mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
269 lines
9.0 KiB
269 lines
9.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
void loadImage(string path, Mat &img) |
|
{ |
|
img = imread(path, -1); |
|
ASSERT_FALSE(img.empty()) << "Could not load input image " << path; |
|
} |
|
|
|
void checkEqual(Mat img0, Mat img1, double threshold, const string& name) |
|
{ |
|
double max = 1.0; |
|
minMaxLoc(abs(img0 - img1), NULL, &max); |
|
ASSERT_FALSE(max > threshold) << "max=" << max << " threshold=" << threshold << " method=" << name; |
|
} |
|
|
|
static vector<float> DEFAULT_VECTOR; |
|
void loadExposureSeq(String path, vector<Mat>& images, vector<float>& times = DEFAULT_VECTOR) |
|
{ |
|
std::ifstream list_file((path + "list.txt").c_str()); |
|
ASSERT_TRUE(list_file.is_open()); |
|
string name; |
|
float val; |
|
while(list_file >> name >> val) { |
|
Mat img = imread(path + name); |
|
ASSERT_FALSE(img.empty()) << "Could not load input image " << path + name; |
|
images.push_back(img); |
|
times.push_back(1 / val); |
|
} |
|
list_file.close(); |
|
} |
|
|
|
void loadResponseCSV(String path, Mat& response) |
|
{ |
|
response = Mat(256, 1, CV_32FC3); |
|
std::ifstream resp_file(path.c_str()); |
|
for(int i = 0; i < 256; i++) { |
|
for(int c = 0; c < 3; c++) { |
|
resp_file >> response.at<Vec3f>(i)[c]; |
|
resp_file.ignore(1); |
|
} |
|
} |
|
resp_file.close(); |
|
} |
|
|
|
TEST(Photo_Tonemap, regression) |
|
{ |
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/"; |
|
|
|
Mat img, expected, result; |
|
loadImage(test_path + "image.hdr", img); |
|
float gamma = 2.2f; |
|
|
|
Ptr<Tonemap> linear = createTonemap(gamma); |
|
linear->process(img, result); |
|
loadImage(test_path + "linear.png", expected); |
|
result.convertTo(result, CV_8UC3, 255); |
|
checkEqual(result, expected, 3, "Simple"); |
|
|
|
Ptr<TonemapDrago> drago = createTonemapDrago(gamma); |
|
drago->process(img, result); |
|
loadImage(test_path + "drago.png", expected); |
|
result.convertTo(result, CV_8UC3, 255); |
|
checkEqual(result, expected, 3, "Drago"); |
|
|
|
Ptr<TonemapReinhard> reinhard = createTonemapReinhard(gamma); |
|
reinhard->process(img, result); |
|
loadImage(test_path + "reinhard.png", expected); |
|
result.convertTo(result, CV_8UC3, 255); |
|
checkEqual(result, expected, 3, "Reinhard"); |
|
|
|
Ptr<TonemapMantiuk> mantiuk = createTonemapMantiuk(gamma); |
|
mantiuk->process(img, result); |
|
loadImage(test_path + "mantiuk.png", expected); |
|
result.convertTo(result, CV_8UC3, 255); |
|
checkEqual(result, expected, 3, "Mantiuk"); |
|
} |
|
|
|
TEST(Photo_AlignMTB, regression) |
|
{ |
|
const int TESTS_COUNT = 100; |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/"; |
|
|
|
string file_name = folder + "lena.png"; |
|
Mat img; |
|
loadImage(file_name, img); |
|
cvtColor(img, img, COLOR_RGB2GRAY); |
|
|
|
int max_bits = 5; |
|
int max_shift = 32; |
|
srand(static_cast<unsigned>(time(0))); |
|
int errors = 0; |
|
|
|
Ptr<AlignMTB> align = createAlignMTB(max_bits); |
|
RNG rng = theRNG(); |
|
|
|
for(int i = 0; i < TESTS_COUNT; i++) { |
|
Point shift(rng.uniform(0, max_shift), rng.uniform(0, max_shift)); |
|
Mat res; |
|
align->shiftMat(img, res, shift); |
|
Point calc = align->calculateShift(img, res); |
|
errors += (calc != -shift); |
|
} |
|
ASSERT_TRUE(errors < 5) << errors << " errors"; |
|
} |
|
|
|
TEST(Photo_MergeMertens, regression) |
|
{ |
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; |
|
|
|
vector<Mat> images; |
|
loadExposureSeq((test_path + "exposures/").c_str() , images); |
|
|
|
Ptr<MergeMertens> merge = createMergeMertens(); |
|
|
|
Mat result, expected; |
|
loadImage(test_path + "merge/mertens.png", expected); |
|
merge->process(images, result); |
|
result.convertTo(result, CV_8UC3, 255); |
|
checkEqual(expected, result, 3, "Mertens"); |
|
|
|
Mat uniform(100, 100, CV_8UC3); |
|
uniform = Scalar(0, 255, 0); |
|
|
|
images.clear(); |
|
images.push_back(uniform); |
|
|
|
merge->process(images, result); |
|
result.convertTo(result, CV_8UC3, 255); |
|
checkEqual(uniform, result, 1e-2f, "Mertens"); |
|
} |
|
|
|
TEST(Photo_MergeDebevec, regression) |
|
{ |
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; |
|
|
|
vector<Mat> images; |
|
vector<float> times; |
|
Mat response; |
|
loadExposureSeq(test_path + "exposures/", images, times); |
|
loadResponseCSV(test_path + "exposures/response.csv", response); |
|
|
|
Ptr<MergeDebevec> merge = createMergeDebevec(); |
|
|
|
Mat result, expected; |
|
loadImage(test_path + "merge/debevec.hdr", expected); |
|
merge->process(images, result, times, response); |
|
|
|
Ptr<Tonemap> map = createTonemap(); |
|
map->process(result, result); |
|
map->process(expected, expected); |
|
|
|
checkEqual(expected, result, 1e-2f, "Debevec"); |
|
} |
|
|
|
TEST(Photo_MergeRobertson, regression) |
|
{ |
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; |
|
|
|
vector<Mat> images; |
|
vector<float> times; |
|
loadExposureSeq(test_path + "exposures/", images, times); |
|
Ptr<MergeRobertson> merge = createMergeRobertson(); |
|
Mat result, expected; |
|
loadImage(test_path + "merge/robertson.hdr", expected); |
|
merge->process(images, result, times); |
|
|
|
const float eps = 6.f; |
|
checkEqual(expected, result, eps, "MergeRobertson"); |
|
} |
|
|
|
TEST(Photo_CalibrateDebevec, regression) |
|
{ |
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; |
|
|
|
vector<Mat> images; |
|
vector<float> times; |
|
Mat response, expected; |
|
loadExposureSeq(test_path + "exposures/", images, times); |
|
loadResponseCSV(test_path + "calibrate/debevec.csv", expected); |
|
Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec(); |
|
|
|
calibrate->process(images, response, times); |
|
Mat diff = abs(response - expected); |
|
diff = diff.mul(1.0f / response); |
|
double max; |
|
minMaxLoc(diff, NULL, &max); |
|
#if defined(__arm__) || defined(__aarch64__) |
|
ASSERT_LT(max, 0.131); |
|
#else |
|
ASSERT_LT(max, 0.1); |
|
#endif |
|
} |
|
|
|
TEST(Photo_CalibrateRobertson, regression) |
|
{ |
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; |
|
|
|
vector<Mat> images; |
|
vector<float> times; |
|
Mat response, expected; |
|
loadExposureSeq(test_path + "exposures/", images, times); |
|
loadResponseCSV(test_path + "calibrate/robertson.csv", expected); |
|
|
|
Ptr<CalibrateRobertson> calibrate = createCalibrateRobertson(); |
|
calibrate->process(images, response, times); |
|
checkEqual(expected, response, 1e-1f, "CalibrateRobertson"); |
|
} |
|
|
|
TEST(Photo_CalibrateRobertson, bug_18180) |
|
{ |
|
vector<Mat> images; |
|
vector<cv::String> fn; |
|
string test_path = cvtest::TS::ptr()->get_data_path() + "hdr/exposures/bug_18180/"; |
|
for(int i = 1; i <= 4; ++i) |
|
images.push_back(imread(test_path + std::to_string(i) + ".jpg")); |
|
vector<float> times {15.0f, 2.5f, 0.25f, 0.33f}; |
|
Mat response, expected; |
|
Ptr<CalibrateRobertson> calibrate = createCalibrateRobertson(2, 0.01f); |
|
calibrate->process(images, response, times); |
|
Mat response_no_nans = response.clone(); |
|
patchNaNs(response_no_nans); |
|
// since there should be no NaNs, original response vs. response with NaNs patched should be identical |
|
EXPECT_EQ(0.0, cv::norm(response, response_no_nans, NORM_L2)); |
|
} |
|
|
|
}} // namespace
|
|
|