
PyObject* pyopencv_from(void*& ptr); |
|
|
|
// --- Scalar |
|
template<> bool pyopencv_to(PyObject *o, cv::Scalar& s, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Scalar& src); |
|
|
|
// --- size_t |
|
template<> bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const size_t& value); |
|
|
|
// --- int |
|
template<> bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const int& value); |
|
|
|
// --- int64 |
|
template<> PyObject* pyopencv_from(const int64& value); |
|
|
|
// There is conflict between "size_t" and "unsigned int". |
|
// They are the same type on some 32-bit platforms. |
|
template<typename T> |
|
struct PyOpenCV_Converter |
|
< T, typename std::enable_if< std::is_same<unsigned int, T>::value && !std::is_same<unsigned int, size_t>::value >::type > |
|
{ |
|
static inline PyObject* from(const unsigned int& value) |
|
{ |
|
return PyLong_FromUnsignedLong(value); |
|
} |
|
|
|
static inline bool to(PyObject* obj, unsigned int& value, const ArgInfo& info) |
|
{ |
|
CV_UNUSED(info); |
|
if(!obj || obj == Py_None) |
|
return true; |
|
if(PyInt_Check(obj)) |
|
value = (unsigned int)PyInt_AsLong(obj); |
|
else if(PyLong_Check(obj)) |
|
value = (unsigned int)PyLong_AsLong(obj); |
|
else |
|
return false; |
|
return value != (unsigned int)-1 || !PyErr_Occurred(); |
|
} |
|
}; |
|
|
|
// --- uchar |
|
template<> bool pyopencv_to(PyObject* obj, uchar& value, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const uchar& value); |
|
|
|
// --- char |
|
template<> bool pyopencv_to(PyObject* obj, char& value, const ArgInfo& info); |
|
|
|
// --- double |
|
template<> bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const double& value); |
|
|
|
// --- float |
|
template<> bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const float& value); |
|
|
|
// --- string |
|
template<> bool pyopencv_to(PyObject* obj, cv::String &value, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::String& value); |
|
#if CV_VERSION_MAJOR == 3 |
|
template<> PyObject* pyopencv_from(const std::string& value); |
|
#endif |
|
|
|
// --- Size |
|
template<> bool pyopencv_to(PyObject* obj, cv::Size& sz, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Size& sz); |
|
template<> bool pyopencv_to(PyObject* obj, cv::Size_<float>& sz, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Size_<float>& sz); |
|
|
|
// --- Rect |
|
template<> bool pyopencv_to(PyObject* obj, cv::Rect& r, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Rect& r); |
|
template<> bool pyopencv_to(PyObject* obj, cv::Rect2d& r, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Rect2d& r); |
|
|
|
// --- RotatedRect |
|
template<> bool pyopencv_to(PyObject* obj, cv::RotatedRect& dst, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::RotatedRect& src); |
|
|
|
// --- Range |
|
template<> bool pyopencv_to(PyObject* obj, cv::Range& r, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Range& r); |
|
|
|
// --- Point |
|
template<> bool pyopencv_to(PyObject* obj, cv::Point& p, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Point& p); |
|
template<> bool pyopencv_to(PyObject* obj, cv::Point2f& p, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Point2f& p); |
|
template<> bool pyopencv_to(PyObject* obj, cv::Point2d& p, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Point2d& p); |
|
template<> bool pyopencv_to(PyObject* obj, cv::Point3f& p, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Point3f& p); |
|
template<> bool pyopencv_to(PyObject* obj, cv::Point3d& p, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::Point3d& p); |
|
|
|
// --- Vec |
|
template<typename _Tp, int cn> |
|
bool pyopencv_to(PyObject* o, cv::Vec<_Tp, cn>& vec, const ArgInfo& info) |
|
{ |
|
return pyopencv_to(o, (cv::Matx<_Tp, cn, 1>&)vec, info); |
|
} |
|
bool pyopencv_to(PyObject* obj, cv::Vec4d& v, ArgInfo& info); |
|
PyObject* pyopencv_from(const cv::Vec4d& v); |
|
bool pyopencv_to(PyObject* obj, cv::Vec4f& v, ArgInfo& info); |
|
PyObject* pyopencv_from(const cv::Vec4f& v); |
|
bool pyopencv_to(PyObject* obj, cv::Vec4i& v, ArgInfo& info); |
|
PyObject* pyopencv_from(const cv::Vec4i& v); |
|
bool pyopencv_to(PyObject* obj, cv::Vec3d& v, ArgInfo& info); |
|
PyObject* pyopencv_from(const cv::Vec3d& v); |
|
bool pyopencv_to(PyObject* obj, cv::Vec3f& v, ArgInfo& info); |
|
PyObject* pyopencv_from(const cv::Vec3f& v); |
|
bool pyopencv_to(PyObject* obj, cv::Vec3i& v, ArgInfo& info); |
|
PyObject* pyopencv_from(const cv::Vec3i& v); |
|
bool pyopencv_to(PyObject* obj, cv::Vec2d& v, ArgInfo& info); |
|
PyObject* pyopencv_from(const cv::Vec2d& v); |
|
bool pyopencv_to(PyObject* obj, cv::Vec2f& v, ArgInfo& info); |
|
PyObject* pyopencv_from(const cv::Vec2f& v); |
|
bool pyopencv_to(PyObject* obj, cv::Vec2i& v, ArgInfo& info); |
|
PyObject* pyopencv_from(const cv::Vec2i& v); |
|
|
|
// --- TermCriteria |
|
template<> bool pyopencv_to(PyObject* obj, cv::TermCriteria& dst, const ArgInfo& info); |
|
template<> PyObject* pyopencv_from(const cv::TermCriteria& src); |
|
|
|
// --- Moments |
|
template<> PyObject* pyopencv_from(const cv::Moments& m); |
|
|
|
// --- pair |
|
template<> PyObject* pyopencv_from(const std::pair<int, double>& src); |
|
|
|
// --- vector |
|
template <typename Tp> |
|
struct pyopencvVecConverter; |
|
|
|
template <typename Tp> |
|
bool pyopencv_to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info) |
|
{ |
|
if (!obj || obj == Py_None) |
|
{ |
|
return true; |
|
} |
|
return pyopencvVecConverter<Tp>::to(obj, value, info); |
|
} |
|
|
|
template <typename Tp> |
|
PyObject* pyopencv_from(const std::vector<Tp>& value) |
|
{ |
|
return pyopencvVecConverter<Tp>::from(value); |
|
} |
|
|
|
template <typename Tp> |
|
static bool pyopencv_to_generic_vec(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info) |
|
{ |
|
if (!obj || obj == Py_None) |
|
{ |
|
return true; |
|
} |
|
if (!PySequence_Check(obj)) |
|
{ |
|
failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name); |
|
return false; |
|
} |
|
const size_t n = static_cast<size_t>(PySequence_Size(obj)); |
|
value.resize(n); |
|
for (size_t i = 0; i < n; i++) |
|
{ |
|
SafeSeqItem item_wrap(obj, i); |
|
if (!pyopencv_to(item_wrap.item, value[i], info)) |
|
{ |
|
failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i); |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
template<> inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector<bool>& value, const ArgInfo& info) |
|
{ |
|
if (!obj || obj == Py_None) |
|
{ |
|
return true; |
|
} |
|
if (!PySequence_Check(obj)) |
|
{ |
|
failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name); |
|
return false; |
|
} |
|
const size_t n = static_cast<size_t>(PySequence_Size(obj)); |
|
value.resize(n); |
|
for (size_t i = 0; i < n; i++) |
|
{ |
|
SafeSeqItem item_wrap(obj, i); |
|
bool elem{}; |
|
if (!pyopencv_to(item_wrap.item, elem, info)) |
|
{ |
|
failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i); |
|
return false; |
|
} |
|
value[i] = elem; |
|
} |
|
return true; |
|
} |
|
|
|
template <typename Tp> |
|
static PyObject* pyopencv_from_generic_vec(const std::vector<Tp>& value) |
|
{ |
|
Py_ssize_t n = static_cast<Py_ssize_t>(value.size()); |
|
PySafeObject seq(PyTuple_New(n)); |
|
for (Py_ssize_t i = 0; i < n; i++) |
|
{ |
|
PyObject* item = pyopencv_from(value[i]); |
|
// If item can't be assigned - PyTuple_SetItem raises exception and returns -1. |
|
if (!item || PyTuple_SetItem(seq, i, item) == -1) |
|
{ |
|
return NULL; |
|
} |
|
} |
|
return seq.release(); |
|
} |
|
|
|
template<> inline PyObject* pyopencv_from_generic_vec(const std::vector<bool>& value) |
|
{ |
|
Py_ssize_t n = static_cast<Py_ssize_t>(value.size()); |
|
PySafeObject seq(PyTuple_New(n)); |
|
for (Py_ssize_t i = 0; i < n; i++) |
|
{ |
|
bool elem = value[i]; |
|
PyObject* item = pyopencv_from(elem); |
|
// If item can't be assigned - PyTuple_SetItem raises exception and returns -1. |
|
if (!item || PyTuple_SetItem(seq, i, item) == -1) |
|
{ |
|
return NULL; |
|
} |
|
} |
|
return seq.release(); |
|
} |
|
|
|
namespace traits { |
|
|
|
template <bool Value> |
|
struct BooleanConstant |
|
{ |
|
static const bool value = Value; |
|
typedef BooleanConstant<Value> type; |
|
}; |
|
|
|
typedef BooleanConstant<true> TrueType; |
|
typedef BooleanConstant<false> FalseType; |
|
|
|
template <class T> |
|
struct VoidType { |
|
typedef void type; |
|
}; |
|
|
|
template <class T, class DType = void> |
|
struct IsRepresentableAsMatDataType : FalseType |
|
{ |
|
}; |
|
|
|
template <class T> |
|
struct IsRepresentableAsMatDataType<T, typename VoidType<typename cv::DataType<T>::channel_type>::type> : TrueType |
|
{ |
|
}; |
|
|
|
// https://github.com/opencv/opencv/issues/20930 |
|
template <> struct IsRepresentableAsMatDataType<cv::RotatedRect, void> : FalseType {}; |
|
|
|
} // namespace traits |
|
|
|
template <typename Tp> |
|
struct pyopencvVecConverter |
|
{ |
|
typedef typename std::vector<Tp>::iterator VecIt; |
|
|
|
static bool to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info) |
|
{ |
|
if (!PyArray_Check(obj)) |
|
{ |
|
return pyopencv_to_generic_vec(obj, value, info); |
|
} |
|
// If user passed an array it is possible to make faster conversions in several cases |
|
PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(obj); |
|
const NPY_TYPES target_type = asNumpyType<Tp>(); |
|
const NPY_TYPES source_type = static_cast<NPY_TYPES>(PyArray_TYPE(array_obj)); |
|
if (target_type == NPY_OBJECT) |
|
{ |
|
// Non-planar arrays representing objects (e.g. array of N Rect is an array of shape Nx4) have NPY_OBJECT |
|
// as their target type. |
|
return pyopencv_to_generic_vec(obj, value, info); |
|
} |
|
if (PyArray_NDIM(array_obj) > 1) |
|
{ |
|
failmsg("Can't parse %dD array as '%s' vector argument", PyArray_NDIM(array_obj), info.name); |
|
return false; |
|
} |
|
if (target_type != source_type) |
|
{ |
|
// Source type requires conversion |
|
// Allowed conversions for target type is handled in the corresponding pyopencv_to function |
|
return pyopencv_to_generic_vec(obj, value, info); |
|
} |
|
// For all other cases, all array data can be directly copied to std::vector data |
|
// Simple `memcpy` is not possible because NumPy array can reference a slice of the bigger array: |
|
// ``` |
|
// arr = np.ones((8, 4, 5), dtype=np.int32) |
|
// convertible_to_vector_of_int = arr[:, 0, 1] |
|
// ``` |
|
value.resize(static_cast<size_t>(PyArray_SIZE(array_obj))); |
|
const npy_intp item_step = PyArray_STRIDE(array_obj, 0) / PyArray_ITEMSIZE(array_obj); |
|
const Tp* data_ptr = static_cast<Tp*>(PyArray_DATA(array_obj)); |
|
for (VecIt it = value.begin(); it != value.end(); ++it, data_ptr += item_step) { |
|
*it = *data_ptr; |
|
} |
|
return true; |
|
} |
|
|
|
static PyObject* from(const std::vector<Tp>& value) |
|
{ |
|
if (value.empty()) |
|
{ |
|
return PyTuple_New(0); |
|
} |
|
return from(value, ::traits::IsRepresentableAsMatDataType<Tp>()); |
|
} |
|
|
|
private: |
|
static PyObject* from(const std::vector<Tp>& value, ::traits::FalseType) |
|
{ |
|
// Underlying type is not representable as Mat Data Type |
|
return pyopencv_from_generic_vec(value); |
|
} |
|
|
|
static PyObject* from(const std::vector<Tp>& value, ::traits::TrueType) |
|
{ |
|
// Underlying type is representable as Mat Data Type, so faster return type is available |
|
typedef cv::DataType<Tp> DType; |
|
typedef typename DType::channel_type UnderlyingArrayType; |
|
|
|
// If Mat is always exposed as NumPy array this code path can be reduced to the following snipped: |
|
// Mat src(value); |
|
// PyObject* array = pyopencv_from(src); |
|
// return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(array)); |
|
// This puts unnecessary restrictions on Mat object those might be avoided without losing the performance. |
|
// Moreover, this version is a bit faster, because it doesn't create temporary objects with reference counting. |
|
|
|
const NPY_TYPES target_type = asNumpyType<UnderlyingArrayType>(); |
|
const int cols = DType::channels; |
|
PyObject* array = NULL; |
|
if (cols == 1) |
|
{ |
|
npy_intp dims = static_cast<npy_intp>(value.size()); |
|
array = PyArray_SimpleNew(1, &dims, target_type); |
|
} |
|
else |
|
{ |
|
npy_intp dims[2] = {static_cast<npy_intp>(value.size()), cols}; |
|
array = PyArray_SimpleNew(2, dims, target_type); |
|
} |
|
if(!array) |
|
{ |
|
// NumPy arrays with shape (N, 1) and (N) are not equal, so correct error message should distinguish |
|
// them too. |
|
cv::String shape; |
|
if (cols > 1) |
|
{ |
|
shape = cv::format("(%d x %d)", static_cast<int>(value.size()), cols); |
|
} |
|
else |
|
{ |
|
shape = cv::format("(%d)", static_cast<int>(value.size())); |
|
} |
|
const cv::String error_message = cv::format("Can't allocate NumPy array for vector with dtype=%d and shape=%s", |
|
static_cast<int>(target_type), shape.c_str()); |
|
emit_failmsg(PyExc_MemoryError, error_message.c_str()); |
|
return array; |
|
} |
|
// Fill the array |
|
PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(array); |
|
UnderlyingArrayType* array_data = static_cast<UnderlyingArrayType*>(PyArray_DATA(array_obj)); |
|
// if Tp is representable as Mat DataType, so the following cast is pretty safe... |
|
const UnderlyingArrayType* value_data = reinterpret_cast<const UnderlyingArrayType*>(value.data()); |
|
memcpy(array_data, value_data, sizeof(UnderlyingArrayType) * value.size() * static_cast<size_t>(cols)); |
|
return array; |
|
} |
|
}; |
|
|
|
// --- tuple |
|
template<std::size_t I = 0, typename... Tp> |
|
inline typename std::enable_if<I == sizeof...(Tp), void>::type |
|
convert_to_python_tuple(const std::tuple<Tp...>&, PyObject*) { } |
|
|
|
template<std::size_t I = 0, typename... Tp> |
|
inline typename std::enable_if<I < sizeof...(Tp), void>::type |
|
convert_to_python_tuple(const std::tuple<Tp...>& cpp_tuple, PyObject* py_tuple) |
|
{ |
|
PyObject* item = pyopencv_from(std::get<I>(cpp_tuple)); |
|
|
|
if (!item) |
|
return; |
|
|
|
PyTuple_SetItem(py_tuple, I, item); |
|
convert_to_python_tuple<I + 1, Tp...>(cpp_tuple, py_tuple); |
|
} |
|
|
|
template<typename... Ts> |
|
PyObject* pyopencv_from(const std::tuple<Ts...>& cpp_tuple) |
|
{ |
|
size_t size = sizeof...(Ts); |
|
PyObject* py_tuple = PyTuple_New(size); |
|
convert_to_python_tuple(cpp_tuple, py_tuple); |
|
size_t actual_size = PyTuple_Size(py_tuple); |
|
|
|
if (actual_size < size) |
|
{ |
|
Py_DECREF(py_tuple); |
|
return NULL; |
|
} |
|
|
|
return py_tuple; |
|
} |
|
|
|
#endif // CV2_CONVERT_HPP
|
|
|