Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5996 lines
188 KiB
5996 lines
188 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#include "opencl_kernels_core.hpp" |
|
#include "opencv2/core/hal/intrin.hpp" |
|
|
|
#include "opencv2/core/openvx/ovx_defs.hpp" |
|
|
|
#ifdef __APPLE__ |
|
#undef CV_NEON |
|
#define CV_NEON 0 |
|
#endif |
|
|
|
#define CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn) ((INT_MAX/4)/cn) // HAL implementation accepts 'int' len, so INT_MAX doesn't work here |
|
|
|
/****************************************************************************************\ |
|
* split & merge * |
|
\****************************************************************************************/ |
|
|
|
typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn); |
|
|
|
static SplitFunc getSplitFunc(int depth) |
|
{ |
|
static SplitFunc splitTab[] = |
|
{ |
|
(SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u), |
|
(SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split64s), 0 |
|
}; |
|
|
|
return splitTab[depth]; |
|
} |
|
|
|
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn); |
|
|
|
static MergeFunc getMergeFunc(int depth) |
|
{ |
|
static MergeFunc mergeTab[] = |
|
{ |
|
(MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), |
|
(MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), 0 |
|
}; |
|
|
|
return mergeTab[depth]; |
|
} |
|
|
|
void cv::split(const Mat& src, Mat* mv) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
int k, depth = src.depth(), cn = src.channels(); |
|
if( cn == 1 ) |
|
{ |
|
src.copyTo(mv[0]); |
|
return; |
|
} |
|
|
|
SplitFunc func = getSplitFunc(depth); |
|
CV_Assert( func != 0 ); |
|
|
|
size_t esz = src.elemSize(), esz1 = src.elemSize1(); |
|
size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz; |
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); |
|
const Mat** arrays = (const Mat**)(uchar*)_buf; |
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); |
|
|
|
arrays[0] = &src; |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
mv[k].create(src.dims, src.size, depth); |
|
arrays[k+1] = &mv[k]; |
|
} |
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1); |
|
size_t total = it.size; |
|
size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0)); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( size_t j = 0; j < total; j += blocksize ) |
|
{ |
|
size_t bsz = std::min(total - j, blocksize); |
|
func( ptrs[0], &ptrs[1], (int)bsz, cn ); |
|
|
|
if( j + blocksize < total ) |
|
{ |
|
ptrs[0] += bsz*esz; |
|
for( k = 0; k < cn; k++ ) |
|
ptrs[k+1] += bsz*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_split( InputArray _m, OutputArrayOfArrays _mv ) |
|
{ |
|
int type = _m.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), |
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
|
|
String dstargs, processelem, indexdecl; |
|
for (int i = 0; i < cn; ++i) |
|
{ |
|
dstargs += format("DECLARE_DST_PARAM(%d)", i); |
|
indexdecl += format("DECLARE_INDEX(%d)", i); |
|
processelem += format("PROCESS_ELEM(%d)", i); |
|
} |
|
|
|
ocl::Kernel k("split", ocl::core::split_merge_oclsrc, |
|
format("-D T=%s -D OP_SPLIT -D cn=%d -D DECLARE_DST_PARAMS=%s" |
|
" -D PROCESS_ELEMS_N=%s -D DECLARE_INDEX_N=%s", |
|
ocl::memopTypeToStr(depth), cn, dstargs.c_str(), |
|
processelem.c_str(), indexdecl.c_str())); |
|
if (k.empty()) |
|
return false; |
|
|
|
Size size = _m.size(); |
|
_mv.create(cn, 1, depth); |
|
for (int i = 0; i < cn; ++i) |
|
_mv.create(size, depth, i); |
|
|
|
std::vector<UMat> dst; |
|
_mv.getUMatVector(dst); |
|
|
|
int argidx = k.set(0, ocl::KernelArg::ReadOnly(_m.getUMat())); |
|
for (int i = 0; i < cn; ++i) |
|
argidx = k.set(argidx, ocl::KernelArg::WriteOnlyNoSize(dst[i])); |
|
k.set(argidx, rowsPerWI); |
|
|
|
size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::split(InputArray _m, OutputArrayOfArrays _mv) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_OCL_RUN(_m.dims() <= 2 && _mv.isUMatVector(), |
|
ocl_split(_m, _mv)) |
|
|
|
Mat m = _m.getMat(); |
|
if( m.empty() ) |
|
{ |
|
_mv.release(); |
|
return; |
|
} |
|
|
|
CV_Assert( !_mv.fixedType() || _mv.empty() || _mv.type() == m.depth() ); |
|
|
|
int depth = m.depth(), cn = m.channels(); |
|
_mv.create(cn, 1, depth); |
|
for (int i = 0; i < cn; ++i) |
|
_mv.create(m.dims, m.size.p, depth, i); |
|
|
|
std::vector<Mat> dst; |
|
_mv.getMatVector(dst); |
|
|
|
split(m, &dst[0]); |
|
} |
|
|
|
void cv::merge(const Mat* mv, size_t n, OutputArray _dst) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_Assert( mv && n > 0 ); |
|
|
|
int depth = mv[0].depth(); |
|
bool allch1 = true; |
|
int k, cn = 0; |
|
size_t i; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth); |
|
allch1 = allch1 && mv[i].channels() == 1; |
|
cn += mv[i].channels(); |
|
} |
|
|
|
CV_Assert( 0 < cn && cn <= CV_CN_MAX ); |
|
_dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn)); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( n == 1 ) |
|
{ |
|
mv[0].copyTo(dst); |
|
return; |
|
} |
|
|
|
if( !allch1 ) |
|
{ |
|
AutoBuffer<int> pairs(cn*2); |
|
int j, ni=0; |
|
|
|
for( i = 0, j = 0; i < n; i++, j += ni ) |
|
{ |
|
ni = mv[i].channels(); |
|
for( k = 0; k < ni; k++ ) |
|
{ |
|
pairs[(j+k)*2] = j + k; |
|
pairs[(j+k)*2+1] = j + k; |
|
} |
|
} |
|
mixChannels( mv, n, &dst, 1, &pairs[0], cn ); |
|
return; |
|
} |
|
|
|
MergeFunc func = getMergeFunc(depth); |
|
CV_Assert( func != 0 ); |
|
|
|
size_t esz = dst.elemSize(), esz1 = dst.elemSize1(); |
|
size_t blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz); |
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); |
|
const Mat** arrays = (const Mat**)(uchar*)_buf; |
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); |
|
|
|
arrays[0] = &dst; |
|
for( k = 0; k < cn; k++ ) |
|
arrays[k+1] = &mv[k]; |
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1); |
|
size_t total = (int)it.size; |
|
size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0)); |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( size_t j = 0; j < total; j += blocksize ) |
|
{ |
|
size_t bsz = std::min(total - j, blocksize); |
|
func( (const uchar**)&ptrs[1], ptrs[0], (int)bsz, cn ); |
|
|
|
if( j + blocksize < total ) |
|
{ |
|
ptrs[0] += bsz*esz; |
|
for( int t = 0; t < cn; t++ ) |
|
ptrs[t+1] += bsz*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst ) |
|
{ |
|
std::vector<UMat> src, ksrc; |
|
_mv.getUMatVector(src); |
|
CV_Assert(!src.empty()); |
|
|
|
int type = src[0].type(), depth = CV_MAT_DEPTH(type), |
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
Size size = src[0].size(); |
|
|
|
for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i) |
|
{ |
|
int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype), |
|
esz1 = CV_ELEM_SIZE1(idepth); |
|
if (src[i].dims > 2) |
|
return false; |
|
|
|
CV_Assert(size == src[i].size() && depth == idepth); |
|
|
|
for (int cn = 0; cn < icn; ++cn) |
|
{ |
|
UMat tsrc = src[i]; |
|
tsrc.offset += cn * esz1; |
|
ksrc.push_back(tsrc); |
|
} |
|
} |
|
int dcn = (int)ksrc.size(); |
|
|
|
String srcargs, processelem, cndecl, indexdecl; |
|
for (int i = 0; i < dcn; ++i) |
|
{ |
|
srcargs += format("DECLARE_SRC_PARAM(%d)", i); |
|
processelem += format("PROCESS_ELEM(%d)", i); |
|
indexdecl += format("DECLARE_INDEX(%d)", i); |
|
cndecl += format(" -D scn%d=%d", i, ksrc[i].channels()); |
|
} |
|
|
|
ocl::Kernel k("merge", ocl::core::split_merge_oclsrc, |
|
format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s" |
|
" -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s", |
|
dcn, ocl::memopTypeToStr(depth), srcargs.c_str(), |
|
indexdecl.c_str(), processelem.c_str(), cndecl.c_str())); |
|
if (k.empty()) |
|
return false; |
|
|
|
_dst.create(size, CV_MAKE_TYPE(depth, dcn)); |
|
UMat dst = _dst.getUMat(); |
|
|
|
int argidx = 0; |
|
for (int i = 0; i < dcn; ++i) |
|
argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i])); |
|
argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst)); |
|
k.set(argidx, rowsPerWI); |
|
|
|
size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::merge(InputArrayOfArrays _mv, OutputArray _dst) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(), |
|
ocl_merge(_mv, _dst)) |
|
|
|
std::vector<Mat> mv; |
|
_mv.getMatVector(mv); |
|
merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Generalized split/merge: mixing channels * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void |
|
mixChannels_( const T** src, const int* sdelta, |
|
T** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
int i, k; |
|
for( k = 0; k < npairs; k++ ) |
|
{ |
|
const T* s = src[k]; |
|
T* d = dst[k]; |
|
int ds = sdelta[k], dd = ddelta[k]; |
|
if( s ) |
|
{ |
|
for( i = 0; i <= len - 2; i += 2, s += ds*2, d += dd*2 ) |
|
{ |
|
T t0 = s[0], t1 = s[ds]; |
|
d[0] = t0; d[dd] = t1; |
|
} |
|
if( i < len ) |
|
d[0] = s[0]; |
|
} |
|
else |
|
{ |
|
for( i = 0; i <= len - 2; i += 2, d += dd*2 ) |
|
d[0] = d[dd] = 0; |
|
if( i < len ) |
|
d[0] = 0; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void mixChannels8u( const uchar** src, const int* sdelta, |
|
uchar** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
static void mixChannels16u( const ushort** src, const int* sdelta, |
|
ushort** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
static void mixChannels32s( const int** src, const int* sdelta, |
|
int** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
static void mixChannels64s( const int64** src, const int* sdelta, |
|
int64** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
typedef void (*MixChannelsFunc)( const uchar** src, const int* sdelta, |
|
uchar** dst, const int* ddelta, int len, int npairs ); |
|
|
|
static MixChannelsFunc getMixchFunc(int depth) |
|
{ |
|
static MixChannelsFunc mixchTab[] = |
|
{ |
|
(MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels16u, |
|
(MixChannelsFunc)mixChannels16u, (MixChannelsFunc)mixChannels32s, (MixChannelsFunc)mixChannels32s, |
|
(MixChannelsFunc)mixChannels64s, 0 |
|
}; |
|
|
|
return mixchTab[depth]; |
|
} |
|
|
|
} |
|
|
|
void cv::mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
if( npairs == 0 ) |
|
return; |
|
CV_Assert( src && nsrcs > 0 && dst && ndsts > 0 && fromTo && npairs > 0 ); |
|
|
|
size_t i, j, k, esz1 = dst[0].elemSize1(); |
|
int depth = dst[0].depth(); |
|
|
|
AutoBuffer<uchar> buf((nsrcs + ndsts + 1)*(sizeof(Mat*) + sizeof(uchar*)) + npairs*(sizeof(uchar*)*2 + sizeof(int)*6)); |
|
const Mat** arrays = (const Mat**)(uchar*)buf; |
|
uchar** ptrs = (uchar**)(arrays + nsrcs + ndsts); |
|
const uchar** srcs = (const uchar**)(ptrs + nsrcs + ndsts + 1); |
|
uchar** dsts = (uchar**)(srcs + npairs); |
|
int* tab = (int*)(dsts + npairs); |
|
int *sdelta = (int*)(tab + npairs*4), *ddelta = sdelta + npairs; |
|
|
|
for( i = 0; i < nsrcs; i++ ) |
|
arrays[i] = &src[i]; |
|
for( i = 0; i < ndsts; i++ ) |
|
arrays[i + nsrcs] = &dst[i]; |
|
ptrs[nsrcs + ndsts] = 0; |
|
|
|
for( i = 0; i < npairs; i++ ) |
|
{ |
|
int i0 = fromTo[i*2], i1 = fromTo[i*2+1]; |
|
if( i0 >= 0 ) |
|
{ |
|
for( j = 0; j < nsrcs; i0 -= src[j].channels(), j++ ) |
|
if( i0 < src[j].channels() ) |
|
break; |
|
CV_Assert(j < nsrcs && src[j].depth() == depth); |
|
tab[i*4] = (int)j; tab[i*4+1] = (int)(i0*esz1); |
|
sdelta[i] = src[j].channels(); |
|
} |
|
else |
|
{ |
|
tab[i*4] = (int)(nsrcs + ndsts); tab[i*4+1] = 0; |
|
sdelta[i] = 0; |
|
} |
|
|
|
for( j = 0; j < ndsts; i1 -= dst[j].channels(), j++ ) |
|
if( i1 < dst[j].channels() ) |
|
break; |
|
CV_Assert(i1 >= 0 && j < ndsts && dst[j].depth() == depth); |
|
tab[i*4+2] = (int)(j + nsrcs); tab[i*4+3] = (int)(i1*esz1); |
|
ddelta[i] = dst[j].channels(); |
|
} |
|
|
|
NAryMatIterator it(arrays, ptrs, (int)(nsrcs + ndsts)); |
|
int total = (int)it.size, blocksize = std::min(total, (int)((BLOCK_SIZE + esz1-1)/esz1)); |
|
MixChannelsFunc func = getMixchFunc(depth); |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( k = 0; k < npairs; k++ ) |
|
{ |
|
srcs[k] = ptrs[tab[k*4]] + tab[k*4+1]; |
|
dsts[k] = ptrs[tab[k*4+2]] + tab[k*4+3]; |
|
} |
|
|
|
for( int t = 0; t < total; t += blocksize ) |
|
{ |
|
int bsz = std::min(total - t, blocksize); |
|
func( srcs, sdelta, dsts, ddelta, bsz, (int)npairs ); |
|
|
|
if( t + blocksize < total ) |
|
for( k = 0; k < npairs; k++ ) |
|
{ |
|
srcs[k] += blocksize*sdelta[k]*esz1; |
|
dsts[k] += blocksize*ddelta[k]*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static void getUMatIndex(const std::vector<UMat> & um, int cn, int & idx, int & cnidx) |
|
{ |
|
int totalChannels = 0; |
|
for (size_t i = 0, size = um.size(); i < size; ++i) |
|
{ |
|
int ccn = um[i].channels(); |
|
totalChannels += ccn; |
|
|
|
if (totalChannels == cn) |
|
{ |
|
idx = (int)(i + 1); |
|
cnidx = 0; |
|
return; |
|
} |
|
else if (totalChannels > cn) |
|
{ |
|
idx = (int)i; |
|
cnidx = i == 0 ? cn : (cn - totalChannels + ccn); |
|
return; |
|
} |
|
} |
|
|
|
idx = cnidx = -1; |
|
} |
|
|
|
static bool ocl_mixChannels(InputArrayOfArrays _src, InputOutputArrayOfArrays _dst, |
|
const int* fromTo, size_t npairs) |
|
{ |
|
std::vector<UMat> src, dst; |
|
_src.getUMatVector(src); |
|
_dst.getUMatVector(dst); |
|
|
|
size_t nsrc = src.size(), ndst = dst.size(); |
|
CV_Assert(nsrc > 0 && ndst > 0); |
|
|
|
Size size = src[0].size(); |
|
int depth = src[0].depth(), esz = CV_ELEM_SIZE(depth), |
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
|
|
for (size_t i = 1, ssize = src.size(); i < ssize; ++i) |
|
CV_Assert(src[i].size() == size && src[i].depth() == depth); |
|
for (size_t i = 0, dsize = dst.size(); i < dsize; ++i) |
|
CV_Assert(dst[i].size() == size && dst[i].depth() == depth); |
|
|
|
String declsrc, decldst, declproc, declcn, indexdecl; |
|
std::vector<UMat> srcargs(npairs), dstargs(npairs); |
|
|
|
for (size_t i = 0; i < npairs; ++i) |
|
{ |
|
int scn = fromTo[i<<1], dcn = fromTo[(i<<1) + 1]; |
|
int src_idx, src_cnidx, dst_idx, dst_cnidx; |
|
|
|
getUMatIndex(src, scn, src_idx, src_cnidx); |
|
getUMatIndex(dst, dcn, dst_idx, dst_cnidx); |
|
|
|
CV_Assert(dst_idx >= 0 && src_idx >= 0); |
|
|
|
srcargs[i] = src[src_idx]; |
|
srcargs[i].offset += src_cnidx * esz; |
|
|
|
dstargs[i] = dst[dst_idx]; |
|
dstargs[i].offset += dst_cnidx * esz; |
|
|
|
declsrc += format("DECLARE_INPUT_MAT(%d)", i); |
|
decldst += format("DECLARE_OUTPUT_MAT(%d)", i); |
|
indexdecl += format("DECLARE_INDEX(%d)", i); |
|
declproc += format("PROCESS_ELEM(%d)", i); |
|
declcn += format(" -D scn%d=%d -D dcn%d=%d", i, src[src_idx].channels(), i, dst[dst_idx].channels()); |
|
} |
|
|
|
ocl::Kernel k("mixChannels", ocl::core::mixchannels_oclsrc, |
|
format("-D T=%s -D DECLARE_INPUT_MAT_N=%s -D DECLARE_OUTPUT_MAT_N=%s" |
|
" -D PROCESS_ELEM_N=%s -D DECLARE_INDEX_N=%s%s", |
|
ocl::memopTypeToStr(depth), declsrc.c_str(), decldst.c_str(), |
|
declproc.c_str(), indexdecl.c_str(), declcn.c_str())); |
|
if (k.empty()) |
|
return false; |
|
|
|
int argindex = 0; |
|
for (size_t i = 0; i < npairs; ++i) |
|
argindex = k.set(argindex, ocl::KernelArg::ReadOnlyNoSize(srcargs[i])); |
|
for (size_t i = 0; i < npairs; ++i) |
|
argindex = k.set(argindex, ocl::KernelArg::WriteOnlyNoSize(dstargs[i])); |
|
argindex = k.set(argindex, size.height); |
|
argindex = k.set(argindex, size.width); |
|
k.set(argindex, rowsPerWI); |
|
|
|
size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, |
|
const int* fromTo, size_t npairs) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
if (npairs == 0 || fromTo == NULL) |
|
return; |
|
|
|
CV_OCL_RUN(dst.isUMatVector(), |
|
ocl_mixChannels(src, dst, fromTo, npairs)) |
|
|
|
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT && |
|
src.kind() != _InputArray::STD_VECTOR_VECTOR && |
|
src.kind() != _InputArray::STD_VECTOR_UMAT; |
|
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT && |
|
dst.kind() != _InputArray::STD_VECTOR_VECTOR && |
|
dst.kind() != _InputArray::STD_VECTOR_UMAT; |
|
int i; |
|
int nsrc = src_is_mat ? 1 : (int)src.total(); |
|
int ndst = dst_is_mat ? 1 : (int)dst.total(); |
|
|
|
CV_Assert(nsrc > 0 && ndst > 0); |
|
cv::AutoBuffer<Mat> _buf(nsrc + ndst); |
|
Mat* buf = _buf; |
|
for( i = 0; i < nsrc; i++ ) |
|
buf[i] = src.getMat(src_is_mat ? -1 : i); |
|
for( i = 0; i < ndst; i++ ) |
|
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i); |
|
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, fromTo, npairs); |
|
} |
|
|
|
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, |
|
const std::vector<int>& fromTo) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
if (fromTo.empty()) |
|
return; |
|
|
|
CV_OCL_RUN(dst.isUMatVector(), |
|
ocl_mixChannels(src, dst, &fromTo[0], fromTo.size()>>1)) |
|
|
|
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT && |
|
src.kind() != _InputArray::STD_VECTOR_VECTOR && |
|
src.kind() != _InputArray::STD_VECTOR_UMAT; |
|
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT && |
|
dst.kind() != _InputArray::STD_VECTOR_VECTOR && |
|
dst.kind() != _InputArray::STD_VECTOR_UMAT; |
|
int i; |
|
int nsrc = src_is_mat ? 1 : (int)src.total(); |
|
int ndst = dst_is_mat ? 1 : (int)dst.total(); |
|
|
|
CV_Assert(fromTo.size()%2 == 0 && nsrc > 0 && ndst > 0); |
|
cv::AutoBuffer<Mat> _buf(nsrc + ndst); |
|
Mat* buf = _buf; |
|
for( i = 0; i < nsrc; i++ ) |
|
buf[i] = src.getMat(src_is_mat ? -1 : i); |
|
for( i = 0; i < ndst; i++ ) |
|
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i); |
|
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, &fromTo[0], fromTo.size()/2); |
|
} |
|
|
|
void cv::extractChannel(InputArray _src, OutputArray _dst, int coi) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
CV_Assert( 0 <= coi && coi < cn ); |
|
int ch[] = { coi, 0 }; |
|
|
|
if (ocl::useOpenCL() && _src.dims() <= 2 && _dst.isUMat()) |
|
{ |
|
UMat src = _src.getUMat(); |
|
_dst.create(src.dims, &src.size[0], depth); |
|
UMat dst = _dst.getUMat(); |
|
mixChannels(std::vector<UMat>(1, src), std::vector<UMat>(1, dst), ch, 1); |
|
return; |
|
} |
|
|
|
Mat src = _src.getMat(); |
|
_dst.create(src.dims, &src.size[0], depth); |
|
Mat dst = _dst.getMat(); |
|
mixChannels(&src, 1, &dst, 1, ch, 1); |
|
} |
|
|
|
void cv::insertChannel(InputArray _src, InputOutputArray _dst, int coi) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); |
|
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype); |
|
CV_Assert( _src.sameSize(_dst) && sdepth == ddepth ); |
|
CV_Assert( 0 <= coi && coi < dcn && scn == 1 ); |
|
|
|
int ch[] = { 0, coi }; |
|
if (ocl::useOpenCL() && _src.dims() <= 2 && _dst.isUMat()) |
|
{ |
|
UMat src = _src.getUMat(), dst = _dst.getUMat(); |
|
mixChannels(std::vector<UMat>(1, src), std::vector<UMat>(1, dst), ch, 1); |
|
return; |
|
} |
|
|
|
Mat src = _src.getMat(), dst = _dst.getMat(); |
|
mixChannels(&src, 1, &dst, 1, ch, 1); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* convertScale[Abs] * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename DT, typename WT> |
|
struct cvtScaleAbs_SIMD |
|
{ |
|
int operator () (const T *, DT *, int, WT, WT) const |
|
{ |
|
return 0; |
|
} |
|
}; |
|
|
|
#if CV_SSE2 |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<uchar, uchar, float> |
|
{ |
|
int operator () (const uchar * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src + x)); |
|
__m128i v_src12 = _mm_unpacklo_epi8(v_src, v_zero_i), v_src_34 = _mm_unpackhi_epi8(v_src, v_zero_i); |
|
__m128 v_dst1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src12, v_zero_i)), v_scale), v_shift); |
|
v_dst1 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst1), v_dst1); |
|
__m128 v_dst2 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src12, v_zero_i)), v_scale), v_shift); |
|
v_dst2 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst2), v_dst2); |
|
__m128 v_dst3 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src_34, v_zero_i)), v_scale), v_shift); |
|
v_dst3 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst3), v_dst3); |
|
__m128 v_dst4 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src_34, v_zero_i)), v_scale), v_shift); |
|
v_dst4 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst4), v_dst4); |
|
|
|
__m128i v_dst_i = _mm_packus_epi16(_mm_packs_epi32(_mm_cvtps_epi32(v_dst1), _mm_cvtps_epi32(v_dst2)), |
|
_mm_packs_epi32(_mm_cvtps_epi32(v_dst3), _mm_cvtps_epi32(v_dst4))); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst_i); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<schar, uchar, float> |
|
{ |
|
int operator () (const schar * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src + x)); |
|
__m128i v_src_12 = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero_i, v_src), 8), |
|
v_src_34 = _mm_srai_epi16(_mm_unpackhi_epi8(v_zero_i, v_src), 8); |
|
__m128 v_dst1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps( |
|
_mm_srai_epi32(_mm_unpacklo_epi16(v_zero_i, v_src_12), 16)), v_scale), v_shift); |
|
v_dst1 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst1), v_dst1); |
|
__m128 v_dst2 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps( |
|
_mm_srai_epi32(_mm_unpackhi_epi16(v_zero_i, v_src_12), 16)), v_scale), v_shift); |
|
v_dst2 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst2), v_dst2); |
|
__m128 v_dst3 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps( |
|
_mm_srai_epi32(_mm_unpacklo_epi16(v_zero_i, v_src_34), 16)), v_scale), v_shift); |
|
v_dst3 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst3), v_dst3); |
|
__m128 v_dst4 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps( |
|
_mm_srai_epi32(_mm_unpackhi_epi16(v_zero_i, v_src_34), 16)), v_scale), v_shift); |
|
v_dst4 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst4), v_dst4); |
|
|
|
__m128i v_dst_i = _mm_packus_epi16(_mm_packs_epi32(_mm_cvtps_epi32(v_dst1), _mm_cvtps_epi32(v_dst2)), |
|
_mm_packs_epi32(_mm_cvtps_epi32(v_dst3), _mm_cvtps_epi32(v_dst4))); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst_i); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<ushort, uchar, float> |
|
{ |
|
int operator () (const ushort * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src + x)); |
|
__m128 v_dst1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero_i)), v_scale), v_shift); |
|
v_dst1 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst1), v_dst1); |
|
__m128 v_dst2 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero_i)), v_scale), v_shift); |
|
v_dst2 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst2), v_dst2); |
|
|
|
__m128i v_dst_i = _mm_packus_epi16(_mm_packs_epi32(_mm_cvtps_epi32(v_dst1), _mm_cvtps_epi32(v_dst2)), v_zero_i); |
|
_mm_storel_epi64((__m128i *)(dst + x), v_dst_i); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<short, uchar, float> |
|
{ |
|
int operator () (const short * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src + x)); |
|
__m128 v_dst1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_src, v_src), 16)), v_scale), v_shift); |
|
v_dst1 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst1), v_dst1); |
|
__m128 v_dst2 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_src, v_src), 16)), v_scale), v_shift); |
|
v_dst2 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst2), v_dst2); |
|
|
|
__m128i v_dst_i = _mm_packus_epi16(_mm_packs_epi32(_mm_cvtps_epi32(v_dst1), _mm_cvtps_epi32(v_dst2)), v_zero_i); |
|
_mm_storel_epi64((__m128i *)(dst + x), v_dst_i); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<int, uchar, float> |
|
{ |
|
int operator () (const int * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 8; x += 4) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src + x)); |
|
__m128 v_dst1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(v_src), v_scale), v_shift); |
|
v_dst1 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst1), v_dst1); |
|
|
|
__m128i v_dst_i = _mm_packus_epi16(_mm_packs_epi32(_mm_cvtps_epi32(v_dst1), v_zero_i), v_zero_i); |
|
_mm_storel_epi64((__m128i *)(dst + x), v_dst_i); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<float, uchar, float> |
|
{ |
|
int operator () (const float * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 8; x += 4) |
|
{ |
|
__m128 v_dst = _mm_add_ps(_mm_mul_ps(_mm_loadu_ps(src + x), v_scale), v_shift); |
|
v_dst = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst), v_dst); |
|
|
|
__m128i v_dst_i = _mm_packs_epi32(_mm_cvtps_epi32(v_dst), v_zero_i); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst_i, v_zero_i)); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<double, uchar, float> |
|
{ |
|
int operator () (const double * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src1 = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(src + x)), |
|
_mm_cvtpd_ps(_mm_loadu_pd(src + x + 2))); |
|
__m128 v_src2 = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(src + x + 4)), |
|
_mm_cvtpd_ps(_mm_loadu_pd(src + x + 6))); |
|
|
|
__m128 v_dst1 = _mm_add_ps(_mm_mul_ps(v_src1, v_scale), v_shift); |
|
v_dst1 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst1), v_dst1); |
|
|
|
__m128 v_dst2 = _mm_add_ps(_mm_mul_ps(v_src2, v_scale), v_shift); |
|
v_dst2 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst2), v_dst2); |
|
|
|
__m128i v_dst_i = _mm_packs_epi32(_mm_cvtps_epi32(v_dst1), |
|
_mm_cvtps_epi32(v_dst2)); |
|
|
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst_i, v_zero_i)); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#elif CV_NEON |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<uchar, uchar, float> |
|
{ |
|
int operator () (const uchar * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift); |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
uint8x16_t v_src = vld1q_u8(src + x); |
|
uint16x8_t v_half = vmovl_u8(vget_low_u8(v_src)); |
|
|
|
uint32x4_t v_quat = vmovl_u16(vget_low_u16(v_half)); |
|
float32x4_t v_dst_0 = vmulq_n_f32(vcvtq_f32_u32(v_quat), scale); |
|
v_dst_0 = vabsq_f32(vaddq_f32(v_dst_0, v_shift)); |
|
|
|
v_quat = vmovl_u16(vget_high_u16(v_half)); |
|
float32x4_t v_dst_1 = vmulq_n_f32(vcvtq_f32_u32(v_quat), scale); |
|
v_dst_1 = vabsq_f32(vaddq_f32(v_dst_1, v_shift)); |
|
|
|
v_half = vmovl_u8(vget_high_u8(v_src)); |
|
|
|
v_quat = vmovl_u16(vget_low_u16(v_half)); |
|
float32x4_t v_dst_2 = vmulq_n_f32(vcvtq_f32_u32(v_quat), scale); |
|
v_dst_2 = vabsq_f32(vaddq_f32(v_dst_2, v_shift)); |
|
|
|
v_quat = vmovl_u16(vget_high_u16(v_half)); |
|
float32x4_t v_dst_3 = vmulq_n_f32(vcvtq_f32_u32(v_quat), scale); |
|
v_dst_3 = vabsq_f32(vaddq_f32(v_dst_3, v_shift)); |
|
|
|
uint16x8_t v_dsti_0 = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst_0)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst_1))); |
|
uint16x8_t v_dsti_1 = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst_2)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst_3))); |
|
|
|
vst1q_u8(dst + x, vcombine_u8(vqmovn_u16(v_dsti_0), vqmovn_u16(v_dsti_1))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<schar, uchar, float> |
|
{ |
|
int operator () (const schar * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift); |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
int8x16_t v_src = vld1q_s8(src + x); |
|
int16x8_t v_half = vmovl_s8(vget_low_s8(v_src)); |
|
|
|
int32x4_t v_quat = vmovl_s16(vget_low_s16(v_half)); |
|
float32x4_t v_dst_0 = vmulq_n_f32(vcvtq_f32_s32(v_quat), scale); |
|
v_dst_0 = vabsq_f32(vaddq_f32(v_dst_0, v_shift)); |
|
|
|
v_quat = vmovl_s16(vget_high_s16(v_half)); |
|
float32x4_t v_dst_1 = vmulq_n_f32(vcvtq_f32_s32(v_quat), scale); |
|
v_dst_1 = vabsq_f32(vaddq_f32(v_dst_1, v_shift)); |
|
|
|
v_half = vmovl_s8(vget_high_s8(v_src)); |
|
|
|
v_quat = vmovl_s16(vget_low_s16(v_half)); |
|
float32x4_t v_dst_2 = vmulq_n_f32(vcvtq_f32_s32(v_quat), scale); |
|
v_dst_2 = vabsq_f32(vaddq_f32(v_dst_2, v_shift)); |
|
|
|
v_quat = vmovl_s16(vget_high_s16(v_half)); |
|
float32x4_t v_dst_3 = vmulq_n_f32(vcvtq_f32_s32(v_quat), scale); |
|
v_dst_3 = vabsq_f32(vaddq_f32(v_dst_3, v_shift)); |
|
|
|
uint16x8_t v_dsti_0 = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst_0)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst_1))); |
|
uint16x8_t v_dsti_1 = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst_2)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst_3))); |
|
|
|
vst1q_u8(dst + x, vcombine_u8(vqmovn_u16(v_dsti_0), vqmovn_u16(v_dsti_1))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<ushort, uchar, float> |
|
{ |
|
int operator () (const ushort * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src + x); |
|
|
|
uint32x4_t v_half = vmovl_u16(vget_low_u16(v_src)); |
|
float32x4_t v_dst_0 = vmulq_n_f32(vcvtq_f32_u32(v_half), scale); |
|
v_dst_0 = vabsq_f32(vaddq_f32(v_dst_0, v_shift)); |
|
|
|
v_half = vmovl_u16(vget_high_u16(v_src)); |
|
float32x4_t v_dst_1 = vmulq_n_f32(vcvtq_f32_u32(v_half), scale); |
|
v_dst_1 = vabsq_f32(vaddq_f32(v_dst_1, v_shift)); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst_0)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst_1))); |
|
|
|
vst1_u8(dst + x, vqmovn_u16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<short, uchar, float> |
|
{ |
|
int operator () (const short * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src + x); |
|
|
|
int32x4_t v_half = vmovl_s16(vget_low_s16(v_src)); |
|
float32x4_t v_dst_0 = vmulq_n_f32(vcvtq_f32_s32(v_half), scale); |
|
v_dst_0 = vabsq_f32(vaddq_f32(v_dst_0, v_shift)); |
|
|
|
v_half = vmovl_s16(vget_high_s16(v_src)); |
|
float32x4_t v_dst_1 = vmulq_n_f32(vcvtq_f32_s32(v_half), scale); |
|
v_dst_1 = vabsq_f32(vaddq_f32(v_dst_1, v_shift)); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst_0)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst_1))); |
|
|
|
vst1_u8(dst + x, vqmovn_u16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<int, uchar, float> |
|
{ |
|
int operator () (const int * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
float32x4_t v_dst_0 = vmulq_n_f32(vcvtq_f32_s32(vld1q_s32(src + x)), scale); |
|
v_dst_0 = vabsq_f32(vaddq_f32(v_dst_0, v_shift)); |
|
uint16x4_t v_dsti_0 = vqmovn_u32(cv_vrndq_u32_f32(v_dst_0)); |
|
|
|
float32x4_t v_dst_1 = vmulq_n_f32(vcvtq_f32_s32(vld1q_s32(src + x + 4)), scale); |
|
v_dst_1 = vabsq_f32(vaddq_f32(v_dst_1, v_shift)); |
|
uint16x4_t v_dsti_1 = vqmovn_u32(cv_vrndq_u32_f32(v_dst_1)); |
|
|
|
uint16x8_t v_dst = vcombine_u16(v_dsti_0, v_dsti_1); |
|
vst1_u8(dst + x, vqmovn_u16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SIMD<float, uchar, float> |
|
{ |
|
int operator () (const float * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
float32x4_t v_dst_0 = vmulq_n_f32(vld1q_f32(src + x), scale); |
|
v_dst_0 = vabsq_f32(vaddq_f32(v_dst_0, v_shift)); |
|
uint16x4_t v_dsti_0 = vqmovn_u32(cv_vrndq_u32_f32(v_dst_0)); |
|
|
|
float32x4_t v_dst_1 = vmulq_n_f32(vld1q_f32(src + x + 4), scale); |
|
v_dst_1 = vabsq_f32(vaddq_f32(v_dst_1, v_shift)); |
|
uint16x4_t v_dsti_1 = vqmovn_u32(cv_vrndq_u32_f32(v_dst_1)); |
|
|
|
uint16x8_t v_dst = vcombine_u16(v_dsti_0, v_dsti_1); |
|
vst1_u8(dst + x, vqmovn_u16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#endif |
|
|
|
template<typename T, typename DT, typename WT> static void |
|
cvtScaleAbs_( const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size size, |
|
WT scale, WT shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
cvtScaleAbs_SIMD<T, DT, WT> vop; |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = vop(src, dst, size.width, scale, shift); |
|
|
|
#if CV_ENABLE_UNROLLED |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
DT t0, t1; |
|
t0 = saturate_cast<DT>(std::abs(src[x]*scale + shift)); |
|
t1 = saturate_cast<DT>(std::abs(src[x+1]*scale + shift)); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<DT>(std::abs(src[x+2]*scale + shift)); |
|
t1 = saturate_cast<DT>(std::abs(src[x+3]*scale + shift)); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<DT>(std::abs(src[x]*scale + shift)); |
|
} |
|
} |
|
|
|
template <typename T, typename DT, typename WT> |
|
struct cvtScale_SIMD |
|
{ |
|
int operator () (const T *, DT *, int, WT, WT) const |
|
{ |
|
return 0; |
|
} |
|
}; |
|
|
|
#if CV_SSE2 |
|
|
|
// from uchar |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, uchar, float> |
|
{ |
|
int operator () (const uchar * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i const *)(src + x)), v_zero); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, schar, float> |
|
{ |
|
int operator () (const uchar * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i const *)(src + x)), v_zero); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packs_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#if CV_SSE4_1 |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, ushort, float> |
|
{ |
|
cvtScale_SIMD() |
|
{ |
|
haveSSE = checkHardwareSupport(CV_CPU_SSE4_1); |
|
} |
|
|
|
int operator () (const uchar * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!haveSSE) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i const *)(src + x)), v_zero); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packus_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
|
|
bool haveSSE; |
|
}; |
|
|
|
#endif |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, short, float> |
|
{ |
|
int operator () (const uchar * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i const *)(src + x)), v_zero); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, int, float> |
|
{ |
|
int operator () (const uchar * src, int * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i const *)(src + x)), v_zero); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
_mm_storeu_si128((__m128i *)(dst + x), _mm_cvtps_epi32(v_dst_0)); |
|
_mm_storeu_si128((__m128i *)(dst + x + 4), _mm_cvtps_epi32(v_dst_1)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, float, float> |
|
{ |
|
int operator () (const uchar * src, float * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i const *)(src + x)), v_zero); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
_mm_storeu_ps(dst + x, v_dst_0); |
|
_mm_storeu_ps(dst + x + 4, v_dst_1); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, double, double> |
|
{ |
|
int operator () (const uchar * src, double * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i const *)(src + x)), v_zero); |
|
|
|
__m128i v_src_s32 = _mm_unpacklo_epi16(v_src, v_zero); |
|
__m128d v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src_s32), v_scale), v_shift); |
|
__m128d v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(_mm_srli_si128(v_src_s32, 8)), v_scale), v_shift); |
|
_mm_storeu_pd(dst + x, v_dst_0); |
|
_mm_storeu_pd(dst + x + 2, v_dst_1); |
|
|
|
v_src_s32 = _mm_unpackhi_epi16(v_src, v_zero); |
|
v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src_s32), v_scale), v_shift); |
|
v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(_mm_srli_si128(v_src_s32, 8)), v_scale), v_shift); |
|
_mm_storeu_pd(dst + x + 4, v_dst_0); |
|
_mm_storeu_pd(dst + x + 6, v_dst_1); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from schar |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, uchar, float> |
|
{ |
|
int operator () (const schar * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src + x))), 8); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, schar, float> |
|
{ |
|
int operator () (const schar * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src + x))), 8); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packs_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#if CV_SSE4_1 |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, ushort, float> |
|
{ |
|
cvtScale_SIMD() |
|
{ |
|
haveSSE = checkHardwareSupport(CV_CPU_SSE4_1); |
|
} |
|
|
|
int operator () (const schar * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!haveSSE) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src + x))), 8); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packus_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
|
|
bool haveSSE; |
|
}; |
|
|
|
#endif |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, short, float> |
|
{ |
|
int operator () (const schar * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src + x))), 8); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, int, float> |
|
{ |
|
int operator () (const schar * src, int * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src + x))), 8); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
_mm_storeu_si128((__m128i *)(dst + x), _mm_cvtps_epi32(v_dst_0)); |
|
_mm_storeu_si128((__m128i *)(dst + x + 4), _mm_cvtps_epi32(v_dst_1)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, float, float> |
|
{ |
|
int operator () (const schar * src, float * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src + x))), 8); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
_mm_storeu_ps(dst + x, v_dst_0); |
|
_mm_storeu_ps(dst + x + 4, v_dst_1); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, double, double> |
|
{ |
|
int operator () (const schar * src, double * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src + x))); |
|
v_src = _mm_srai_epi16(v_src, 8); |
|
|
|
__m128i v_src_s32 = _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16); |
|
__m128d v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src_s32), v_scale), v_shift); |
|
__m128d v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(_mm_srli_si128(v_src_s32, 8)), v_scale), v_shift); |
|
_mm_storeu_pd(dst + x, v_dst_0); |
|
_mm_storeu_pd(dst + x + 2, v_dst_1); |
|
|
|
v_src_s32 = _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16); |
|
v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src_s32), v_scale), v_shift); |
|
v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(_mm_srli_si128(v_src_s32, 8)), v_scale), v_shift); |
|
_mm_storeu_pd(dst + x + 4, v_dst_0); |
|
_mm_storeu_pd(dst + x + 6, v_dst_1); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from ushort |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, uchar, float> |
|
{ |
|
int operator () (const ushort * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, schar, float> |
|
{ |
|
int operator () (const ushort * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packs_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#if CV_SSE4_1 |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, ushort, float> |
|
{ |
|
cvtScale_SIMD() |
|
{ |
|
haveSSE = checkHardwareSupport(CV_CPU_SSE4_1); |
|
} |
|
|
|
int operator () (const ushort * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!haveSSE) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packus_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
|
|
bool haveSSE; |
|
}; |
|
|
|
#endif |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, short, float> |
|
{ |
|
int operator () (const ushort * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, int, float> |
|
{ |
|
int operator () (const ushort * src, int * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
_mm_storeu_si128((__m128i *)(dst + x), _mm_cvtps_epi32(v_dst_0)); |
|
_mm_storeu_si128((__m128i *)(dst + x + 4), _mm_cvtps_epi32(v_dst_1)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, float, float> |
|
{ |
|
int operator () (const ushort * src, float * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
_mm_storeu_ps(dst + x, v_dst_0); |
|
_mm_storeu_ps(dst + x + 4, v_dst_1); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, double, double> |
|
{ |
|
int operator () (const ushort * src, double * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
|
|
__m128i v_src_s32 = _mm_unpacklo_epi16(v_src, v_zero); |
|
__m128d v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src_s32), v_scale), v_shift); |
|
__m128d v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(_mm_srli_si128(v_src_s32, 8)), v_scale), v_shift); |
|
_mm_storeu_pd(dst + x, v_dst_0); |
|
_mm_storeu_pd(dst + x + 2, v_dst_1); |
|
|
|
v_src_s32 = _mm_unpackhi_epi16(v_src, v_zero); |
|
v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src_s32), v_scale), v_shift); |
|
v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(_mm_srli_si128(v_src_s32, 8)), v_scale), v_shift); |
|
_mm_storeu_pd(dst + x + 4, v_dst_0); |
|
_mm_storeu_pd(dst + x + 6, v_dst_1); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from short |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, uchar, float> |
|
{ |
|
int operator () (const short * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, schar, float> |
|
{ |
|
int operator () (const short * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packs_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#if CV_SSE4_1 |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, ushort, float> |
|
{ |
|
cvtScale_SIMD() |
|
{ |
|
haveSSE = checkHardwareSupport(CV_CPU_SSE4_1); |
|
} |
|
|
|
int operator () (const short * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!haveSSE) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packus_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
|
|
bool haveSSE; |
|
}; |
|
|
|
#endif |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, short, float> |
|
{ |
|
int operator () (const short * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, int, float> |
|
{ |
|
int operator () (const short * src, int * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
_mm_storeu_si128((__m128i *)(dst + x), _mm_cvtps_epi32(v_dst_0)); |
|
_mm_storeu_si128((__m128i *)(dst + x + 4), _mm_cvtps_epi32(v_dst_1)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, float, float> |
|
{ |
|
int operator () (const short * src, float * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
v_src_f = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src_f, v_scale), v_shift); |
|
|
|
_mm_storeu_ps(dst + x, v_dst_0); |
|
_mm_storeu_ps(dst + x + 4, v_dst_1); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, double, double> |
|
{ |
|
int operator () (const short * src, double * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
|
|
__m128i v_src_s32 = _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16); |
|
__m128d v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src_s32), v_scale), v_shift); |
|
__m128d v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(_mm_srli_si128(v_src_s32, 8)), v_scale), v_shift); |
|
_mm_storeu_pd(dst + x, v_dst_0); |
|
_mm_storeu_pd(dst + x + 2, v_dst_1); |
|
|
|
v_src_s32 = _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16); |
|
v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src_s32), v_scale), v_shift); |
|
v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(_mm_srli_si128(v_src_s32, 8)), v_scale), v_shift); |
|
_mm_storeu_pd(dst + x + 4, v_dst_0); |
|
_mm_storeu_pd(dst + x + 6, v_dst_1); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from int |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, uchar, float> |
|
{ |
|
int operator () (const int * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(v_src), v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_si128((__m128i const *)(src + x + 4)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(v_src), v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, schar, float> |
|
{ |
|
int operator () (const int * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(v_src), v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_si128((__m128i const *)(src + x + 4)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(v_src), v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packs_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#if CV_SSE4_1 |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, ushort, float> |
|
{ |
|
cvtScale_SIMD() |
|
{ |
|
haveSSE = checkHardwareSupport(CV_CPU_SSE4_1); |
|
} |
|
|
|
int operator () (const int * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!haveSSE) |
|
return x; |
|
|
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(v_src), v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_si128((__m128i const *)(src + x + 4)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(v_src), v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packus_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
|
|
bool haveSSE; |
|
}; |
|
|
|
#endif |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, short, float> |
|
{ |
|
int operator () (const int * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(v_src), v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_si128((__m128i const *)(src + x + 4)); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(v_src), v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, int, double> |
|
{ |
|
int operator () (const int * src, int * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128d v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src), v_scale), v_shift); |
|
|
|
v_src = _mm_srli_si128(v_src, 8); |
|
__m128d v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src), v_scale), v_shift); |
|
|
|
__m128 v_dst = _mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_dst_0)), |
|
_mm_castsi128_ps(_mm_cvtpd_epi32(v_dst_1))); |
|
|
|
_mm_storeu_si128((__m128i *)(dst + x), _mm_castps_si128(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, float, double> |
|
{ |
|
int operator () (const int * src, float * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128d v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src), v_scale), v_shift); |
|
|
|
v_src = _mm_srli_si128(v_src, 8); |
|
__m128d v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src), v_scale), v_shift); |
|
|
|
_mm_storeu_ps(dst + x, _mm_movelh_ps(_mm_cvtpd_ps(v_dst_0), |
|
_mm_cvtpd_ps(v_dst_1))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, double, double> |
|
{ |
|
int operator () (const int * src, double * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src + x)); |
|
__m128d v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src), v_scale), v_shift); |
|
|
|
v_src = _mm_srli_si128(v_src, 8); |
|
__m128d v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtepi32_pd(v_src), v_scale), v_shift); |
|
|
|
_mm_storeu_pd(dst + x, v_dst_0); |
|
_mm_storeu_pd(dst + x + 2, v_dst_1); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from float |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, uchar, float> |
|
{ |
|
int operator () (const float * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src = _mm_loadu_ps(src + x); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_ps(src + x + 4); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, schar, float> |
|
{ |
|
int operator () (const float * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src = _mm_loadu_ps(src + x); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_ps(src + x + 4); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packs_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#if CV_SSE4_1 |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, ushort, float> |
|
{ |
|
cvtScale_SIMD() |
|
{ |
|
haveSSE = checkHardwareSupport(CV_CPU_SSE4_1); |
|
} |
|
|
|
int operator () (const float * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!haveSSE) |
|
return x; |
|
|
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src = _mm_loadu_ps(src + x); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_ps(src + x + 4); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packus_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
|
|
bool haveSSE; |
|
}; |
|
|
|
#endif |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, short, float> |
|
{ |
|
int operator () (const float * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src = _mm_loadu_ps(src + x); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_ps(src + x + 4); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, int, float> |
|
{ |
|
int operator () (const float * src, int * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src = _mm_loadu_ps(src + x); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_ps(src + x + 4); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
_mm_storeu_si128((__m128i *)(dst + x), _mm_cvtps_epi32(v_dst_0)); |
|
_mm_storeu_si128((__m128i *)(dst + x + 4), _mm_cvtps_epi32(v_dst_1)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, float, float> |
|
{ |
|
int operator () (const float * src, float * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
{ |
|
__m128 v_src = _mm_loadu_ps(src + x); |
|
__m128 v_dst = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
_mm_storeu_ps(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, double, double> |
|
{ |
|
int operator () (const float * src, double * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
{ |
|
__m128 v_src = _mm_loadu_ps(src + x); |
|
__m128d v_dst_0 = _mm_add_pd(_mm_mul_pd(_mm_cvtps_pd(v_src), v_scale), v_shift); |
|
v_src = _mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_src), 8)); |
|
__m128d v_dst_1 = _mm_add_pd(_mm_mul_pd(_mm_cvtps_pd(v_src), v_scale), v_shift); |
|
|
|
_mm_storeu_pd(dst + x, v_dst_0); |
|
_mm_storeu_pd(dst + x + 2, v_dst_1); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from double |
|
|
|
template <> |
|
struct cvtScale_SIMD<double, uchar, float> |
|
{ |
|
int operator () (const double * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(src + x)), |
|
_mm_cvtpd_ps(_mm_loadu_pd(src + x + 2))); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(src + x + 4)), |
|
_mm_cvtpd_ps(_mm_loadu_pd(src + x + 6))); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<double, schar, float> |
|
{ |
|
int operator () (const double * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(src + x)), |
|
_mm_cvtpd_ps(_mm_loadu_pd(src + x + 2))); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(src + x + 4)), |
|
_mm_cvtpd_ps(_mm_loadu_pd(src + x + 6))); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packs_epi16(v_dst, v_zero)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#if CV_SSE4_1 |
|
|
|
template <> |
|
struct cvtScale_SIMD<double, ushort, float> |
|
{ |
|
cvtScale_SIMD() |
|
{ |
|
haveSSE = checkHardwareSupport(CV_CPU_SSE4_1); |
|
} |
|
|
|
int operator () (const double * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!haveSSE) |
|
return x; |
|
|
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(src + x)), |
|
_mm_cvtpd_ps(_mm_loadu_pd(src + x + 2))); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(src + x + 4)), |
|
_mm_cvtpd_ps(_mm_loadu_pd(src + x + 6))); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packus_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
|
|
bool haveSSE; |
|
}; |
|
|
|
#endif |
|
|
|
template <> |
|
struct cvtScale_SIMD<double, short, float> |
|
{ |
|
int operator () (const double * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(src + x)), |
|
_mm_cvtpd_ps(_mm_loadu_pd(src + x + 2))); |
|
__m128 v_dst_0 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(src + x + 4)), |
|
_mm_cvtpd_ps(_mm_loadu_pd(src + x + 6))); |
|
__m128 v_dst_1 = _mm_add_ps(_mm_mul_ps(v_src, v_scale), v_shift); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_dst_0), |
|
_mm_cvtps_epi32(v_dst_1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<double, int, double> |
|
{ |
|
int operator () (const double * src, int * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
{ |
|
__m128d v_src = _mm_loadu_pd(src + x); |
|
__m128d v_dst0 = _mm_add_pd(_mm_mul_pd(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_pd(src + x + 2); |
|
__m128d v_dst1 = _mm_add_pd(_mm_mul_pd(v_src, v_scale), v_shift); |
|
|
|
__m128 v_dst = _mm_movelh_ps(_mm_castsi128_ps(_mm_cvtpd_epi32(v_dst0)), |
|
_mm_castsi128_ps(_mm_cvtpd_epi32(v_dst1))); |
|
|
|
_mm_storeu_si128((__m128i *)(dst + x), _mm_castps_si128(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<double, float, double> |
|
{ |
|
int operator () (const double * src, float * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
{ |
|
__m128d v_src = _mm_loadu_pd(src + x); |
|
__m128d v_dst0 = _mm_add_pd(_mm_mul_pd(v_src, v_scale), v_shift); |
|
|
|
v_src = _mm_loadu_pd(src + x + 2); |
|
__m128d v_dst1 = _mm_add_pd(_mm_mul_pd(v_src, v_scale), v_shift); |
|
|
|
__m128 v_dst = _mm_movelh_ps(_mm_cvtpd_ps(v_dst0), |
|
_mm_cvtpd_ps(v_dst1)); |
|
|
|
_mm_storeu_ps(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<double, double, double> |
|
{ |
|
int operator () (const double * src, double * dst, int width, double scale, double shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
__m128d v_scale = _mm_set1_pd(scale), v_shift = _mm_set1_pd(shift); |
|
|
|
for ( ; x <= width - 2; x += 2) |
|
{ |
|
__m128d v_src = _mm_loadu_pd(src + x); |
|
__m128d v_dst = _mm_add_pd(_mm_mul_pd(v_src, v_scale), v_shift); |
|
_mm_storeu_pd(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#elif CV_NEON |
|
|
|
// from uchar |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, uchar, float> |
|
{ |
|
int operator () (const uchar * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vmovl_u8(vld1_u8(src + x)); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1_u8(dst + x, vqmovn_u16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, schar, float> |
|
{ |
|
int operator () (const uchar * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vmovl_u8(vld1_u8(src + x)); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1_s8(dst + x, vqmovn_s16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, ushort, float> |
|
{ |
|
int operator () (const uchar * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vmovl_u8(vld1_u8(src + x)); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1q_u16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, short, float> |
|
{ |
|
int operator () (const uchar * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vmovl_u8(vld1_u8(src + x)); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1q_s16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, int, float> |
|
{ |
|
int operator () (const uchar * src, int * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vmovl_u8(vld1_u8(src + x)); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift); |
|
|
|
vst1q_s32(dst + x, cv_vrndq_s32_f32(v_dst1)); |
|
vst1q_s32(dst + x + 4, cv_vrndq_s32_f32(v_dst2)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<uchar, float, float> |
|
{ |
|
int operator () (const uchar * src, float * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vmovl_u8(vld1_u8(src + x)); |
|
vst1q_f32(dst + x, vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift)); |
|
vst1q_f32(dst + x + 4, vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from schar |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, uchar, float> |
|
{ |
|
int operator () (const schar * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src + x)); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1_u8(dst + x, vqmovn_u16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, schar, float> |
|
{ |
|
int operator () (const schar * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src + x)); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1_s8(dst + x, vqmovn_s16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, ushort, float> |
|
{ |
|
int operator () (const schar * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src + x)); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1q_u16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, short, float> |
|
{ |
|
int operator () (const schar * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src + x)); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1q_s16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, int, float> |
|
{ |
|
int operator () (const schar * src, int * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src + x)); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))), v_scale), v_shift); |
|
|
|
vst1q_s32(dst + x, cv_vrndq_s32_f32(v_dst1)); |
|
vst1q_s32(dst + x + 4, cv_vrndq_s32_f32(v_dst2)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<schar, float, float> |
|
{ |
|
int operator () (const schar * src, float * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src + x)); |
|
vst1q_f32(dst + x, vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))), v_scale), v_shift)); |
|
vst1q_f32(dst + x + 4, vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))), v_scale), v_shift)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from ushort |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, uchar, float> |
|
{ |
|
int operator () (const ushort * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src + x); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1_u8(dst + x, vqmovn_u16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, schar, float> |
|
{ |
|
int operator () (const ushort * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src + x); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1_s8(dst + x, vqmovn_s16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, ushort, float> |
|
{ |
|
int operator () (const ushort * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src + x); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1q_u16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, short, float> |
|
{ |
|
int operator () (const ushort * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src + x); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1q_s16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, int, float> |
|
{ |
|
int operator () (const ushort * src, int * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src + x); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift); |
|
|
|
vst1q_s32(dst + x, cv_vrndq_s32_f32(v_dst1)); |
|
vst1q_s32(dst + x + 4, cv_vrndq_s32_f32(v_dst2)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<ushort, float, float> |
|
{ |
|
int operator () (const ushort * src, float * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src + x); |
|
vst1q_f32(dst + x, vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src))), v_scale), v_shift)); |
|
vst1q_f32(dst + x + 4, vaddq_f32(vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src))), v_scale), v_shift)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from short |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, uchar, float> |
|
{ |
|
int operator () (const short * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src + x); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1_u8(dst + x, vqmovn_u16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, schar, float> |
|
{ |
|
int operator () (const short * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src + x); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1_s8(dst + x, vqmovn_s16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, ushort, float> |
|
{ |
|
int operator () (const short * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src + x); |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1q_u16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<short, float, float> |
|
{ |
|
int operator () (const short * src, float * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src + x); |
|
vst1q_f32(dst + x, vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))), v_scale), v_shift)); |
|
vst1q_f32(dst + x + 4, vaddq_f32(vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))), v_scale), v_shift)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from int |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, uchar, float> |
|
{ |
|
int operator () (const int * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vld1q_s32(src + x)), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vld1q_s32(src + x + 4)), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1_u8(dst + x, vqmovn_u16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, schar, float> |
|
{ |
|
int operator () (const int * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vld1q_s32(src + x)), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vld1q_s32(src + x + 4)), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1_s8(dst + x, vqmovn_s16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, ushort, float> |
|
{ |
|
int operator () (const int * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vld1q_s32(src + x)), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vld1q_s32(src + x + 4)), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1q_u16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<int, short, float> |
|
{ |
|
int operator () (const int * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vld1q_s32(src + x)), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vcvtq_f32_s32(vld1q_s32(src + x + 4)), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1q_s16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from float |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, uchar, float> |
|
{ |
|
int operator () (const float * src, uchar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vld1q_f32(src + x), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vld1q_f32(src + x + 4), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1_u8(dst + x, vqmovn_u16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, schar, float> |
|
{ |
|
int operator () (const float * src, schar * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vld1q_f32(src + x), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vld1q_f32(src + x + 4), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1_s8(dst + x, vqmovn_s16(v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, ushort, float> |
|
{ |
|
int operator () (const float * src, ushort * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vld1q_f32(src + x), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vld1q_f32(src + x + 4), v_scale), v_shift); |
|
|
|
uint16x8_t v_dst = vcombine_u16(vqmovn_u32(cv_vrndq_u32_f32(v_dst1)), |
|
vqmovn_u32(cv_vrndq_u32_f32(v_dst2))); |
|
vst1q_u16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, short, float> |
|
{ |
|
int operator () (const float * src, short * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
float32x4_t v_dst1 = vaddq_f32(vmulq_f32(vld1q_f32(src + x), v_scale), v_shift); |
|
float32x4_t v_dst2 = vaddq_f32(vmulq_f32(vld1q_f32(src + x + 4), v_scale), v_shift); |
|
|
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_dst1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_dst2))); |
|
vst1q_s16(dst + x, v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, int, float> |
|
{ |
|
int operator () (const float * src, int * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
vst1q_s32(dst + x, cv_vrndq_s32_f32(vaddq_f32(vmulq_f32(vld1q_f32(src + x), v_scale), v_shift))); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScale_SIMD<float, float, float> |
|
{ |
|
int operator () (const float * src, float * dst, int width, float scale, float shift) const |
|
{ |
|
int x = 0; |
|
float32x4_t v_shift = vdupq_n_f32(shift), v_scale = vdupq_n_f32(scale); |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
vst1q_f32(dst + x, vaddq_f32(vmulq_f32(vld1q_f32(src + x), v_scale), v_shift)); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#endif |
|
|
|
template<typename T, typename DT, typename WT> static void |
|
cvtScale_( const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size size, |
|
WT scale, WT shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
cvtScale_SIMD<T, DT, WT> vop; |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = vop(src, dst, size.width, scale, shift); |
|
|
|
#if CV_ENABLE_UNROLLED |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
DT t0, t1; |
|
t0 = saturate_cast<DT>(src[x]*scale + shift); |
|
t1 = saturate_cast<DT>(src[x+1]*scale + shift); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<DT>(src[x+2]*scale + shift); |
|
t1 = saturate_cast<DT>(src[x+3]*scale + shift); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
#endif |
|
|
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<DT>(src[x]*scale + shift); |
|
} |
|
} |
|
|
|
//vz optimized template specialization |
|
template<> void |
|
cvtScale_<short, short, float>( const short* src, size_t sstep, |
|
short* dst, size_t dstep, Size size, |
|
float scale, float shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_SSE2 |
|
if(USE_SSE2) |
|
{ |
|
__m128 scale128 = _mm_set1_ps (scale); |
|
__m128 shift128 = _mm_set1_ps (shift); |
|
for(; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m128i r0 = _mm_loadl_epi64((const __m128i*)(src + x)); |
|
__m128i r1 = _mm_loadl_epi64((const __m128i*)(src + x + 4)); |
|
__m128 rf0 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r0, r0), 16)); |
|
__m128 rf1 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r1, r1), 16)); |
|
rf0 = _mm_add_ps(_mm_mul_ps(rf0, scale128), shift128); |
|
rf1 = _mm_add_ps(_mm_mul_ps(rf1, scale128), shift128); |
|
r0 = _mm_cvtps_epi32(rf0); |
|
r1 = _mm_cvtps_epi32(rf1); |
|
r0 = _mm_packs_epi32(r0, r1); |
|
_mm_storeu_si128((__m128i*)(dst + x), r0); |
|
} |
|
} |
|
#elif CV_NEON |
|
float32x4_t v_shift = vdupq_n_f32(shift); |
|
for(; x <= size.width - 8; x += 8 ) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src + x); |
|
float32x4_t v_tmp1 = vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))); |
|
float32x4_t v_tmp2 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))); |
|
|
|
v_tmp1 = vaddq_f32(vmulq_n_f32(v_tmp1, scale), v_shift); |
|
v_tmp2 = vaddq_f32(vmulq_n_f32(v_tmp2, scale), v_shift); |
|
|
|
vst1q_s16(dst + x, vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_tmp1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_tmp2)))); |
|
} |
|
#endif |
|
|
|
for(; x < size.width; x++ ) |
|
dst[x] = saturate_cast<short>(src[x]*scale + shift); |
|
} |
|
} |
|
|
|
template<> void |
|
cvtScale_<short, int, float>( const short* src, size_t sstep, |
|
int* dst, size_t dstep, Size size, |
|
float scale, float shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
|
|
#if CV_AVX2 |
|
if (USE_AVX2) |
|
{ |
|
__m256 scale256 = _mm256_set1_ps(scale); |
|
__m256 shift256 = _mm256_set1_ps(shift); |
|
const int shuffle = 0xD8; |
|
|
|
for ( ; x <= size.width - 16; x += 16) |
|
{ |
|
__m256i v_src = _mm256_loadu_si256((const __m256i *)(src + x)); |
|
v_src = _mm256_permute4x64_epi64(v_src, shuffle); |
|
__m256i v_src_lo = _mm256_srai_epi32(_mm256_unpacklo_epi16(v_src, v_src), 16); |
|
__m256i v_src_hi = _mm256_srai_epi32(_mm256_unpackhi_epi16(v_src, v_src), 16); |
|
__m256 v_dst0 = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(v_src_lo), scale256), shift256); |
|
__m256 v_dst1 = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(v_src_hi), scale256), shift256); |
|
_mm256_storeu_si256((__m256i *)(dst + x), _mm256_cvtps_epi32(v_dst0)); |
|
_mm256_storeu_si256((__m256i *)(dst + x + 8), _mm256_cvtps_epi32(v_dst1)); |
|
} |
|
} |
|
#endif |
|
#if CV_SSE2 |
|
if (USE_SSE2)//~5X |
|
{ |
|
__m128 scale128 = _mm_set1_ps (scale); |
|
__m128 shift128 = _mm_set1_ps (shift); |
|
for(; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m128i r0 = _mm_loadu_si128((const __m128i*)(src + x)); |
|
|
|
__m128 rf0 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r0, r0), 16)); |
|
__m128 rf1 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(r0, r0), 16)); |
|
rf0 = _mm_add_ps(_mm_mul_ps(rf0, scale128), shift128); |
|
rf1 = _mm_add_ps(_mm_mul_ps(rf1, scale128), shift128); |
|
|
|
_mm_storeu_si128((__m128i*)(dst + x), _mm_cvtps_epi32(rf0)); |
|
_mm_storeu_si128((__m128i*)(dst + x + 4), _mm_cvtps_epi32(rf1)); |
|
} |
|
} |
|
#elif CV_NEON |
|
float32x4_t v_shift = vdupq_n_f32(shift); |
|
for(; x <= size.width - 8; x += 8 ) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src + x); |
|
float32x4_t v_tmp1 = vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src))); |
|
float32x4_t v_tmp2 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src))); |
|
|
|
v_tmp1 = vaddq_f32(vmulq_n_f32(v_tmp1, scale), v_shift); |
|
v_tmp2 = vaddq_f32(vmulq_n_f32(v_tmp2, scale), v_shift); |
|
|
|
vst1q_s32(dst + x, cv_vrndq_s32_f32(v_tmp1)); |
|
vst1q_s32(dst + x + 4, cv_vrndq_s32_f32(v_tmp2)); |
|
} |
|
#endif |
|
|
|
for(; x < size.width; x++ ) |
|
dst[x] = saturate_cast<int>(src[x]*scale + shift); |
|
} |
|
} |
|
|
|
template <typename T, typename DT> |
|
struct Cvt_SIMD |
|
{ |
|
int operator() (const T *, DT *, int) const |
|
{ |
|
return 0; |
|
} |
|
}; |
|
|
|
#if CV_SSE2 |
|
|
|
// from double |
|
|
|
template <> |
|
struct Cvt_SIMD<double, uchar> |
|
{ |
|
int operator() (const double * src, uchar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src0 = _mm_cvtpd_ps(_mm_loadu_pd(src + x)); |
|
__m128 v_src1 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 2)); |
|
__m128 v_src2 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 4)); |
|
__m128 v_src3 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 6)); |
|
|
|
v_src0 = _mm_movelh_ps(v_src0, v_src1); |
|
v_src1 = _mm_movelh_ps(v_src2, v_src3); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_src0), |
|
_mm_cvtps_epi32(v_src1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst, v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<double, schar> |
|
{ |
|
int operator() (const double * src, schar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src0 = _mm_cvtpd_ps(_mm_loadu_pd(src + x)); |
|
__m128 v_src1 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 2)); |
|
__m128 v_src2 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 4)); |
|
__m128 v_src3 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 6)); |
|
|
|
v_src0 = _mm_movelh_ps(v_src0, v_src1); |
|
v_src1 = _mm_movelh_ps(v_src2, v_src3); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_src0), |
|
_mm_cvtps_epi32(v_src1)); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packs_epi16(v_dst, v_dst)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#if CV_SSE4_1 |
|
|
|
template <> |
|
struct Cvt_SIMD<double, ushort> |
|
{ |
|
bool haveSIMD; |
|
Cvt_SIMD() { haveSIMD = checkHardwareSupport(CV_CPU_SSE4_1); } |
|
|
|
int operator() (const double * src, ushort * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
if (!haveSIMD) |
|
return x; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src0 = _mm_cvtpd_ps(_mm_loadu_pd(src + x)); |
|
__m128 v_src1 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 2)); |
|
__m128 v_src2 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 4)); |
|
__m128 v_src3 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 6)); |
|
|
|
v_src0 = _mm_movelh_ps(v_src0, v_src1); |
|
v_src1 = _mm_movelh_ps(v_src2, v_src3); |
|
|
|
__m128i v_dst = _mm_packus_epi32(_mm_cvtps_epi32(v_src0), |
|
_mm_cvtps_epi32(v_src1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#endif // CV_SSE4_1 |
|
|
|
template <> |
|
struct Cvt_SIMD<double, short> |
|
{ |
|
int operator() (const double * src, short * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128 v_src0 = _mm_cvtpd_ps(_mm_loadu_pd(src + x)); |
|
__m128 v_src1 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 2)); |
|
__m128 v_src2 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 4)); |
|
__m128 v_src3 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 6)); |
|
|
|
v_src0 = _mm_movelh_ps(v_src0, v_src1); |
|
v_src1 = _mm_movelh_ps(v_src2, v_src3); |
|
|
|
__m128i v_dst = _mm_packs_epi32(_mm_cvtps_epi32(v_src0), |
|
_mm_cvtps_epi32(v_src1)); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<double, int> |
|
{ |
|
int operator() (const double * src, int * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
{ |
|
__m128 v_src0 = _mm_cvtpd_ps(_mm_loadu_pd(src + x)); |
|
__m128 v_src1 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 2)); |
|
v_src0 = _mm_movelh_ps(v_src0, v_src1); |
|
|
|
_mm_storeu_si128((__m128i *)(dst + x), _mm_cvtps_epi32(v_src0)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<double, float> |
|
{ |
|
int operator() (const double * src, float * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
if (!USE_SSE2) |
|
return x; |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
{ |
|
__m128 v_src0 = _mm_cvtpd_ps(_mm_loadu_pd(src + x)); |
|
__m128 v_src1 = _mm_cvtpd_ps(_mm_loadu_pd(src + x + 2)); |
|
|
|
_mm_storeu_ps(dst + x, _mm_movelh_ps(v_src0, v_src1)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
|
|
#elif CV_NEON |
|
|
|
// from uchar |
|
|
|
template <> |
|
struct Cvt_SIMD<uchar, schar> |
|
{ |
|
int operator() (const uchar * src, schar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
vst1_s8(dst + x, vqmovn_s16(vreinterpretq_s16_u16(vmovl_u8(vld1_u8(src + x))))); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
|
|
template <> |
|
struct Cvt_SIMD<uchar, ushort> |
|
{ |
|
int operator() (const uchar * src, ushort * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
vst1q_u16(dst + x, vmovl_u8(vld1_u8(src + x))); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<uchar, short> |
|
{ |
|
int operator() (const uchar * src, short * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
vst1q_s16(dst + x, vreinterpretq_s16_u16(vmovl_u8(vld1_u8(src + x)))); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<uchar, int> |
|
{ |
|
int operator() (const uchar * src, int * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vmovl_u8(vld1_u8(src + x)); |
|
vst1q_s32(dst + x, vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(v_src)))); |
|
vst1q_s32(dst + x + 4, vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(v_src)))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<uchar, float> |
|
{ |
|
int operator() (const uchar * src, float * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vmovl_u8(vld1_u8(src + x)); |
|
vst1q_f32(dst + x, vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src)))); |
|
vst1q_f32(dst + x + 4, vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src)))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from schar |
|
|
|
template <> |
|
struct Cvt_SIMD<schar, uchar> |
|
{ |
|
int operator() (const schar * src, uchar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
vst1_u8(dst + x, vqmovun_s16(vmovl_s8(vld1_s8(src + x)))); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<schar, short> |
|
{ |
|
int operator() (const schar * src, short * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
vst1q_s16(dst + x, vmovl_s8(vld1_s8(src + x))); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<schar, ushort> |
|
{ |
|
int operator() (const schar * src, ushort * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src + x)); |
|
vst1q_u16(dst + x, vcombine_u16(vqmovun_s32(vmovl_s16(vget_low_s16(v_src))), |
|
vqmovun_s32(vmovl_s16(vget_high_s16(v_src))))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
|
|
template <> |
|
struct Cvt_SIMD<schar, int> |
|
{ |
|
int operator() (const schar * src, int * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src + x)); |
|
vst1q_s32(dst + x, vmovl_s16(vget_low_s16(v_src))); |
|
vst1q_s32(dst + x + 4, vmovl_s16(vget_high_s16(v_src))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<schar, float> |
|
{ |
|
int operator() (const schar * src, float * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src + x)); |
|
vst1q_f32(dst + x, vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src)))); |
|
vst1q_f32(dst + x + 4, vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src)))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from ushort |
|
|
|
template <> |
|
struct Cvt_SIMD<ushort, uchar> |
|
{ |
|
int operator() (const ushort * src, uchar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
uint16x8_t v_src1 = vld1q_u16(src + x), v_src2 = vld1q_u16(src + x + 8); |
|
vst1q_u8(dst + x, vcombine_u8(vqmovn_u16(v_src1), vqmovn_u16(v_src2))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<ushort, schar> |
|
{ |
|
int operator() (const ushort * src, schar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
uint16x8_t v_src1 = vld1q_u16(src + x), v_src2 = vld1q_u16(src + x + 8); |
|
int32x4_t v_dst10 = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(v_src1))); |
|
int32x4_t v_dst11 = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(v_src1))); |
|
int32x4_t v_dst20 = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(v_src2))); |
|
int32x4_t v_dst21 = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(v_src2))); |
|
|
|
vst1q_s8(dst + x, vcombine_s8(vqmovn_s16(vcombine_s16(vqmovn_s32(v_dst10), vqmovn_s32(v_dst11))), |
|
vqmovn_s16(vcombine_s16(vqmovn_s32(v_dst20), vqmovn_s32(v_dst21))))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<ushort, short> |
|
{ |
|
int operator() (const ushort * src, short * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src + x); |
|
int32x4_t v_dst0 = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(v_src))); |
|
int32x4_t v_dst1 = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(v_src))); |
|
|
|
vst1q_s16(dst + x, vcombine_s16(vqmovn_s32(v_dst0), vqmovn_s32(v_dst1))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<ushort, int> |
|
{ |
|
int operator() (const ushort * src, int * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src + x); |
|
vst1q_s32(dst + x, vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(v_src)))); |
|
vst1q_s32(dst + x + 4, vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(v_src)))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<ushort, float> |
|
{ |
|
int operator() (const ushort * src, float * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src + x); |
|
vst1q_f32(dst + x, vcvtq_f32_u32(vmovl_u16(vget_low_u16(v_src)))); |
|
vst1q_f32(dst + x + 4, vcvtq_f32_u32(vmovl_u16(vget_high_u16(v_src)))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from short |
|
|
|
template <> |
|
struct Cvt_SIMD<short, uchar> |
|
{ |
|
int operator() (const short * src, uchar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
int16x8_t v_src1 = vld1q_s16(src + x), v_src2 = vld1q_s16(src + x + 8); |
|
vst1q_u8(dst + x, vcombine_u8(vqmovun_s16(v_src1), vqmovun_s16(v_src2))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<short, schar> |
|
{ |
|
int operator() (const short * src, schar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
int16x8_t v_src1 = vld1q_s16(src + x), v_src2 = vld1q_s16(src + x + 8); |
|
vst1q_s8(dst + x, vcombine_s8(vqmovn_s16(v_src1), vqmovn_s16(v_src2))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<short, ushort> |
|
{ |
|
int operator() (const short * src, ushort * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src + x); |
|
uint16x4_t v_dst1 = vqmovun_s32(vmovl_s16(vget_low_s16(v_src))); |
|
uint16x4_t v_dst2 = vqmovun_s32(vmovl_s16(vget_high_s16(v_src))); |
|
vst1q_u16(dst + x, vcombine_u16(v_dst1, v_dst2)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<short, int> |
|
{ |
|
int operator() (const short * src, int * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src + x); |
|
vst1q_s32(dst + x, vmovl_s16(vget_low_s16(v_src))); |
|
vst1q_s32(dst + x + 4, vmovl_s16(vget_high_s16(v_src))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<short, float> |
|
{ |
|
int operator() (const short * src, float * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src + x); |
|
vst1q_f32(dst + x, vcvtq_f32_s32(vmovl_s16(vget_low_s16(v_src)))); |
|
vst1q_f32(dst + x + 4, vcvtq_f32_s32(vmovl_s16(vget_high_s16(v_src)))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from int |
|
|
|
template <> |
|
struct Cvt_SIMD<int, uchar> |
|
{ |
|
int operator() (const int * src, uchar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
int32x4_t v_src1 = vld1q_s32(src + x), v_src2 = vld1q_s32(src + x + 4); |
|
int32x4_t v_src3 = vld1q_s32(src + x + 8), v_src4 = vld1q_s32(src + x + 12); |
|
uint8x8_t v_dst1 = vqmovn_u16(vcombine_u16(vqmovun_s32(v_src1), vqmovun_s32(v_src2))); |
|
uint8x8_t v_dst2 = vqmovn_u16(vcombine_u16(vqmovun_s32(v_src3), vqmovun_s32(v_src4))); |
|
vst1q_u8(dst + x, vcombine_u8(v_dst1, v_dst2)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<int, schar> |
|
{ |
|
int operator() (const int * src, schar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
int32x4_t v_src1 = vld1q_s32(src + x), v_src2 = vld1q_s32(src + x + 4); |
|
int32x4_t v_src3 = vld1q_s32(src + x + 8), v_src4 = vld1q_s32(src + x + 12); |
|
int8x8_t v_dst1 = vqmovn_s16(vcombine_s16(vqmovn_s32(v_src1), vqmovn_s32(v_src2))); |
|
int8x8_t v_dst2 = vqmovn_s16(vcombine_s16(vqmovn_s32(v_src3), vqmovn_s32(v_src4))); |
|
vst1q_s8(dst + x, vcombine_s8(v_dst1, v_dst2)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
|
|
template <> |
|
struct Cvt_SIMD<int, ushort> |
|
{ |
|
int operator() (const int * src, ushort * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int32x4_t v_src1 = vld1q_s32(src + x), v_src2 = vld1q_s32(src + x + 4); |
|
vst1q_u16(dst + x, vcombine_u16(vqmovun_s32(v_src1), vqmovun_s32(v_src2))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<int, short> |
|
{ |
|
int operator() (const int * src, short * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
int32x4_t v_src1 = vld1q_s32(src + x), v_src2 = vld1q_s32(src + x + 4); |
|
vst1q_s16(dst + x, vcombine_s16(vqmovn_s32(v_src1), vqmovn_s32(v_src2))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<int, float> |
|
{ |
|
int operator() (const int * src, float * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
vst1q_f32(dst + x, vcvtq_f32_s32(vld1q_s32(src + x))); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
// from float |
|
|
|
template <> |
|
struct Cvt_SIMD<float, uchar> |
|
{ |
|
int operator() (const float * src, uchar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
uint32x4_t v_src1 = cv_vrndq_u32_f32(vld1q_f32(src + x)); |
|
uint32x4_t v_src2 = cv_vrndq_u32_f32(vld1q_f32(src + x + 4)); |
|
uint32x4_t v_src3 = cv_vrndq_u32_f32(vld1q_f32(src + x + 8)); |
|
uint32x4_t v_src4 = cv_vrndq_u32_f32(vld1q_f32(src + x + 12)); |
|
uint8x8_t v_dst1 = vqmovn_u16(vcombine_u16(vqmovn_u32(v_src1), vqmovn_u32(v_src2))); |
|
uint8x8_t v_dst2 = vqmovn_u16(vcombine_u16(vqmovn_u32(v_src3), vqmovn_u32(v_src4))); |
|
vst1q_u8(dst + x, vcombine_u8(v_dst1, v_dst2)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<float, schar> |
|
{ |
|
int operator() (const float * src, schar * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
int32x4_t v_src1 = cv_vrndq_s32_f32(vld1q_f32(src + x)); |
|
int32x4_t v_src2 = cv_vrndq_s32_f32(vld1q_f32(src + x + 4)); |
|
int32x4_t v_src3 = cv_vrndq_s32_f32(vld1q_f32(src + x + 8)); |
|
int32x4_t v_src4 = cv_vrndq_s32_f32(vld1q_f32(src + x + 12)); |
|
int8x8_t v_dst1 = vqmovn_s16(vcombine_s16(vqmovn_s32(v_src1), vqmovn_s32(v_src2))); |
|
int8x8_t v_dst2 = vqmovn_s16(vcombine_s16(vqmovn_s32(v_src3), vqmovn_s32(v_src4))); |
|
vst1q_s8(dst + x, vcombine_s8(v_dst1, v_dst2)); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
|
|
template <> |
|
struct Cvt_SIMD<float, ushort> |
|
{ |
|
int operator() (const float * src, ushort * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
uint32x4_t v_src1 = cv_vrndq_u32_f32(vld1q_f32(src + x)); |
|
uint32x4_t v_src2 = cv_vrndq_u32_f32(vld1q_f32(src + x + 4)); |
|
vst1q_u16(dst + x, vcombine_u16(vqmovn_u32(v_src1), vqmovn_u32(v_src2))); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Cvt_SIMD<float, int> |
|
{ |
|
int operator() (const float * src, int * dst, int width) const |
|
{ |
|
int x = 0; |
|
|
|
for ( ; x <= width - 4; x += 4) |
|
vst1q_s32(dst + x, cv_vrndq_s32_f32(vld1q_f32(src + x))); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#endif |
|
|
|
#if !CV_FP16_TYPE |
|
// const numbers for floating points format |
|
const unsigned int kShiftSignificand = 13; |
|
const unsigned int kMaskFp16Significand = 0x3ff; |
|
const unsigned int kBiasFp16Exponent = 15; |
|
const unsigned int kBiasFp32Exponent = 127; |
|
#endif |
|
|
|
#if CV_FP16_TYPE |
|
static float convertFp16SW(short fp16) |
|
{ |
|
// Fp16 -> Fp32 |
|
Cv16suf a; |
|
a.i = fp16; |
|
return (float)a.h; |
|
} |
|
#else |
|
static float convertFp16SW(short fp16) |
|
{ |
|
// Fp16 -> Fp32 |
|
Cv16suf b; |
|
b.i = fp16; |
|
int exponent = b.fmt.exponent - kBiasFp16Exponent; |
|
int significand = b.fmt.significand; |
|
|
|
Cv32suf a; |
|
a.i = 0; |
|
a.fmt.sign = b.fmt.sign; // sign bit |
|
if( exponent == 16 ) |
|
{ |
|
// Inf or NaN |
|
a.i = a.i | 0x7F800000; |
|
if( significand != 0 ) |
|
{ |
|
// NaN |
|
#if defined(__x86_64__) || defined(_M_X64) |
|
// 64bit |
|
a.i = a.i | 0x7FC00000; |
|
#endif |
|
a.fmt.significand = a.fmt.significand | (significand << kShiftSignificand); |
|
} |
|
return a.f; |
|
} |
|
else if ( exponent == -15 ) |
|
{ |
|
// subnormal in Fp16 |
|
if( significand == 0 ) |
|
{ |
|
// zero |
|
return a.f; |
|
} |
|
else |
|
{ |
|
int shift = -1; |
|
while( ( significand & 0x400 ) == 0 ) |
|
{ |
|
significand = significand << 1; |
|
shift++; |
|
} |
|
significand = significand & kMaskFp16Significand; |
|
exponent -= shift; |
|
} |
|
} |
|
|
|
a.fmt.exponent = (exponent+kBiasFp32Exponent); |
|
a.fmt.significand = significand << kShiftSignificand; |
|
return a.f; |
|
} |
|
#endif |
|
|
|
#if CV_FP16_TYPE |
|
static short convertFp16SW(float fp32) |
|
{ |
|
// Fp32 -> Fp16 |
|
Cv16suf a; |
|
a.h = (__fp16)fp32; |
|
return a.i; |
|
} |
|
#else |
|
static short convertFp16SW(float fp32) |
|
{ |
|
// Fp32 -> Fp16 |
|
Cv32suf a; |
|
a.f = fp32; |
|
int exponent = a.fmt.exponent - kBiasFp32Exponent; |
|
int significand = a.fmt.significand; |
|
|
|
Cv16suf result; |
|
result.i = 0; |
|
unsigned int absolute = a.i & 0x7fffffff; |
|
if( 0x477ff000 <= absolute ) |
|
{ |
|
// Inf in Fp16 |
|
result.i = result.i | 0x7C00; |
|
if( exponent == 128 && significand != 0 ) |
|
{ |
|
// NaN |
|
result.i = (short)( result.i | 0x200 | ( significand >> kShiftSignificand ) ); |
|
} |
|
} |
|
else if ( absolute < 0x33000001 ) |
|
{ |
|
// too small for fp16 |
|
result.i = 0; |
|
} |
|
else if ( absolute < 0x33c00000 ) |
|
{ |
|
result.i = 1; |
|
} |
|
else if ( absolute < 0x34200001 ) |
|
{ |
|
result.i = 2; |
|
} |
|
else if ( absolute < 0x387fe000 ) |
|
{ |
|
// subnormal in Fp16 |
|
int fp16Significand = significand | 0x800000; |
|
int bitShift = (-exponent) - 1; |
|
fp16Significand = fp16Significand >> bitShift; |
|
|
|
// special cases to round up |
|
bitShift = exponent + 24; |
|
int threshold = ( ( 0x400000 >> bitShift ) | ( ( ( significand & ( 0x800000 >> bitShift ) ) >> ( 126 - a.fmt.exponent ) ) ^ 1 ) ); |
|
if( threshold <= ( significand & ( 0xffffff >> ( exponent + 25 ) ) ) ) |
|
{ |
|
fp16Significand++; |
|
} |
|
result.i = (short)fp16Significand; |
|
} |
|
else |
|
{ |
|
// usual situation |
|
// exponent |
|
result.fmt.exponent = ( exponent + kBiasFp16Exponent ); |
|
|
|
// significand; |
|
short fp16Significand = (short)(significand >> kShiftSignificand); |
|
result.fmt.significand = fp16Significand; |
|
|
|
// special cases to round up |
|
short lsb10bitsFp32 = (significand & 0x1fff); |
|
short threshold = 0x1000 + ( ( fp16Significand & 0x1 ) ? 0 : 1 ); |
|
if( threshold <= lsb10bitsFp32 ) |
|
{ |
|
result.i++; |
|
} |
|
else if ( fp16Significand == 0x3ff && exponent == -15) |
|
{ |
|
result.i++; |
|
} |
|
} |
|
|
|
// sign bit |
|
result.fmt.sign = a.fmt.sign; |
|
return result.i; |
|
} |
|
#endif |
|
|
|
// template for FP16 HW conversion function |
|
template<typename T, typename DT> static void |
|
cvtScaleHalf_( const T* src, size_t sstep, DT* dst, size_t dstep, Size size); |
|
|
|
template<> void |
|
cvtScaleHalf_<float, short>( const float* src, size_t sstep, short* dst, size_t dstep, Size size) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
if( checkHardwareSupport(CV_CPU_FP16) ) |
|
{ |
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
|
|
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_IX86) || defined(i386) |
|
if ( ( (intptr_t)dst & 0xf ) == 0 ) |
|
#endif |
|
{ |
|
#if CV_FP16 && CV_SIMD128 |
|
for ( ; x <= size.width - 4; x += 4) |
|
{ |
|
v_float32x4 v_src = v_load(src + x); |
|
|
|
v_float16x4 v_dst = v_cvt_f16(v_src); |
|
|
|
v_store_f16(dst + x, v_dst); |
|
} |
|
#endif |
|
} |
|
for ( ; x < size.width; x++ ) |
|
{ |
|
dst[x] = convertFp16SW(src[x]); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
for ( ; x < size.width; x++ ) |
|
{ |
|
dst[x] = convertFp16SW(src[x]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
template<> void |
|
cvtScaleHalf_<short, float>( const short* src, size_t sstep, float* dst, size_t dstep, Size size) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
if( checkHardwareSupport(CV_CPU_FP16) ) |
|
{ |
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
|
|
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_IX86) || defined(i386) |
|
if ( ( (intptr_t)src & 0xf ) == 0 ) |
|
#endif |
|
{ |
|
#if CV_FP16 && CV_SIMD128 |
|
for ( ; x <= size.width - 4; x += 4) |
|
{ |
|
v_float16x4 v_src = v_load_f16(src + x); |
|
|
|
v_float32x4 v_dst = v_cvt_f32(v_src); |
|
|
|
v_store(dst + x, v_dst); |
|
} |
|
#endif |
|
} |
|
for ( ; x < size.width; x++ ) |
|
{ |
|
dst[x] = convertFp16SW(src[x]); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
for ( ; x < size.width; x++ ) |
|
{ |
|
dst[x] = convertFp16SW(src[x]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENVX |
|
|
|
template<typename T, typename DT> |
|
static bool _openvx_cvt(const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size continuousSize) |
|
{ |
|
using namespace ivx; |
|
|
|
if(!(continuousSize.width > 0 && continuousSize.height > 0)) |
|
{ |
|
return true; |
|
} |
|
|
|
//.height is for number of continuous pieces |
|
//.width is for length of one piece |
|
Size imgSize = continuousSize; |
|
if(continuousSize.height == 1) |
|
{ |
|
if(sstep / sizeof(T) == dstep / sizeof(DT) && sstep / sizeof(T) > 0 && |
|
continuousSize.width % (sstep / sizeof(T)) == 0) |
|
{ |
|
//continuous n-lines image |
|
imgSize.width = sstep / sizeof(T); |
|
imgSize.height = continuousSize.width / (sstep / sizeof(T)); |
|
} |
|
else |
|
{ |
|
//1-row image with possibly incorrect step |
|
sstep = continuousSize.width * sizeof(T); |
|
dstep = continuousSize.width * sizeof(DT); |
|
} |
|
} |
|
|
|
int srcType = DataType<T>::type, dstType = DataType<DT>::type; |
|
|
|
try |
|
{ |
|
Context context = ovx::getOpenVXContext(); |
|
|
|
// Other conversions are marked as "experimental" |
|
if(context.vendorID() == VX_ID_KHRONOS && |
|
!(srcType == CV_8U && dstType == CV_16S) && |
|
!(srcType == CV_16S && dstType == CV_8U)) |
|
{ |
|
return false; |
|
} |
|
|
|
Image srcImage = Image::createFromHandle(context, Image::matTypeToFormat(srcType), |
|
Image::createAddressing(imgSize.width, imgSize.height, |
|
(vx_uint32)sizeof(T), (vx_uint32)sstep), |
|
(void*)src); |
|
Image dstImage = Image::createFromHandle(context, Image::matTypeToFormat(dstType), |
|
Image::createAddressing(imgSize.width, imgSize.height, |
|
(vx_uint32)sizeof(DT), (vx_uint32)dstep), |
|
(void*)dst); |
|
|
|
IVX_CHECK_STATUS(vxuConvertDepth(context, srcImage, dstImage, VX_CONVERT_POLICY_SATURATE, 0)); |
|
|
|
#ifdef VX_VERSION_1_1 |
|
//we should take user memory back before release |
|
//(it's not done automatically according to standard) |
|
srcImage.swapHandle(); dstImage.swapHandle(); |
|
#endif |
|
} |
|
catch (RuntimeError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
catch (WrapperError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
template<typename T, typename DT> |
|
static bool openvx_cvt(const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size size) |
|
{ |
|
(void)src; (void)sstep; (void)dst; (void)dstep; (void)size; |
|
return false; |
|
} |
|
|
|
#define DEFINE_OVX_CVT_SPECIALIZATION(T, DT) \ |
|
template<> \ |
|
bool openvx_cvt(const T *src, size_t sstep, DT *dst, size_t dstep, Size size) \ |
|
{ \ |
|
return _openvx_cvt<T, DT>(src, sstep, dst, dstep, size); \ |
|
} |
|
|
|
DEFINE_OVX_CVT_SPECIALIZATION(uchar, ushort) |
|
DEFINE_OVX_CVT_SPECIALIZATION(uchar, short) |
|
DEFINE_OVX_CVT_SPECIALIZATION(uchar, int) |
|
DEFINE_OVX_CVT_SPECIALIZATION(ushort, uchar) |
|
DEFINE_OVX_CVT_SPECIALIZATION(ushort, int) |
|
DEFINE_OVX_CVT_SPECIALIZATION(short, uchar) |
|
DEFINE_OVX_CVT_SPECIALIZATION(short, int) |
|
DEFINE_OVX_CVT_SPECIALIZATION(int, uchar) |
|
DEFINE_OVX_CVT_SPECIALIZATION(int, ushort) |
|
DEFINE_OVX_CVT_SPECIALIZATION(int, short) |
|
|
|
#endif |
|
|
|
template<typename T, typename DT> static void |
|
cvt_( const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size size ) |
|
{ |
|
CV_OVX_RUN( |
|
true, |
|
openvx_cvt(src, sstep, dst, dstep, size) |
|
) |
|
|
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
Cvt_SIMD<T, DT> vop; |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = vop(src, dst, size.width); |
|
#if CV_ENABLE_UNROLLED |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
DT t0, t1; |
|
t0 = saturate_cast<DT>(src[x]); |
|
t1 = saturate_cast<DT>(src[x+1]); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<DT>(src[x+2]); |
|
t1 = saturate_cast<DT>(src[x+3]); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<DT>(src[x]); |
|
} |
|
} |
|
|
|
//vz optimized template specialization, test Core_ConvertScale/ElemWiseTest |
|
template<> void |
|
cvt_<float, short>( const float* src, size_t sstep, |
|
short* dst, size_t dstep, Size size ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_SSE2 |
|
if(USE_SSE2) |
|
{ |
|
for( ; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m128 src128 = _mm_loadu_ps (src + x); |
|
__m128i src_int128 = _mm_cvtps_epi32 (src128); |
|
|
|
src128 = _mm_loadu_ps (src + x + 4); |
|
__m128i src1_int128 = _mm_cvtps_epi32 (src128); |
|
|
|
src1_int128 = _mm_packs_epi32(src_int128, src1_int128); |
|
_mm_storeu_si128((__m128i*)(dst + x),src1_int128); |
|
} |
|
} |
|
#elif CV_NEON |
|
for( ; x <= size.width - 8; x += 8 ) |
|
{ |
|
float32x4_t v_src1 = vld1q_f32(src + x), v_src2 = vld1q_f32(src + x + 4); |
|
int16x8_t v_dst = vcombine_s16(vqmovn_s32(cv_vrndq_s32_f32(v_src1)), |
|
vqmovn_s32(cv_vrndq_s32_f32(v_src2))); |
|
vst1q_s16(dst + x, v_dst); |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<short>(src[x]); |
|
} |
|
|
|
} |
|
|
|
|
|
template<typename T> static void |
|
cpy_( const T* src, size_t sstep, T* dst, size_t dstep, Size size ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
memcpy(dst, src, size.width*sizeof(src[0])); |
|
} |
|
|
|
#define DEF_CVT_SCALE_ABS_FUNC(suffix, tfunc, stype, dtype, wtype) \ |
|
static void cvtScaleAbs##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double* scale) \ |
|
{ \ |
|
tfunc(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \ |
|
} |
|
|
|
#define DEF_CVT_SCALE_FP16_FUNC(suffix, stype, dtype) \ |
|
static void cvtScaleHalf##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
cvtScaleHalf_<stype,dtype>(src, sstep, dst, dstep, size); \ |
|
} |
|
|
|
#define DEF_CVT_SCALE_FUNC(suffix, stype, dtype, wtype) \ |
|
static void cvtScale##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double* scale) \ |
|
{ \ |
|
cvtScale_(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \ |
|
} |
|
|
|
#if defined(HAVE_IPP) |
|
#define DEF_CVT_FUNC_F(suffix, stype, dtype, ippFavor) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
CV_IPP_RUN(src && dst, CV_INSTRUMENT_FUN_IPP(ippiConvert_##ippFavor, src, (int)sstep, dst, (int)dstep, ippiSize(size.width, size.height)) >= 0) \ |
|
cvt_(src, sstep, dst, dstep, size); \ |
|
} |
|
|
|
#define DEF_CVT_FUNC_F2(suffix, stype, dtype, ippFavor) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
CV_IPP_RUN(src && dst, CV_INSTRUMENT_FUN_IPP(ippiConvert_##ippFavor, src, (int)sstep, dst, (int)dstep, ippiSize(size.width, size.height), ippRndFinancial, 0) >= 0) \ |
|
cvt_(src, sstep, dst, dstep, size); \ |
|
} |
|
#else |
|
#define DEF_CVT_FUNC_F(suffix, stype, dtype, ippFavor) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
cvt_(src, sstep, dst, dstep, size); \ |
|
} |
|
#define DEF_CVT_FUNC_F2 DEF_CVT_FUNC_F |
|
#endif |
|
|
|
#define DEF_CVT_FUNC(suffix, stype, dtype) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
cvt_(src, sstep, dst, dstep, size); \ |
|
} |
|
|
|
#define DEF_CPY_FUNC(suffix, stype) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
stype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
cpy_(src, sstep, dst, dstep, size); \ |
|
} |
|
|
|
|
|
DEF_CVT_SCALE_ABS_FUNC(8u, cvtScaleAbs_, uchar, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(8s8u, cvtScaleAbs_, schar, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(16u8u, cvtScaleAbs_, ushort, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(16s8u, cvtScaleAbs_, short, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(32s8u, cvtScaleAbs_, int, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(32f8u, cvtScaleAbs_, float, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(64f8u, cvtScaleAbs_, double, uchar, float) |
|
|
|
DEF_CVT_SCALE_FP16_FUNC(32f16f, float, short) |
|
DEF_CVT_SCALE_FP16_FUNC(16f32f, short, float) |
|
|
|
DEF_CVT_SCALE_FUNC(8u, uchar, uchar, float) |
|
DEF_CVT_SCALE_FUNC(8s8u, schar, uchar, float) |
|
DEF_CVT_SCALE_FUNC(16u8u, ushort, uchar, float) |
|
DEF_CVT_SCALE_FUNC(16s8u, short, uchar, float) |
|
DEF_CVT_SCALE_FUNC(32s8u, int, uchar, float) |
|
DEF_CVT_SCALE_FUNC(32f8u, float, uchar, float) |
|
DEF_CVT_SCALE_FUNC(64f8u, double, uchar, float) |
|
|
|
DEF_CVT_SCALE_FUNC(8u8s, uchar, schar, float) |
|
DEF_CVT_SCALE_FUNC(8s, schar, schar, float) |
|
DEF_CVT_SCALE_FUNC(16u8s, ushort, schar, float) |
|
DEF_CVT_SCALE_FUNC(16s8s, short, schar, float) |
|
DEF_CVT_SCALE_FUNC(32s8s, int, schar, float) |
|
DEF_CVT_SCALE_FUNC(32f8s, float, schar, float) |
|
DEF_CVT_SCALE_FUNC(64f8s, double, schar, float) |
|
|
|
DEF_CVT_SCALE_FUNC(8u16u, uchar, ushort, float) |
|
DEF_CVT_SCALE_FUNC(8s16u, schar, ushort, float) |
|
DEF_CVT_SCALE_FUNC(16u, ushort, ushort, float) |
|
DEF_CVT_SCALE_FUNC(16s16u, short, ushort, float) |
|
DEF_CVT_SCALE_FUNC(32s16u, int, ushort, float) |
|
DEF_CVT_SCALE_FUNC(32f16u, float, ushort, float) |
|
DEF_CVT_SCALE_FUNC(64f16u, double, ushort, float) |
|
|
|
DEF_CVT_SCALE_FUNC(8u16s, uchar, short, float) |
|
DEF_CVT_SCALE_FUNC(8s16s, schar, short, float) |
|
DEF_CVT_SCALE_FUNC(16u16s, ushort, short, float) |
|
DEF_CVT_SCALE_FUNC(16s, short, short, float) |
|
DEF_CVT_SCALE_FUNC(32s16s, int, short, float) |
|
DEF_CVT_SCALE_FUNC(32f16s, float, short, float) |
|
DEF_CVT_SCALE_FUNC(64f16s, double, short, float) |
|
|
|
DEF_CVT_SCALE_FUNC(8u32s, uchar, int, float) |
|
DEF_CVT_SCALE_FUNC(8s32s, schar, int, float) |
|
DEF_CVT_SCALE_FUNC(16u32s, ushort, int, float) |
|
DEF_CVT_SCALE_FUNC(16s32s, short, int, float) |
|
DEF_CVT_SCALE_FUNC(32s, int, int, double) |
|
DEF_CVT_SCALE_FUNC(32f32s, float, int, float) |
|
DEF_CVT_SCALE_FUNC(64f32s, double, int, double) |
|
|
|
DEF_CVT_SCALE_FUNC(8u32f, uchar, float, float) |
|
DEF_CVT_SCALE_FUNC(8s32f, schar, float, float) |
|
DEF_CVT_SCALE_FUNC(16u32f, ushort, float, float) |
|
DEF_CVT_SCALE_FUNC(16s32f, short, float, float) |
|
DEF_CVT_SCALE_FUNC(32s32f, int, float, double) |
|
DEF_CVT_SCALE_FUNC(32f, float, float, float) |
|
DEF_CVT_SCALE_FUNC(64f32f, double, float, double) |
|
|
|
DEF_CVT_SCALE_FUNC(8u64f, uchar, double, double) |
|
DEF_CVT_SCALE_FUNC(8s64f, schar, double, double) |
|
DEF_CVT_SCALE_FUNC(16u64f, ushort, double, double) |
|
DEF_CVT_SCALE_FUNC(16s64f, short, double, double) |
|
DEF_CVT_SCALE_FUNC(32s64f, int, double, double) |
|
DEF_CVT_SCALE_FUNC(32f64f, float, double, double) |
|
DEF_CVT_SCALE_FUNC(64f, double, double, double) |
|
|
|
DEF_CPY_FUNC(8u, uchar) |
|
DEF_CVT_FUNC_F(8s8u, schar, uchar, 8s8u_C1Rs) |
|
DEF_CVT_FUNC_F(16u8u, ushort, uchar, 16u8u_C1R) |
|
DEF_CVT_FUNC_F(16s8u, short, uchar, 16s8u_C1R) |
|
DEF_CVT_FUNC_F(32s8u, int, uchar, 32s8u_C1R) |
|
DEF_CVT_FUNC_F2(32f8u, float, uchar, 32f8u_C1RSfs) |
|
DEF_CVT_FUNC(64f8u, double, uchar) |
|
|
|
DEF_CVT_FUNC_F2(8u8s, uchar, schar, 8u8s_C1RSfs) |
|
DEF_CVT_FUNC_F2(16u8s, ushort, schar, 16u8s_C1RSfs) |
|
DEF_CVT_FUNC_F2(16s8s, short, schar, 16s8s_C1RSfs) |
|
DEF_CVT_FUNC_F(32s8s, int, schar, 32s8s_C1R) |
|
DEF_CVT_FUNC_F2(32f8s, float, schar, 32f8s_C1RSfs) |
|
DEF_CVT_FUNC(64f8s, double, schar) |
|
|
|
DEF_CVT_FUNC_F(8u16u, uchar, ushort, 8u16u_C1R) |
|
DEF_CVT_FUNC_F(8s16u, schar, ushort, 8s16u_C1Rs) |
|
DEF_CPY_FUNC(16u, ushort) |
|
DEF_CVT_FUNC_F(16s16u, short, ushort, 16s16u_C1Rs) |
|
DEF_CVT_FUNC_F2(32s16u, int, ushort, 32s16u_C1RSfs) |
|
DEF_CVT_FUNC_F2(32f16u, float, ushort, 32f16u_C1RSfs) |
|
DEF_CVT_FUNC(64f16u, double, ushort) |
|
|
|
DEF_CVT_FUNC_F(8u16s, uchar, short, 8u16s_C1R) |
|
DEF_CVT_FUNC_F(8s16s, schar, short, 8s16s_C1R) |
|
DEF_CVT_FUNC_F2(16u16s, ushort, short, 16u16s_C1RSfs) |
|
DEF_CVT_FUNC_F2(32s16s, int, short, 32s16s_C1RSfs) |
|
DEF_CVT_FUNC(32f16s, float, short) |
|
DEF_CVT_FUNC(64f16s, double, short) |
|
|
|
DEF_CVT_FUNC_F(8u32s, uchar, int, 8u32s_C1R) |
|
DEF_CVT_FUNC_F(8s32s, schar, int, 8s32s_C1R) |
|
DEF_CVT_FUNC_F(16u32s, ushort, int, 16u32s_C1R) |
|
DEF_CVT_FUNC_F(16s32s, short, int, 16s32s_C1R) |
|
DEF_CPY_FUNC(32s, int) |
|
DEF_CVT_FUNC_F2(32f32s, float, int, 32f32s_C1RSfs) |
|
DEF_CVT_FUNC(64f32s, double, int) |
|
|
|
DEF_CVT_FUNC_F(8u32f, uchar, float, 8u32f_C1R) |
|
DEF_CVT_FUNC_F(8s32f, schar, float, 8s32f_C1R) |
|
DEF_CVT_FUNC_F(16u32f, ushort, float, 16u32f_C1R) |
|
DEF_CVT_FUNC_F(16s32f, short, float, 16s32f_C1R) |
|
DEF_CVT_FUNC_F(32s32f, int, float, 32s32f_C1R) |
|
DEF_CVT_FUNC(64f32f, double, float) |
|
|
|
DEF_CVT_FUNC(8u64f, uchar, double) |
|
DEF_CVT_FUNC(8s64f, schar, double) |
|
DEF_CVT_FUNC(16u64f, ushort, double) |
|
DEF_CVT_FUNC(16s64f, short, double) |
|
DEF_CVT_FUNC(32s64f, int, double) |
|
DEF_CVT_FUNC(32f64f, float, double) |
|
DEF_CPY_FUNC(64s, int64) |
|
|
|
static BinaryFunc getCvtScaleAbsFunc(int depth) |
|
{ |
|
static BinaryFunc cvtScaleAbsTab[] = |
|
{ |
|
(BinaryFunc)cvtScaleAbs8u, (BinaryFunc)cvtScaleAbs8s8u, (BinaryFunc)cvtScaleAbs16u8u, |
|
(BinaryFunc)cvtScaleAbs16s8u, (BinaryFunc)cvtScaleAbs32s8u, (BinaryFunc)cvtScaleAbs32f8u, |
|
(BinaryFunc)cvtScaleAbs64f8u, 0 |
|
}; |
|
|
|
return cvtScaleAbsTab[depth]; |
|
} |
|
|
|
BinaryFunc getConvertFuncFp16(int ddepth) |
|
{ |
|
static BinaryFunc cvtTab[] = |
|
{ |
|
0, 0, 0, |
|
(BinaryFunc)(cvtScaleHalf32f16f), 0, (BinaryFunc)(cvtScaleHalf16f32f), |
|
0, 0, |
|
}; |
|
return cvtTab[CV_MAT_DEPTH(ddepth)]; |
|
} |
|
|
|
BinaryFunc getConvertFunc(int sdepth, int ddepth) |
|
{ |
|
static BinaryFunc cvtTab[][8] = |
|
{ |
|
{ |
|
(BinaryFunc)(cvt8u), (BinaryFunc)GET_OPTIMIZED(cvt8s8u), (BinaryFunc)GET_OPTIMIZED(cvt16u8u), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s8u), (BinaryFunc)GET_OPTIMIZED(cvt32s8u), (BinaryFunc)GET_OPTIMIZED(cvt32f8u), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f8u), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u8s), (BinaryFunc)cvt8u, (BinaryFunc)GET_OPTIMIZED(cvt16u8s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s8s), (BinaryFunc)GET_OPTIMIZED(cvt32s8s), (BinaryFunc)GET_OPTIMIZED(cvt32f8s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f8s), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u16u), (BinaryFunc)GET_OPTIMIZED(cvt8s16u), (BinaryFunc)cvt16u, |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s16u), (BinaryFunc)GET_OPTIMIZED(cvt32s16u), (BinaryFunc)GET_OPTIMIZED(cvt32f16u), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f16u), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u16s), (BinaryFunc)GET_OPTIMIZED(cvt8s16s), (BinaryFunc)GET_OPTIMIZED(cvt16u16s), |
|
(BinaryFunc)cvt16u, (BinaryFunc)GET_OPTIMIZED(cvt32s16s), (BinaryFunc)GET_OPTIMIZED(cvt32f16s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f16s), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u32s), (BinaryFunc)GET_OPTIMIZED(cvt8s32s), (BinaryFunc)GET_OPTIMIZED(cvt16u32s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s32s), (BinaryFunc)cvt32s, (BinaryFunc)GET_OPTIMIZED(cvt32f32s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f32s), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u32f), (BinaryFunc)GET_OPTIMIZED(cvt8s32f), (BinaryFunc)GET_OPTIMIZED(cvt16u32f), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s32f), (BinaryFunc)GET_OPTIMIZED(cvt32s32f), (BinaryFunc)cvt32s, |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f32f), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u64f), (BinaryFunc)GET_OPTIMIZED(cvt8s64f), (BinaryFunc)GET_OPTIMIZED(cvt16u64f), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s64f), (BinaryFunc)GET_OPTIMIZED(cvt32s64f), (BinaryFunc)GET_OPTIMIZED(cvt32f64f), |
|
(BinaryFunc)(cvt64s), 0 |
|
}, |
|
{ |
|
0, 0, 0, 0, 0, 0, 0, 0 |
|
} |
|
}; |
|
|
|
return cvtTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)]; |
|
} |
|
|
|
static BinaryFunc getConvertScaleFunc(int sdepth, int ddepth) |
|
{ |
|
static BinaryFunc cvtScaleTab[][8] = |
|
{ |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8u), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8u), |
|
(BinaryFunc)cvtScale64f8u, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u8s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8s), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8s), |
|
(BinaryFunc)cvtScale64f8s, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16u), |
|
(BinaryFunc)cvtScale64f16u, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u16s), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16s), |
|
(BinaryFunc)cvtScale64f16s, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32s), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f32s), |
|
(BinaryFunc)cvtScale64f32s, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32f), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32f), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32f), |
|
(BinaryFunc)cvtScale64f32f, 0 |
|
}, |
|
{ |
|
(BinaryFunc)cvtScale8u64f, (BinaryFunc)cvtScale8s64f, (BinaryFunc)cvtScale16u64f, |
|
(BinaryFunc)cvtScale16s64f, (BinaryFunc)cvtScale32s64f, (BinaryFunc)cvtScale32f64f, |
|
(BinaryFunc)cvtScale64f, 0 |
|
}, |
|
{ |
|
0, 0, 0, 0, 0, 0, 0, 0 |
|
} |
|
}; |
|
|
|
return cvtScaleTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)]; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta ) |
|
{ |
|
const ocl::Device & d = ocl::Device::getDefault(); |
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
bool doubleSupport = d.doubleFPConfig() > 0; |
|
if (!doubleSupport && depth == CV_64F) |
|
return false; |
|
|
|
_dst.create(_src.size(), CV_8UC(cn)); |
|
int kercn = 1; |
|
if (d.isIntel()) |
|
{ |
|
static const int vectorWidths[] = {4, 4, 4, 4, 4, 4, 4, -1}; |
|
kercn = ocl::checkOptimalVectorWidth( vectorWidths, _src, _dst, |
|
noArray(), noArray(), noArray(), |
|
noArray(), noArray(), noArray(), |
|
noArray(), ocl::OCL_VECTOR_MAX); |
|
} |
|
else |
|
kercn = ocl::predictOptimalVectorWidthMax(_src, _dst); |
|
|
|
int rowsPerWI = d.isIntel() ? 4 : 1; |
|
char cvt[2][50]; |
|
int wdepth = std::max(depth, CV_32F); |
|
String build_opt = format("-D OP_CONVERT_SCALE_ABS -D UNARY_OP -D dstT=%s -D srcT1=%s" |
|
" -D workT=%s -D wdepth=%d -D convertToWT1=%s -D convertToDT=%s" |
|
" -D workT1=%s -D rowsPerWI=%d%s", |
|
ocl::typeToStr(CV_8UC(kercn)), |
|
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), |
|
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)), wdepth, |
|
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]), |
|
ocl::convertTypeStr(wdepth, CV_8U, kercn, cvt[1]), |
|
ocl::typeToStr(wdepth), rowsPerWI, |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : ""); |
|
ocl::Kernel k("KF", ocl::core::arithm_oclsrc, build_opt); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
UMat dst = _dst.getUMat(); |
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), |
|
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn); |
|
|
|
if (wdepth == CV_32F) |
|
k.args(srcarg, dstarg, (float)alpha, (float)beta); |
|
else if (wdepth == CV_64F) |
|
k.args(srcarg, dstarg, alpha, beta); |
|
|
|
size_t globalsize[2] = { (size_t)src.cols * cn / kercn, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
void cv::convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), |
|
ocl_convertScaleAbs(_src, _dst, alpha, beta)) |
|
|
|
Mat src = _src.getMat(); |
|
int cn = src.channels(); |
|
double scale[] = {alpha, beta}; |
|
_dst.create( src.dims, src.size, CV_8UC(cn) ); |
|
Mat dst = _dst.getMat(); |
|
BinaryFunc func = getCvtScaleAbsFunc(src.depth()); |
|
CV_Assert( func != 0 ); |
|
|
|
if( src.dims <= 2 ) |
|
{ |
|
Size sz = getContinuousSize(src, dst, cn); |
|
func( src.ptr(), src.step, 0, 0, dst.ptr(), dst.step, sz, scale ); |
|
} |
|
else |
|
{ |
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Size sz((int)it.size*cn, 1); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func( ptrs[0], 0, 0, 0, ptrs[1], 0, sz, scale ); |
|
} |
|
} |
|
|
|
void cv::convertFp16( InputArray _src, OutputArray _dst) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
Mat src = _src.getMat(); |
|
int ddepth = 0; |
|
|
|
switch( src.depth() ) |
|
{ |
|
case CV_32F: |
|
ddepth = CV_16S; |
|
break; |
|
case CV_16S: |
|
ddepth = CV_32F; |
|
break; |
|
default: |
|
CV_Error(Error::StsUnsupportedFormat, "Unsupported input depth"); |
|
return; |
|
} |
|
|
|
int type = CV_MAKETYPE(ddepth, src.channels()); |
|
_dst.create( src.dims, src.size, type ); |
|
Mat dst = _dst.getMat(); |
|
BinaryFunc func = getConvertFuncFp16(ddepth); |
|
int cn = src.channels(); |
|
CV_Assert( func != 0 ); |
|
|
|
if( src.dims <= 2 ) |
|
{ |
|
Size sz = getContinuousSize(src, dst, cn); |
|
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, 0); |
|
} |
|
else |
|
{ |
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Size sz((int)(it.size*cn), 1); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func(ptrs[0], 1, 0, 0, ptrs[1], 1, sz, 0); |
|
} |
|
} |
|
|
|
void cv::Mat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
bool noScale = fabs(alpha-1) < DBL_EPSILON && fabs(beta) < DBL_EPSILON; |
|
|
|
if( _type < 0 ) |
|
_type = _dst.fixedType() ? _dst.type() : type(); |
|
else |
|
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), channels()); |
|
|
|
int sdepth = depth(), ddepth = CV_MAT_DEPTH(_type); |
|
if( sdepth == ddepth && noScale ) |
|
{ |
|
copyTo(_dst); |
|
return; |
|
} |
|
|
|
Mat src = *this; |
|
|
|
BinaryFunc func = noScale ? getConvertFunc(sdepth, ddepth) : getConvertScaleFunc(sdepth, ddepth); |
|
double scale[] = {alpha, beta}; |
|
int cn = channels(); |
|
CV_Assert( func != 0 ); |
|
|
|
if( dims <= 2 ) |
|
{ |
|
_dst.create( size(), _type ); |
|
Mat dst = _dst.getMat(); |
|
Size sz = getContinuousSize(src, dst, cn); |
|
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, scale ); |
|
} |
|
else |
|
{ |
|
_dst.create( dims, size, _type ); |
|
Mat dst = _dst.getMat(); |
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Size sz((int)(it.size*cn), 1); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func(ptrs[0], 1, 0, 0, ptrs[1], 1, sz, scale); |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* LUT Transform * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void |
|
LUT8u_( const uchar* src, const T* lut, T* dst, int len, int cn, int lutcn ) |
|
{ |
|
if( lutcn == 1 ) |
|
{ |
|
for( int i = 0; i < len*cn; i++ ) |
|
dst[i] = lut[src[i]]; |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len*cn; i += cn ) |
|
for( int k = 0; k < cn; k++ ) |
|
dst[i+k] = lut[src[i+k]*cn+k]; |
|
} |
|
} |
|
|
|
static void LUT8u_8u( const uchar* src, const uchar* lut, uchar* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_8s( const uchar* src, const schar* lut, schar* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_16u( const uchar* src, const ushort* lut, ushort* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_16s( const uchar* src, const short* lut, short* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_32s( const uchar* src, const int* lut, int* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_32f( const uchar* src, const float* lut, float* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_64f( const uchar* src, const double* lut, double* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
typedef void (*LUTFunc)( const uchar* src, const uchar* lut, uchar* dst, int len, int cn, int lutcn ); |
|
|
|
static LUTFunc lutTab[] = |
|
{ |
|
(LUTFunc)LUT8u_8u, (LUTFunc)LUT8u_8s, (LUTFunc)LUT8u_16u, (LUTFunc)LUT8u_16s, |
|
(LUTFunc)LUT8u_32s, (LUTFunc)LUT8u_32f, (LUTFunc)LUT8u_64f, 0 |
|
}; |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_LUT(InputArray _src, InputArray _lut, OutputArray _dst) |
|
{ |
|
int lcn = _lut.channels(), dcn = _src.channels(), ddepth = _lut.depth(); |
|
|
|
UMat src = _src.getUMat(), lut = _lut.getUMat(); |
|
_dst.create(src.size(), CV_MAKETYPE(ddepth, dcn)); |
|
UMat dst = _dst.getUMat(); |
|
int kercn = lcn == 1 ? std::min(4, ocl::predictOptimalVectorWidth(_src, _dst)) : dcn; |
|
|
|
ocl::Kernel k("LUT", ocl::core::lut_oclsrc, |
|
format("-D dcn=%d -D lcn=%d -D srcT=%s -D dstT=%s", kercn, lcn, |
|
ocl::typeToStr(src.depth()), ocl::memopTypeToStr(ddepth))); |
|
if (k.empty()) |
|
return false; |
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::ReadOnlyNoSize(lut), |
|
ocl::KernelArg::WriteOnly(dst, dcn, kercn)); |
|
|
|
size_t globalSize[2] = { (size_t)dst.cols * dcn / kercn, ((size_t)dst.rows + 3) / 4 }; |
|
return k.run(2, globalSize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_OPENVX |
|
static bool openvx_LUT(Mat src, Mat dst, Mat _lut) |
|
{ |
|
if (src.type() != CV_8UC1 || dst.type() != src.type() || _lut.type() != src.type() || !_lut.isContinuous()) |
|
return false; |
|
|
|
try |
|
{ |
|
ivx::Context ctx = ovx::getOpenVXContext(); |
|
|
|
ivx::Image |
|
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, |
|
ivx::Image::createAddressing(src.cols, src.rows, 1, (vx_int32)(src.step)), src.data), |
|
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, |
|
ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data); |
|
|
|
ivx::LUT lut = ivx::LUT::create(ctx); |
|
lut.copyFrom(_lut); |
|
ivx::IVX_CHECK_STATUS(vxuTableLookup(ctx, ia, lut, ib)); |
|
} |
|
catch (ivx::RuntimeError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
catch (ivx::WrapperError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
#if defined(HAVE_IPP) |
|
namespace ipp { |
|
|
|
#if IPP_DISABLE_BLOCK // there are no performance benefits (PR #2653) |
|
class IppLUTParallelBody_LUTC1 : public ParallelLoopBody |
|
{ |
|
public: |
|
bool* ok; |
|
const Mat& src_; |
|
const Mat& lut_; |
|
Mat& dst_; |
|
|
|
typedef IppStatus (*IppFn)(const Ipp8u* pSrc, int srcStep, void* pDst, int dstStep, |
|
IppiSize roiSize, const void* pTable, int nBitSize); |
|
IppFn fn; |
|
|
|
int width; |
|
|
|
IppLUTParallelBody_LUTC1(const Mat& src, const Mat& lut, Mat& dst, bool* _ok) |
|
: ok(_ok), src_(src), lut_(lut), dst_(dst) |
|
{ |
|
width = dst.cols * dst.channels(); |
|
|
|
size_t elemSize1 = CV_ELEM_SIZE1(dst.depth()); |
|
|
|
fn = |
|
elemSize1 == 1 ? (IppFn)ippiLUTPalette_8u_C1R : |
|
elemSize1 == 4 ? (IppFn)ippiLUTPalette_8u32u_C1R : |
|
NULL; |
|
|
|
*ok = (fn != NULL); |
|
} |
|
|
|
void operator()( const cv::Range& range ) const |
|
{ |
|
if (!*ok) |
|
return; |
|
|
|
const int row0 = range.start; |
|
const int row1 = range.end; |
|
|
|
Mat src = src_.rowRange(row0, row1); |
|
Mat dst = dst_.rowRange(row0, row1); |
|
|
|
IppiSize sz = { width, dst.rows }; |
|
|
|
CV_DbgAssert(fn != NULL); |
|
if (fn(src.data, (int)src.step[0], dst.data, (int)dst.step[0], sz, lut_.data, 8) < 0) |
|
{ |
|
setIppErrorStatus(); |
|
*ok = false; |
|
} |
|
CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT); |
|
} |
|
private: |
|
IppLUTParallelBody_LUTC1(const IppLUTParallelBody_LUTC1&); |
|
IppLUTParallelBody_LUTC1& operator=(const IppLUTParallelBody_LUTC1&); |
|
}; |
|
#endif |
|
|
|
class IppLUTParallelBody_LUTCN : public ParallelLoopBody |
|
{ |
|
public: |
|
bool *ok; |
|
const Mat& src_; |
|
const Mat& lut_; |
|
Mat& dst_; |
|
|
|
int lutcn; |
|
|
|
uchar* lutBuffer; |
|
uchar* lutTable[4]; |
|
|
|
IppLUTParallelBody_LUTCN(const Mat& src, const Mat& lut, Mat& dst, bool* _ok) |
|
: ok(_ok), src_(src), lut_(lut), dst_(dst), lutBuffer(NULL) |
|
{ |
|
lutcn = lut.channels(); |
|
IppiSize sz256 = {256, 1}; |
|
|
|
size_t elemSize1 = dst.elemSize1(); |
|
CV_DbgAssert(elemSize1 == 1); |
|
lutBuffer = (uchar*)ippMalloc(256 * (int)elemSize1 * 4); |
|
lutTable[0] = lutBuffer + 0; |
|
lutTable[1] = lutBuffer + 1 * 256 * elemSize1; |
|
lutTable[2] = lutBuffer + 2 * 256 * elemSize1; |
|
lutTable[3] = lutBuffer + 3 * 256 * elemSize1; |
|
|
|
CV_DbgAssert(lutcn == 3 || lutcn == 4); |
|
if (lutcn == 3) |
|
{ |
|
IppStatus status = CV_INSTRUMENT_FUN_IPP(ippiCopy_8u_C3P3R, lut.ptr(), (int)lut.step[0], lutTable, (int)lut.step[0], sz256); |
|
if (status < 0) |
|
{ |
|
setIppErrorStatus(); |
|
return; |
|
} |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
} |
|
else if (lutcn == 4) |
|
{ |
|
IppStatus status = CV_INSTRUMENT_FUN_IPP(ippiCopy_8u_C4P4R, lut.ptr(), (int)lut.step[0], lutTable, (int)lut.step[0], sz256); |
|
if (status < 0) |
|
{ |
|
setIppErrorStatus(); |
|
return; |
|
} |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
} |
|
|
|
*ok = true; |
|
} |
|
|
|
~IppLUTParallelBody_LUTCN() |
|
{ |
|
if (lutBuffer != NULL) |
|
ippFree(lutBuffer); |
|
lutBuffer = NULL; |
|
lutTable[0] = NULL; |
|
} |
|
|
|
void operator()( const cv::Range& range ) const |
|
{ |
|
if (!*ok) |
|
return; |
|
|
|
const int row0 = range.start; |
|
const int row1 = range.end; |
|
|
|
Mat src = src_.rowRange(row0, row1); |
|
Mat dst = dst_.rowRange(row0, row1); |
|
|
|
if (lutcn == 3) |
|
{ |
|
if (CV_INSTRUMENT_FUN_IPP(ippiLUTPalette_8u_C3R, |
|
src.ptr(), (int)src.step[0], dst.ptr(), (int)dst.step[0], |
|
ippiSize(dst.size()), lutTable, 8) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT); |
|
return; |
|
} |
|
} |
|
else if (lutcn == 4) |
|
{ |
|
if (CV_INSTRUMENT_FUN_IPP(ippiLUTPalette_8u_C4R, |
|
src.ptr(), (int)src.step[0], dst.ptr(), (int)dst.step[0], |
|
ippiSize(dst.size()), lutTable, 8) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT); |
|
return; |
|
} |
|
} |
|
setIppErrorStatus(); |
|
*ok = false; |
|
} |
|
private: |
|
IppLUTParallelBody_LUTCN(const IppLUTParallelBody_LUTCN&); |
|
IppLUTParallelBody_LUTCN& operator=(const IppLUTParallelBody_LUTCN&); |
|
}; |
|
} // namespace ipp |
|
|
|
static bool ipp_lut(Mat &src, Mat &lut, Mat &dst) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
int lutcn = lut.channels(); |
|
|
|
if(src.dims > 2) |
|
return false; |
|
|
|
bool ok = false; |
|
Ptr<ParallelLoopBody> body; |
|
|
|
size_t elemSize1 = CV_ELEM_SIZE1(dst.depth()); |
|
#if IPP_DISABLE_BLOCK // there are no performance benefits (PR #2653) |
|
if (lutcn == 1) |
|
{ |
|
ParallelLoopBody* p = new ipp::IppLUTParallelBody_LUTC1(src, lut, dst, &ok); |
|
body.reset(p); |
|
} |
|
else |
|
#endif |
|
if ((lutcn == 3 || lutcn == 4) && elemSize1 == 1) |
|
{ |
|
ParallelLoopBody* p = new ipp::IppLUTParallelBody_LUTCN(src, lut, dst, &ok); |
|
body.reset(p); |
|
} |
|
|
|
if (body != NULL && ok) |
|
{ |
|
Range all(0, dst.rows); |
|
if (dst.total()>>18) |
|
parallel_for_(all, *body, (double)std::max((size_t)1, dst.total()>>16)); |
|
else |
|
(*body)(all); |
|
if (ok) |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
#endif // IPP |
|
|
|
class LUTParallelBody : public ParallelLoopBody |
|
{ |
|
public: |
|
bool* ok; |
|
const Mat& src_; |
|
const Mat& lut_; |
|
Mat& dst_; |
|
|
|
LUTFunc func; |
|
|
|
LUTParallelBody(const Mat& src, const Mat& lut, Mat& dst, bool* _ok) |
|
: ok(_ok), src_(src), lut_(lut), dst_(dst) |
|
{ |
|
func = lutTab[lut.depth()]; |
|
*ok = (func != NULL); |
|
} |
|
|
|
void operator()( const cv::Range& range ) const |
|
{ |
|
CV_DbgAssert(*ok); |
|
|
|
const int row0 = range.start; |
|
const int row1 = range.end; |
|
|
|
Mat src = src_.rowRange(row0, row1); |
|
Mat dst = dst_.rowRange(row0, row1); |
|
|
|
int cn = src.channels(); |
|
int lutcn = lut_.channels(); |
|
|
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int len = (int)it.size; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func(ptrs[0], lut_.ptr(), ptrs[1], len, cn, lutcn); |
|
} |
|
private: |
|
LUTParallelBody(const LUTParallelBody&); |
|
LUTParallelBody& operator=(const LUTParallelBody&); |
|
}; |
|
|
|
} |
|
|
|
void cv::LUT( InputArray _src, InputArray _lut, OutputArray _dst ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
int cn = _src.channels(), depth = _src.depth(); |
|
int lutcn = _lut.channels(); |
|
|
|
CV_Assert( (lutcn == cn || lutcn == 1) && |
|
_lut.total() == 256 && _lut.isContinuous() && |
|
(depth == CV_8U || depth == CV_8S) ); |
|
|
|
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2, |
|
ocl_LUT(_src, _lut, _dst)) |
|
|
|
Mat src = _src.getMat(), lut = _lut.getMat(); |
|
_dst.create(src.dims, src.size, CV_MAKETYPE(_lut.depth(), cn)); |
|
Mat dst = _dst.getMat(); |
|
|
|
CV_OVX_RUN(true, |
|
openvx_LUT(src, dst, lut)) |
|
|
|
CV_IPP_RUN(_src.dims() <= 2, ipp_lut(src, lut, dst)); |
|
|
|
if (_src.dims() <= 2) |
|
{ |
|
bool ok = false; |
|
Ptr<ParallelLoopBody> body; |
|
|
|
if (body == NULL || ok == false) |
|
{ |
|
ok = false; |
|
ParallelLoopBody* p = new LUTParallelBody(src, lut, dst, &ok); |
|
body.reset(p); |
|
} |
|
if (body != NULL && ok) |
|
{ |
|
Range all(0, dst.rows); |
|
if (dst.total()>>18) |
|
parallel_for_(all, *body, (double)std::max((size_t)1, dst.total()>>16)); |
|
else |
|
(*body)(all); |
|
if (ok) |
|
return; |
|
} |
|
} |
|
|
|
LUTFunc func = lutTab[lut.depth()]; |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int len = (int)it.size; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func(ptrs[0], lut.ptr(), ptrs[1], len, cn, lutcn); |
|
} |
|
|
|
namespace cv { |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_normalize( InputArray _src, InputOutputArray _dst, InputArray _mask, int dtype, |
|
double scale, double delta ) |
|
{ |
|
UMat src = _src.getUMat(); |
|
|
|
if( _mask.empty() ) |
|
src.convertTo( _dst, dtype, scale, delta ); |
|
else if (src.channels() <= 4) |
|
{ |
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), |
|
ddepth = CV_MAT_DEPTH(dtype), wdepth = std::max(CV_32F, std::max(sdepth, ddepth)), |
|
rowsPerWI = dev.isIntel() ? 4 : 1; |
|
|
|
float fscale = static_cast<float>(scale), fdelta = static_cast<float>(delta); |
|
bool haveScale = std::fabs(scale - 1) > DBL_EPSILON, |
|
haveZeroScale = !(std::fabs(scale) > DBL_EPSILON), |
|
haveDelta = std::fabs(delta) > DBL_EPSILON, |
|
doubleSupport = dev.doubleFPConfig() > 0; |
|
|
|
if (!haveScale && !haveDelta && stype == dtype) |
|
{ |
|
_src.copyTo(_dst, _mask); |
|
return true; |
|
} |
|
if (haveZeroScale) |
|
{ |
|
_dst.setTo(Scalar(delta), _mask); |
|
return true; |
|
} |
|
|
|
if ((sdepth == CV_64F || ddepth == CV_64F) && !doubleSupport) |
|
return false; |
|
|
|
char cvt[2][40]; |
|
String opts = format("-D srcT=%s -D dstT=%s -D convertToWT=%s -D cn=%d -D rowsPerWI=%d" |
|
" -D convertToDT=%s -D workT=%s%s%s%s -D srcT1=%s -D dstT1=%s", |
|
ocl::typeToStr(stype), ocl::typeToStr(dtype), |
|
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]), cn, |
|
rowsPerWI, ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]), |
|
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "", |
|
haveScale ? " -D HAVE_SCALE" : "", |
|
haveDelta ? " -D HAVE_DELTA" : "", |
|
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth)); |
|
|
|
ocl::Kernel k("normalizek", ocl::core::normalize_oclsrc, opts); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat mask = _mask.getUMat(), dst = _dst.getUMat(); |
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), |
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), |
|
dstarg = ocl::KernelArg::ReadWrite(dst); |
|
|
|
if (haveScale) |
|
{ |
|
if (haveDelta) |
|
k.args(srcarg, maskarg, dstarg, fscale, fdelta); |
|
else |
|
k.args(srcarg, maskarg, dstarg, fscale); |
|
} |
|
else |
|
{ |
|
if (haveDelta) |
|
k.args(srcarg, maskarg, dstarg, fdelta); |
|
else |
|
k.args(srcarg, maskarg, dstarg); |
|
} |
|
|
|
size_t globalsize[2] = { (size_t)src.cols, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
else |
|
{ |
|
UMat temp; |
|
src.convertTo( temp, dtype, scale, delta ); |
|
temp.copyTo( _dst, _mask ); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
void cv::normalize( InputArray _src, InputOutputArray _dst, double a, double b, |
|
int norm_type, int rtype, InputArray _mask ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
double scale = 1, shift = 0; |
|
if( norm_type == CV_MINMAX ) |
|
{ |
|
double smin = 0, smax = 0; |
|
double dmin = MIN( a, b ), dmax = MAX( a, b ); |
|
minMaxIdx( _src, &smin, &smax, 0, 0, _mask ); |
|
scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0); |
|
shift = dmin - smin*scale; |
|
} |
|
else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C ) |
|
{ |
|
scale = norm( _src, norm_type, _mask ); |
|
scale = scale > DBL_EPSILON ? a/scale : 0.; |
|
shift = 0; |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" ); |
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type); |
|
if( rtype < 0 ) |
|
rtype = _dst.fixedType() ? _dst.depth() : depth; |
|
|
|
CV_OCL_RUN(_dst.isUMat(), |
|
ocl_normalize(_src, _dst, _mask, rtype, scale, shift)) |
|
|
|
Mat src = _src.getMat(); |
|
if( _mask.empty() ) |
|
src.convertTo( _dst, rtype, scale, shift ); |
|
else |
|
{ |
|
Mat temp; |
|
src.convertTo( temp, rtype, scale, shift ); |
|
temp.copyTo( _dst, _mask ); |
|
} |
|
} |
|
|
|
CV_IMPL void |
|
cvSplit( const void* srcarr, void* dstarr0, void* dstarr1, void* dstarr2, void* dstarr3 ) |
|
{ |
|
void* dptrs[] = { dstarr0, dstarr1, dstarr2, dstarr3 }; |
|
cv::Mat src = cv::cvarrToMat(srcarr); |
|
int i, j, nz = 0; |
|
for( i = 0; i < 4; i++ ) |
|
nz += dptrs[i] != 0; |
|
CV_Assert( nz > 0 ); |
|
std::vector<cv::Mat> dvec(nz); |
|
std::vector<int> pairs(nz*2); |
|
|
|
for( i = j = 0; i < 4; i++ ) |
|
{ |
|
if( dptrs[i] != 0 ) |
|
{ |
|
dvec[j] = cv::cvarrToMat(dptrs[i]); |
|
CV_Assert( dvec[j].size() == src.size() ); |
|
CV_Assert( dvec[j].depth() == src.depth() ); |
|
CV_Assert( dvec[j].channels() == 1 ); |
|
CV_Assert( i < src.channels() ); |
|
pairs[j*2] = i; |
|
pairs[j*2+1] = j; |
|
j++; |
|
} |
|
} |
|
if( nz == src.channels() ) |
|
cv::split( src, dvec ); |
|
else |
|
{ |
|
cv::mixChannels( &src, 1, &dvec[0], nz, &pairs[0], nz ); |
|
} |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvMerge( const void* srcarr0, const void* srcarr1, const void* srcarr2, |
|
const void* srcarr3, void* dstarr ) |
|
{ |
|
const void* sptrs[] = { srcarr0, srcarr1, srcarr2, srcarr3 }; |
|
cv::Mat dst = cv::cvarrToMat(dstarr); |
|
int i, j, nz = 0; |
|
for( i = 0; i < 4; i++ ) |
|
nz += sptrs[i] != 0; |
|
CV_Assert( nz > 0 ); |
|
std::vector<cv::Mat> svec(nz); |
|
std::vector<int> pairs(nz*2); |
|
|
|
for( i = j = 0; i < 4; i++ ) |
|
{ |
|
if( sptrs[i] != 0 ) |
|
{ |
|
svec[j] = cv::cvarrToMat(sptrs[i]); |
|
CV_Assert( svec[j].size == dst.size && |
|
svec[j].depth() == dst.depth() && |
|
svec[j].channels() == 1 && i < dst.channels() ); |
|
pairs[j*2] = j; |
|
pairs[j*2+1] = i; |
|
j++; |
|
} |
|
} |
|
|
|
if( nz == dst.channels() ) |
|
cv::merge( svec, dst ); |
|
else |
|
{ |
|
cv::mixChannels( &svec[0], nz, &dst, 1, &pairs[0], nz ); |
|
} |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvMixChannels( const CvArr** src, int src_count, |
|
CvArr** dst, int dst_count, |
|
const int* from_to, int pair_count ) |
|
{ |
|
cv::AutoBuffer<cv::Mat> buf(src_count + dst_count); |
|
|
|
int i; |
|
for( i = 0; i < src_count; i++ ) |
|
buf[i] = cv::cvarrToMat(src[i]); |
|
for( i = 0; i < dst_count; i++ ) |
|
buf[i+src_count] = cv::cvarrToMat(dst[i]); |
|
cv::mixChannels(&buf[0], src_count, &buf[src_count], dst_count, from_to, pair_count); |
|
} |
|
|
|
CV_IMPL void |
|
cvConvertScaleAbs( const void* srcarr, void* dstarr, |
|
double scale, double shift ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
CV_Assert( src.size == dst.size && dst.type() == CV_8UC(src.channels())); |
|
cv::convertScaleAbs( src, dst, scale, shift ); |
|
} |
|
|
|
CV_IMPL void |
|
cvConvertScale( const void* srcarr, void* dstarr, |
|
double scale, double shift ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src.size == dst.size && src.channels() == dst.channels() ); |
|
src.convertTo(dst, dst.type(), scale, shift); |
|
} |
|
|
|
CV_IMPL void cvLUT( const void* srcarr, void* dstarr, const void* lutarr ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), lut = cv::cvarrToMat(lutarr); |
|
|
|
CV_Assert( dst.size() == src.size() && dst.type() == CV_MAKETYPE(lut.depth(), src.channels()) ); |
|
cv::LUT( src, lut, dst ); |
|
} |
|
|
|
CV_IMPL void cvNormalize( const CvArr* srcarr, CvArr* dstarr, |
|
double a, double b, int norm_type, const CvArr* maskarr ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask; |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
CV_Assert( dst.size() == src.size() && src.channels() == dst.channels() ); |
|
cv::normalize( src, dst, a, b, norm_type, dst.type(), mask ); |
|
} |
|
|
|
/* End of file. */
|
|
|