mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1690 lines
78 KiB
1690 lines
78 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_ML_HPP__ |
|
#define __OPENCV_ML_HPP__ |
|
|
|
#ifdef __cplusplus |
|
# include "opencv2/core.hpp" |
|
#endif |
|
|
|
#ifdef __cplusplus |
|
|
|
#include <float.h> |
|
#include <map> |
|
#include <iostream> |
|
|
|
/** |
|
@defgroup ml Machine Learning |
|
|
|
The Machine Learning Library (MLL) is a set of classes and functions for statistical |
|
classification, regression, and clustering of data. |
|
|
|
Most of the classification and regression algorithms are implemented as C++ classes. As the |
|
algorithms have different sets of features (like an ability to handle missing measurements or |
|
categorical input variables), there is a little common ground between the classes. This common |
|
ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from. |
|
|
|
See detailed overview here: @ref ml_intro. |
|
*/ |
|
|
|
namespace cv |
|
{ |
|
|
|
namespace ml |
|
{ |
|
|
|
//! @addtogroup ml |
|
//! @{ |
|
|
|
/** @brief Variable types */ |
|
enum VariableTypes |
|
{ |
|
VAR_NUMERICAL =0, //!< same as VAR_ORDERED |
|
VAR_ORDERED =0, //!< ordered variables |
|
VAR_CATEGORICAL =1 //!< categorical variables |
|
}; |
|
|
|
/** @brief %Error types */ |
|
enum ErrorTypes |
|
{ |
|
TEST_ERROR = 0, |
|
TRAIN_ERROR = 1 |
|
}; |
|
|
|
/** @brief Sample types */ |
|
enum SampleTypes |
|
{ |
|
ROW_SAMPLE = 0, //!< each training sample is a row of samples |
|
COL_SAMPLE = 1 //!< each training sample occupies a column of samples |
|
}; |
|
|
|
/** @brief The structure represents the logarithmic grid range of statmodel parameters. |
|
|
|
It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate |
|
being computed by cross-validation. |
|
*/ |
|
class CV_EXPORTS ParamGrid |
|
{ |
|
public: |
|
/** @brief Default constructor */ |
|
ParamGrid(); |
|
/** @brief Constructor with parameters */ |
|
ParamGrid(double _minVal, double _maxVal, double _logStep); |
|
|
|
double minVal; //!< Minimum value of the statmodel parameter. Default value is 0. |
|
double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0. |
|
/** @brief Logarithmic step for iterating the statmodel parameter. |
|
|
|
The grid determines the following iteration sequence of the statmodel parameter values: |
|
\f[(minVal, minVal*step, minVal*{step}^2, \dots, minVal*{logStep}^n),\f] |
|
where \f$n\f$ is the maximal index satisfying |
|
\f[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\f] |
|
The grid is logarithmic, so logStep must always be greater then 1. Default value is 1. |
|
*/ |
|
double logStep; |
|
}; |
|
|
|
/** @brief Class encapsulating training data. |
|
|
|
Please note that the class only specifies the interface of training data, but not implementation. |
|
All the statistical model classes in _ml_ module accepts Ptr\<TrainData\> as parameter. In other |
|
words, you can create your own class derived from TrainData and pass smart pointer to the instance |
|
of this class into StatModel::train. |
|
|
|
@sa @ref ml_intro_data |
|
*/ |
|
class CV_EXPORTS_W TrainData |
|
{ |
|
public: |
|
static inline float missingValue() { return FLT_MAX; } |
|
virtual ~TrainData(); |
|
|
|
CV_WRAP virtual int getLayout() const = 0; |
|
CV_WRAP virtual int getNTrainSamples() const = 0; |
|
CV_WRAP virtual int getNTestSamples() const = 0; |
|
CV_WRAP virtual int getNSamples() const = 0; |
|
CV_WRAP virtual int getNVars() const = 0; |
|
CV_WRAP virtual int getNAllVars() const = 0; |
|
|
|
CV_WRAP virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0; |
|
CV_WRAP virtual Mat getSamples() const = 0; |
|
CV_WRAP virtual Mat getMissing() const = 0; |
|
|
|
/** @brief Returns matrix of train samples |
|
|
|
@param layout The requested layout. If it's different from the initial one, the matrix is |
|
transposed. See ml::SampleTypes. |
|
@param compressSamples if true, the function returns only the training samples (specified by |
|
sampleIdx) |
|
@param compressVars if true, the function returns the shorter training samples, containing only |
|
the active variables. |
|
|
|
In current implementation the function tries to avoid physical data copying and returns the |
|
matrix stored inside TrainData (unless the transposition or compression is needed). |
|
*/ |
|
CV_WRAP virtual Mat getTrainSamples(int layout=ROW_SAMPLE, |
|
bool compressSamples=true, |
|
bool compressVars=true) const = 0; |
|
|
|
/** @brief Returns the vector of responses |
|
|
|
The function returns ordered or the original categorical responses. Usually it's used in |
|
regression algorithms. |
|
*/ |
|
CV_WRAP virtual Mat getTrainResponses() const = 0; |
|
|
|
/** @brief Returns the vector of normalized categorical responses |
|
|
|
The function returns vector of responses. Each response is integer from `0` to `<number of |
|
classes>-1`. The actual label value can be retrieved then from the class label vector, see |
|
TrainData::getClassLabels. |
|
*/ |
|
CV_WRAP virtual Mat getTrainNormCatResponses() const = 0; |
|
CV_WRAP virtual Mat getTestResponses() const = 0; |
|
CV_WRAP virtual Mat getTestNormCatResponses() const = 0; |
|
CV_WRAP virtual Mat getResponses() const = 0; |
|
CV_WRAP virtual Mat getNormCatResponses() const = 0; |
|
CV_WRAP virtual Mat getSampleWeights() const = 0; |
|
CV_WRAP virtual Mat getTrainSampleWeights() const = 0; |
|
CV_WRAP virtual Mat getTestSampleWeights() const = 0; |
|
CV_WRAP virtual Mat getVarIdx() const = 0; |
|
CV_WRAP virtual Mat getVarType() const = 0; |
|
CV_WRAP Mat getVarSymbolFlags() const; |
|
CV_WRAP virtual int getResponseType() const = 0; |
|
CV_WRAP virtual Mat getTrainSampleIdx() const = 0; |
|
CV_WRAP virtual Mat getTestSampleIdx() const = 0; |
|
CV_WRAP virtual void getValues(int vi, InputArray sidx, float* values) const = 0; |
|
virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0; |
|
CV_WRAP virtual Mat getDefaultSubstValues() const = 0; |
|
|
|
CV_WRAP virtual int getCatCount(int vi) const = 0; |
|
|
|
/** @brief Returns the vector of class labels |
|
|
|
The function returns vector of unique labels occurred in the responses. |
|
*/ |
|
CV_WRAP virtual Mat getClassLabels() const = 0; |
|
|
|
CV_WRAP virtual Mat getCatOfs() const = 0; |
|
CV_WRAP virtual Mat getCatMap() const = 0; |
|
|
|
/** @brief Splits the training data into the training and test parts |
|
@sa TrainData::setTrainTestSplitRatio |
|
*/ |
|
CV_WRAP virtual void setTrainTestSplit(int count, bool shuffle=true) = 0; |
|
|
|
/** @brief Splits the training data into the training and test parts |
|
|
|
The function selects a subset of specified relative size and then returns it as the training |
|
set. If the function is not called, all the data is used for training. Please, note that for |
|
each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test |
|
subset can be retrieved and processed as well. |
|
@sa TrainData::setTrainTestSplit |
|
*/ |
|
CV_WRAP virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0; |
|
CV_WRAP virtual void shuffleTrainTest() = 0; |
|
|
|
/** @brief Returns matrix of test samples */ |
|
CV_WRAP Mat getTestSamples() const; |
|
|
|
/** @brief Returns vector of symbolic names captured in loadFromCSV() */ |
|
CV_WRAP void getNames(std::vector<String>& names) const; |
|
|
|
CV_WRAP static Mat getSubVector(const Mat& vec, const Mat& idx); |
|
|
|
/** @brief Reads the dataset from a .csv file and returns the ready-to-use training data. |
|
|
|
@param filename The input file name |
|
@param headerLineCount The number of lines in the beginning to skip; besides the header, the |
|
function also skips empty lines and lines staring with `#` |
|
@param responseStartIdx Index of the first output variable. If -1, the function considers the |
|
last variable as the response |
|
@param responseEndIdx Index of the last output variable + 1. If -1, then there is single |
|
response variable at responseStartIdx. |
|
@param varTypeSpec The optional text string that specifies the variables' types. It has the |
|
format `ord[n1-n2,n3,n4-n5,...]cat[n6,n7-n8,...]`. That is, variables from `n1 to n2` |
|
(inclusive range), `n3`, `n4 to n5` ... are considered ordered and `n6`, `n7 to n8` ... are |
|
considered as categorical. The range `[n1..n2] + [n3] + [n4..n5] + ... + [n6] + [n7..n8]` |
|
should cover all the variables. If varTypeSpec is not specified, then algorithm uses the |
|
following rules: |
|
- all input variables are considered ordered by default. If some column contains has non- |
|
numerical values, e.g. 'apple', 'pear', 'apple', 'apple', 'mango', the corresponding |
|
variable is considered categorical. |
|
- if there are several output variables, they are all considered as ordered. Error is |
|
reported when non-numerical values are used. |
|
- if there is a single output variable, then if its values are non-numerical or are all |
|
integers, then it's considered categorical. Otherwise, it's considered ordered. |
|
@param delimiter The character used to separate values in each line. |
|
@param missch The character used to specify missing measurements. It should not be a digit. |
|
Although it's a non-numerical value, it surely does not affect the decision of whether the |
|
variable ordered or categorical. |
|
@note If the dataset only contains input variables and no responses, use responseStartIdx = -2 |
|
and responseEndIdx = 0. The output variables vector will just contain zeros. |
|
*/ |
|
static Ptr<TrainData> loadFromCSV(const String& filename, |
|
int headerLineCount, |
|
int responseStartIdx=-1, |
|
int responseEndIdx=-1, |
|
const String& varTypeSpec=String(), |
|
char delimiter=',', |
|
char missch='?'); |
|
|
|
/** @brief Creates training data from in-memory arrays. |
|
|
|
@param samples matrix of samples. It should have CV_32F type. |
|
@param layout see ml::SampleTypes. |
|
@param responses matrix of responses. If the responses are scalar, they should be stored as a |
|
single row or as a single column. The matrix should have type CV_32F or CV_32S (in the |
|
former case the responses are considered as ordered by default; in the latter case - as |
|
categorical) |
|
@param varIdx vector specifying which variables to use for training. It can be an integer vector |
|
(CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of |
|
active variables. |
|
@param sampleIdx vector specifying which samples to use for training. It can be an integer |
|
vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask |
|
of training samples. |
|
@param sampleWeights optional vector with weights for each sample. It should have CV_32F type. |
|
@param varType optional vector of type CV_8U and size `<number_of_variables_in_samples> + |
|
<number_of_variables_in_responses>`, containing types of each input and output variable. See |
|
ml::VariableTypes. |
|
*/ |
|
CV_WRAP static Ptr<cv::ml::TrainData> create(InputArray samples, int layout, InputArray responses, |
|
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(), |
|
InputArray sampleWeights=noArray(), InputArray varType=noArray()); |
|
}; |
|
|
|
/** @brief Base class for statistical models in OpenCV ML. |
|
*/ |
|
class CV_EXPORTS_W StatModel : public Algorithm |
|
{ |
|
public: |
|
/** Predict options */ |
|
enum Flags { |
|
UPDATE_MODEL = 1, |
|
RAW_OUTPUT=1, //!< makes the method return the raw results (the sum), not the class label |
|
COMPRESSED_INPUT=2, |
|
PREPROCESSED_INPUT=4 |
|
}; |
|
|
|
/** @brief Returns the number of variables in training samples */ |
|
CV_WRAP virtual int getVarCount() const = 0; |
|
|
|
CV_WRAP virtual bool empty() const; |
|
|
|
/** @brief Returns true if the model is trained */ |
|
CV_WRAP virtual bool isTrained() const = 0; |
|
/** @brief Returns true if the model is classifier */ |
|
CV_WRAP virtual bool isClassifier() const = 0; |
|
|
|
/** @brief Trains the statistical model |
|
|
|
@param trainData training data that can be loaded from file using TrainData::loadFromCSV or |
|
created with TrainData::create. |
|
@param flags optional flags, depending on the model. Some of the models can be updated with the |
|
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). |
|
*/ |
|
CV_WRAP virtual bool train( const Ptr<cv::ml::TrainData>& trainData, int flags=0 ); |
|
|
|
/** @brief Trains the statistical model |
|
|
|
@param samples training samples |
|
@param layout See ml::SampleTypes. |
|
@param responses vector of responses associated with the training samples. |
|
*/ |
|
CV_WRAP virtual bool train( InputArray samples, int layout, InputArray responses ); |
|
|
|
/** @brief Computes error on the training or test dataset |
|
|
|
@param data the training data |
|
@param test if true, the error is computed over the test subset of the data, otherwise it's |
|
computed over the training subset of the data. Please note that if you loaded a completely |
|
different dataset to evaluate already trained classifier, you will probably want not to set |
|
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so |
|
that the error is computed for the whole new set. Yes, this sounds a bit confusing. |
|
@param resp the optional output responses. |
|
|
|
The method uses StatModel::predict to compute the error. For regression models the error is |
|
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%). |
|
*/ |
|
CV_WRAP virtual float calcError( const Ptr<cv::ml::TrainData>& data, bool test, OutputArray resp ) const; |
|
|
|
/** @brief Predicts response(s) for the provided sample(s) |
|
|
|
@param samples The input samples, floating-point matrix |
|
@param results The optional output matrix of results. |
|
@param flags The optional flags, model-dependent. See cv::ml::StatModel::Flags. |
|
*/ |
|
CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0; |
|
|
|
/** @brief Create and train model with default parameters |
|
|
|
The class must implement static `create()` method with no parameters or with all default parameter values |
|
*/ |
|
template<typename _Tp> static Ptr<_Tp> train(const Ptr<cv::ml::TrainData>& data, int flags=0) |
|
{ |
|
Ptr<_Tp> model = _Tp::create(); |
|
return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>(); |
|
} |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Normal Bayes Classifier * |
|
\****************************************************************************************/ |
|
|
|
/** @brief Bayes classifier for normally distributed data. |
|
|
|
@sa @ref ml_intro_bayes |
|
*/ |
|
class CV_EXPORTS_W NormalBayesClassifier : public StatModel |
|
{ |
|
public: |
|
/** @brief Predicts the response for sample(s). |
|
|
|
The method estimates the most probable classes for input vectors. Input vectors (one or more) |
|
are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one |
|
output vector outputs. The predicted class for a single input vector is returned by the method. |
|
The vector outputProbs contains the output probabilities corresponding to each element of |
|
result. |
|
*/ |
|
CV_WRAP virtual float predictProb( InputArray inputs, OutputArray outputs, |
|
OutputArray outputProbs, int flags=0 ) const = 0; |
|
|
|
/** Creates empty model |
|
Use StatModel::train to train the model after creation. */ |
|
CV_WRAP static Ptr<NormalBayesClassifier> create(); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* K-Nearest Neighbour Classifier * |
|
\****************************************************************************************/ |
|
|
|
/** @brief The class implements K-Nearest Neighbors model |
|
|
|
@sa @ref ml_intro_knn |
|
*/ |
|
class CV_EXPORTS_W KNearest : public StatModel |
|
{ |
|
public: |
|
|
|
/** Default number of neighbors to use in predict method. */ |
|
/** @see setDefaultK */ |
|
CV_WRAP virtual int getDefaultK() const = 0; |
|
/** @copybrief getDefaultK @see getDefaultK */ |
|
CV_WRAP virtual void setDefaultK(int val) = 0; |
|
|
|
/** Whether classification or regression model should be trained. */ |
|
/** @see setIsClassifier */ |
|
CV_WRAP virtual bool getIsClassifier() const = 0; |
|
/** @copybrief getIsClassifier @see getIsClassifier */ |
|
CV_WRAP virtual void setIsClassifier(bool val) = 0; |
|
|
|
/** Parameter for KDTree implementation. */ |
|
/** @see setEmax */ |
|
CV_WRAP virtual int getEmax() const = 0; |
|
/** @copybrief getEmax @see getEmax */ |
|
CV_WRAP virtual void setEmax(int val) = 0; |
|
|
|
/** %Algorithm type, one of KNearest::Types. */ |
|
/** @see setAlgorithmType */ |
|
CV_WRAP virtual int getAlgorithmType() const = 0; |
|
/** @copybrief getAlgorithmType @see getAlgorithmType */ |
|
CV_WRAP virtual void setAlgorithmType(int val) = 0; |
|
|
|
/** @brief Finds the neighbors and predicts responses for input vectors. |
|
|
|
@param samples Input samples stored by rows. It is a single-precision floating-point matrix of |
|
`<number_of_samples> * k` size. |
|
@param k Number of used nearest neighbors. Should be greater than 1. |
|
@param results Vector with results of prediction (regression or classification) for each input |
|
sample. It is a single-precision floating-point vector with `<number_of_samples>` elements. |
|
@param neighborResponses Optional output values for corresponding neighbors. It is a single- |
|
precision floating-point matrix of `<number_of_samples> * k` size. |
|
@param dist Optional output distances from the input vectors to the corresponding neighbors. It |
|
is a single-precision floating-point matrix of `<number_of_samples> * k` size. |
|
|
|
For each input vector (a row of the matrix samples), the method finds the k nearest neighbors. |
|
In case of regression, the predicted result is a mean value of the particular vector's neighbor |
|
responses. In case of classification, the class is determined by voting. |
|
|
|
For each input vector, the neighbors are sorted by their distances to the vector. |
|
|
|
In case of C++ interface you can use output pointers to empty matrices and the function will |
|
allocate memory itself. |
|
|
|
If only a single input vector is passed, all output matrices are optional and the predicted |
|
value is returned by the method. |
|
|
|
The function is parallelized with the TBB library. |
|
*/ |
|
CV_WRAP virtual float findNearest( InputArray samples, int k, |
|
OutputArray results, |
|
OutputArray neighborResponses=noArray(), |
|
OutputArray dist=noArray() ) const = 0; |
|
|
|
/** @brief Implementations of KNearest algorithm |
|
*/ |
|
enum Types |
|
{ |
|
BRUTE_FORCE=1, |
|
KDTREE=2 |
|
}; |
|
|
|
/** @brief Creates the empty model |
|
|
|
The static method creates empty %KNearest classifier. It should be then trained using StatModel::train method. |
|
*/ |
|
CV_WRAP static Ptr<KNearest> create(); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Support Vector Machines * |
|
\****************************************************************************************/ |
|
|
|
/** @brief Support Vector Machines. |
|
|
|
@sa @ref ml_intro_svm |
|
*/ |
|
class CV_EXPORTS_W SVM : public StatModel |
|
{ |
|
public: |
|
|
|
class CV_EXPORTS Kernel : public Algorithm |
|
{ |
|
public: |
|
virtual int getType() const = 0; |
|
virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0; |
|
}; |
|
|
|
/** Type of a %SVM formulation. |
|
See SVM::Types. Default value is SVM::C_SVC. */ |
|
/** @see setType */ |
|
CV_WRAP virtual int getType() const = 0; |
|
/** @copybrief getType @see getType */ |
|
CV_WRAP virtual void setType(int val) = 0; |
|
|
|
/** Parameter \f$\gamma\f$ of a kernel function. |
|
For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. */ |
|
/** @see setGamma */ |
|
CV_WRAP virtual double getGamma() const = 0; |
|
/** @copybrief getGamma @see getGamma */ |
|
CV_WRAP virtual void setGamma(double val) = 0; |
|
|
|
/** Parameter _coef0_ of a kernel function. |
|
For SVM::POLY or SVM::SIGMOID. Default value is 0.*/ |
|
/** @see setCoef0 */ |
|
CV_WRAP virtual double getCoef0() const = 0; |
|
/** @copybrief getCoef0 @see getCoef0 */ |
|
CV_WRAP virtual void setCoef0(double val) = 0; |
|
|
|
/** Parameter _degree_ of a kernel function. |
|
For SVM::POLY. Default value is 0. */ |
|
/** @see setDegree */ |
|
CV_WRAP virtual double getDegree() const = 0; |
|
/** @copybrief getDegree @see getDegree */ |
|
CV_WRAP virtual void setDegree(double val) = 0; |
|
|
|
/** Parameter _C_ of a %SVM optimization problem. |
|
For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. */ |
|
/** @see setC */ |
|
CV_WRAP virtual double getC() const = 0; |
|
/** @copybrief getC @see getC */ |
|
CV_WRAP virtual void setC(double val) = 0; |
|
|
|
/** Parameter \f$\nu\f$ of a %SVM optimization problem. |
|
For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. */ |
|
/** @see setNu */ |
|
CV_WRAP virtual double getNu() const = 0; |
|
/** @copybrief getNu @see getNu */ |
|
CV_WRAP virtual void setNu(double val) = 0; |
|
|
|
/** Parameter \f$\epsilon\f$ of a %SVM optimization problem. |
|
For SVM::EPS_SVR. Default value is 0. */ |
|
/** @see setP */ |
|
CV_WRAP virtual double getP() const = 0; |
|
/** @copybrief getP @see getP */ |
|
CV_WRAP virtual void setP(double val) = 0; |
|
|
|
/** Optional weights in the SVM::C_SVC problem, assigned to particular classes. |
|
They are multiplied by _C_ so the parameter _C_ of class _i_ becomes `classWeights(i) * C`. Thus |
|
these weights affect the misclassification penalty for different classes. The larger weight, |
|
the larger penalty on misclassification of data from the corresponding class. Default value is |
|
empty Mat. */ |
|
/** @see setClassWeights */ |
|
CV_WRAP virtual cv::Mat getClassWeights() const = 0; |
|
/** @copybrief getClassWeights @see getClassWeights */ |
|
CV_WRAP virtual void setClassWeights(const cv::Mat &val) = 0; |
|
|
|
/** Termination criteria of the iterative %SVM training procedure which solves a partial |
|
case of constrained quadratic optimization problem. |
|
You can specify tolerance and/or the maximum number of iterations. Default value is |
|
`TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )`; */ |
|
/** @see setTermCriteria */ |
|
CV_WRAP virtual cv::TermCriteria getTermCriteria() const = 0; |
|
/** @copybrief getTermCriteria @see getTermCriteria */ |
|
CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0; |
|
|
|
/** Type of a %SVM kernel. |
|
See SVM::KernelTypes. Default value is SVM::RBF. */ |
|
CV_WRAP virtual int getKernelType() const = 0; |
|
|
|
/** Initialize with one of predefined kernels. |
|
See SVM::KernelTypes. */ |
|
CV_WRAP virtual void setKernel(int kernelType) = 0; |
|
|
|
/** Initialize with custom kernel. |
|
See SVM::Kernel class for implementation details */ |
|
virtual void setCustomKernel(const Ptr<Kernel> &_kernel) = 0; |
|
|
|
//! %SVM type |
|
enum Types { |
|
/** C-Support Vector Classification. n-class classification (n \f$\geq\f$ 2), allows |
|
imperfect separation of classes with penalty multiplier C for outliers. */ |
|
C_SVC=100, |
|
/** \f$\nu\f$-Support Vector Classification. n-class classification with possible |
|
imperfect separation. Parameter \f$\nu\f$ (in the range 0..1, the larger the value, the smoother |
|
the decision boundary) is used instead of C. */ |
|
NU_SVC=101, |
|
/** Distribution Estimation (One-class %SVM). All the training data are from |
|
the same class, %SVM builds a boundary that separates the class from the rest of the feature |
|
space. */ |
|
ONE_CLASS=102, |
|
/** \f$\epsilon\f$-Support Vector Regression. The distance between feature vectors |
|
from the training set and the fitting hyper-plane must be less than p. For outliers the |
|
penalty multiplier C is used. */ |
|
EPS_SVR=103, |
|
/** \f$\nu\f$-Support Vector Regression. \f$\nu\f$ is used instead of p. |
|
See @cite LibSVM for details. */ |
|
NU_SVR=104 |
|
}; |
|
|
|
/** @brief %SVM kernel type |
|
|
|
A comparison of different kernels on the following 2D test case with four classes. Four |
|
SVM::C_SVC SVMs have been trained (one against rest) with auto_train. Evaluation on three |
|
different kernels (SVM::CHI2, SVM::INTER, SVM::RBF). The color depicts the class with max score. |
|
Bright means max-score \> 0, dark means max-score \< 0. |
|
![image](pics/SVM_Comparison.png) |
|
*/ |
|
enum KernelTypes { |
|
/** Returned by SVM::getKernelType in case when custom kernel has been set */ |
|
CUSTOM=-1, |
|
/** Linear kernel. No mapping is done, linear discrimination (or regression) is |
|
done in the original feature space. It is the fastest option. \f$K(x_i, x_j) = x_i^T x_j\f$. */ |
|
LINEAR=0, |
|
/** Polynomial kernel: |
|
\f$K(x_i, x_j) = (\gamma x_i^T x_j + coef0)^{degree}, \gamma > 0\f$. */ |
|
POLY=1, |
|
/** Radial basis function (RBF), a good choice in most cases. |
|
\f$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}, \gamma > 0\f$. */ |
|
RBF=2, |
|
/** Sigmoid kernel: \f$K(x_i, x_j) = \tanh(\gamma x_i^T x_j + coef0)\f$. */ |
|
SIGMOID=3, |
|
/** Exponential Chi2 kernel, similar to the RBF kernel: |
|
\f$K(x_i, x_j) = e^{-\gamma \chi^2(x_i,x_j)}, \chi^2(x_i,x_j) = (x_i-x_j)^2/(x_i+x_j), \gamma > 0\f$. */ |
|
CHI2=4, |
|
/** Histogram intersection kernel. A fast kernel. \f$K(x_i, x_j) = min(x_i,x_j)\f$. */ |
|
INTER=5 |
|
}; |
|
|
|
//! %SVM params type |
|
enum ParamTypes { |
|
C=0, |
|
GAMMA=1, |
|
P=2, |
|
NU=3, |
|
COEF=4, |
|
DEGREE=5 |
|
}; |
|
|
|
/** @brief Trains an %SVM with optimal parameters. |
|
|
|
@param data the training data that can be constructed using TrainData::create or |
|
TrainData::loadFromCSV. |
|
@param kFold Cross-validation parameter. The training set is divided into kFold subsets. One |
|
subset is used to test the model, the others form the train set. So, the %SVM algorithm is |
|
executed kFold times. |
|
@param Cgrid grid for C |
|
@param gammaGrid grid for gamma |
|
@param pGrid grid for p |
|
@param nuGrid grid for nu |
|
@param coeffGrid grid for coeff |
|
@param degreeGrid grid for degree |
|
@param balanced If true and the problem is 2-class classification then the method creates more |
|
balanced cross-validation subsets that is proportions between classes in subsets are close |
|
to such proportion in the whole train dataset. |
|
|
|
The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, |
|
nu, coef0, degree. Parameters are considered optimal when the cross-validation |
|
estimate of the test set error is minimal. |
|
|
|
If there is no need to optimize a parameter, the corresponding grid step should be set to any |
|
value less than or equal to 1. For example, to avoid optimization in gamma, set `gammaGrid.step |
|
= 0`, `gammaGrid.minVal`, `gamma_grid.maxVal` as arbitrary numbers. In this case, the value |
|
`Gamma` is taken for gamma. |
|
|
|
And, finally, if the optimization in a parameter is required but the corresponding grid is |
|
unknown, you may call the function SVM::getDefaultGrid. To generate a grid, for example, for |
|
gamma, call `SVM::getDefaultGrid(SVM::GAMMA)`. |
|
|
|
This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the |
|
regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and |
|
the usual %SVM with parameters specified in params is executed. |
|
*/ |
|
virtual bool trainAuto( const Ptr<cv::ml::TrainData>& data, int kFold = 10, |
|
ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C), |
|
ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA), |
|
ParamGrid pGrid = SVM::getDefaultGrid(SVM::P), |
|
ParamGrid nuGrid = SVM::getDefaultGrid(SVM::NU), |
|
ParamGrid coeffGrid = SVM::getDefaultGrid(SVM::COEF), |
|
ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE), |
|
bool balanced=false) = 0; |
|
|
|
/** @brief Retrieves all the support vectors |
|
|
|
The method returns all the support vectors as a floating-point matrix, where support vectors are |
|
stored as matrix rows. |
|
*/ |
|
CV_WRAP virtual Mat getSupportVectors() const = 0; |
|
|
|
/** @brief Retrieves all the uncompressed support vectors of a linear %SVM |
|
|
|
The method returns all the uncompressed support vectors of a linear %SVM that the compressed |
|
support vector, used for prediction, was derived from. They are returned in a floating-point |
|
matrix, where the support vectors are stored as matrix rows. |
|
*/ |
|
CV_WRAP Mat getUncompressedSupportVectors() const; |
|
|
|
/** @brief Retrieves the decision function |
|
|
|
@param i the index of the decision function. If the problem solved is regression, 1-class or |
|
2-class classification, then there will be just one decision function and the index should |
|
always be 0. Otherwise, in the case of N-class classification, there will be \f$N(N-1)/2\f$ |
|
decision functions. |
|
@param alpha the optional output vector for weights, corresponding to different support vectors. |
|
In the case of linear %SVM all the alpha's will be 1's. |
|
@param svidx the optional output vector of indices of support vectors within the matrix of |
|
support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear |
|
%SVM each decision function consists of a single "compressed" support vector. |
|
|
|
The method returns rho parameter of the decision function, a scalar subtracted from the weighted |
|
sum of kernel responses. |
|
*/ |
|
CV_WRAP virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0; |
|
|
|
/** @brief Generates a grid for %SVM parameters. |
|
|
|
@param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is |
|
generated for the parameter with this ID. |
|
|
|
The function generates a grid for the specified parameter of the %SVM algorithm. The grid may be |
|
passed to the function SVM::trainAuto. |
|
*/ |
|
static ParamGrid getDefaultGrid( int param_id ); |
|
|
|
/** Creates empty model. |
|
Use StatModel::train to train the model. Since %SVM has several parameters, you may want to |
|
find the best parameters for your problem, it can be done with SVM::trainAuto. */ |
|
CV_WRAP static Ptr<SVM> create(); |
|
|
|
/** @brief Loads and creates a serialized svm from a file |
|
* |
|
* Use SVM::save to serialize and store an SVM to disk. |
|
* Load the SVM from this file again, by calling this function with the path to the file. |
|
* |
|
* @param filepath path to serialized svm |
|
*/ |
|
CV_WRAP static Ptr<SVM> load(const String& filepath); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Expectation - Maximization * |
|
\****************************************************************************************/ |
|
|
|
/** @brief The class implements the Expectation Maximization algorithm. |
|
|
|
@sa @ref ml_intro_em |
|
*/ |
|
class CV_EXPORTS_W EM : public StatModel |
|
{ |
|
public: |
|
//! Type of covariation matrices |
|
enum Types { |
|
/** A scaled identity matrix \f$\mu_k * I\f$. There is the only |
|
parameter \f$\mu_k\f$ to be estimated for each matrix. The option may be used in special cases, |
|
when the constraint is relevant, or as a first step in the optimization (for example in case |
|
when the data is preprocessed with PCA). The results of such preliminary estimation may be |
|
passed again to the optimization procedure, this time with |
|
covMatType=EM::COV_MAT_DIAGONAL. */ |
|
COV_MAT_SPHERICAL=0, |
|
/** A diagonal matrix with positive diagonal elements. The number of |
|
free parameters is d for each matrix. This is most commonly used option yielding good |
|
estimation results. */ |
|
COV_MAT_DIAGONAL=1, |
|
/** A symmetric positively defined matrix. The number of free |
|
parameters in each matrix is about \f$d^2/2\f$. It is not recommended to use this option, unless |
|
there is pretty accurate initial estimation of the parameters and/or a huge number of |
|
training samples. */ |
|
COV_MAT_GENERIC=2, |
|
COV_MAT_DEFAULT=COV_MAT_DIAGONAL |
|
}; |
|
|
|
//! Default parameters |
|
enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100}; |
|
|
|
//! The initial step |
|
enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0}; |
|
|
|
/** The number of mixture components in the Gaussian mixture model. |
|
Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could |
|
determine the optimal number of mixtures within a specified value range, but that is not the |
|
case in ML yet. */ |
|
/** @see setClustersNumber */ |
|
CV_WRAP virtual int getClustersNumber() const = 0; |
|
/** @copybrief getClustersNumber @see getClustersNumber */ |
|
CV_WRAP virtual void setClustersNumber(int val) = 0; |
|
|
|
/** Constraint on covariance matrices which defines type of matrices. |
|
See EM::Types. */ |
|
/** @see setCovarianceMatrixType */ |
|
CV_WRAP virtual int getCovarianceMatrixType() const = 0; |
|
/** @copybrief getCovarianceMatrixType @see getCovarianceMatrixType */ |
|
CV_WRAP virtual void setCovarianceMatrixType(int val) = 0; |
|
|
|
/** The termination criteria of the %EM algorithm. |
|
The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of |
|
M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default |
|
maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. */ |
|
/** @see setTermCriteria */ |
|
CV_WRAP virtual TermCriteria getTermCriteria() const = 0; |
|
/** @copybrief getTermCriteria @see getTermCriteria */ |
|
CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0; |
|
|
|
/** @brief Returns weights of the mixtures |
|
|
|
Returns vector with the number of elements equal to the number of mixtures. |
|
*/ |
|
CV_WRAP virtual Mat getWeights() const = 0; |
|
/** @brief Returns the cluster centers (means of the Gaussian mixture) |
|
|
|
Returns matrix with the number of rows equal to the number of mixtures and number of columns |
|
equal to the space dimensionality. |
|
*/ |
|
CV_WRAP virtual Mat getMeans() const = 0; |
|
/** @brief Returns covariation matrices |
|
|
|
Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures, |
|
each matrix is a square floating-point matrix NxN, where N is the space dimensionality. |
|
*/ |
|
CV_WRAP virtual void getCovs(CV_OUT std::vector<Mat>& covs) const = 0; |
|
|
|
/** @brief Returns a likelihood logarithm value and an index of the most probable mixture component |
|
for the given sample. |
|
|
|
@param sample A sample for classification. It should be a one-channel matrix of |
|
\f$1 \times dims\f$ or \f$dims \times 1\f$ size. |
|
@param probs Optional output matrix that contains posterior probabilities of each component |
|
given the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type. |
|
|
|
The method returns a two-element double vector. Zero element is a likelihood logarithm value for |
|
the sample. First element is an index of the most probable mixture component for the given |
|
sample. |
|
*/ |
|
CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0; |
|
|
|
/** @brief Estimate the Gaussian mixture parameters from a samples set. |
|
|
|
This variation starts with Expectation step. Initial values of the model parameters will be |
|
estimated by the k-means algorithm. |
|
|
|
Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take |
|
responses (class labels or function values) as input. Instead, it computes the *Maximum |
|
Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the |
|
parameters inside the structure: \f$p_{i,k}\f$ in probs, \f$a_k\f$ in means , \f$S_k\f$ in |
|
covs[k], \f$\pi_k\f$ in weights , and optionally computes the output "class label" for each |
|
sample: \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most |
|
probable mixture component for each sample). |
|
|
|
The trained model can be used further for prediction, just like any other classifier. The |
|
trained model is similar to the NormalBayesClassifier. |
|
|
|
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a |
|
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type |
|
it will be converted to the inner matrix of such type for the further computing. |
|
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for |
|
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. |
|
@param labels The optional output "class label" for each sample: |
|
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable |
|
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. |
|
@param probs The optional output matrix that contains posterior probabilities of each Gaussian |
|
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and |
|
CV_64FC1 type. |
|
*/ |
|
CV_WRAP virtual bool trainEM(InputArray samples, |
|
OutputArray logLikelihoods=noArray(), |
|
OutputArray labels=noArray(), |
|
OutputArray probs=noArray()) = 0; |
|
|
|
/** @brief Estimate the Gaussian mixture parameters from a samples set. |
|
|
|
This variation starts with Expectation step. You need to provide initial means \f$a_k\f$ of |
|
mixture components. Optionally you can pass initial weights \f$\pi_k\f$ and covariance matrices |
|
\f$S_k\f$ of mixture components. |
|
|
|
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a |
|
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type |
|
it will be converted to the inner matrix of such type for the further computing. |
|
@param means0 Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of |
|
\f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be |
|
converted to the inner matrix of such type for the further computing. |
|
@param covs0 The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of |
|
covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices |
|
do not have CV_64F type they will be converted to the inner matrices of such type for the |
|
further computing. |
|
@param weights0 Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel |
|
floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size. |
|
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for |
|
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. |
|
@param labels The optional output "class label" for each sample: |
|
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable |
|
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. |
|
@param probs The optional output matrix that contains posterior probabilities of each Gaussian |
|
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and |
|
CV_64FC1 type. |
|
*/ |
|
CV_WRAP virtual bool trainE(InputArray samples, InputArray means0, |
|
InputArray covs0=noArray(), |
|
InputArray weights0=noArray(), |
|
OutputArray logLikelihoods=noArray(), |
|
OutputArray labels=noArray(), |
|
OutputArray probs=noArray()) = 0; |
|
|
|
/** @brief Estimate the Gaussian mixture parameters from a samples set. |
|
|
|
This variation starts with Maximization step. You need to provide initial probabilities |
|
\f$p_{i,k}\f$ to use this option. |
|
|
|
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a |
|
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type |
|
it will be converted to the inner matrix of such type for the further computing. |
|
@param probs0 |
|
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for |
|
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. |
|
@param labels The optional output "class label" for each sample: |
|
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable |
|
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. |
|
@param probs The optional output matrix that contains posterior probabilities of each Gaussian |
|
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and |
|
CV_64FC1 type. |
|
*/ |
|
CV_WRAP virtual bool trainM(InputArray samples, InputArray probs0, |
|
OutputArray logLikelihoods=noArray(), |
|
OutputArray labels=noArray(), |
|
OutputArray probs=noArray()) = 0; |
|
|
|
/** Creates empty %EM model. |
|
The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you |
|
can use one of the EM::train\* methods or load it from file using Algorithm::load\<EM\>(filename). |
|
*/ |
|
CV_WRAP static Ptr<EM> create(); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Decision Tree * |
|
\****************************************************************************************/ |
|
|
|
/** @brief The class represents a single decision tree or a collection of decision trees. |
|
|
|
The current public interface of the class allows user to train only a single decision tree, however |
|
the class is capable of storing multiple decision trees and using them for prediction (by summing |
|
responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost) |
|
use this capability to implement decision tree ensembles. |
|
|
|
@sa @ref ml_intro_trees |
|
*/ |
|
class CV_EXPORTS_W DTrees : public StatModel |
|
{ |
|
public: |
|
/** Predict options */ |
|
enum Flags { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) }; |
|
|
|
/** Cluster possible values of a categorical variable into K\<=maxCategories clusters to |
|
find a suboptimal split. |
|
If a discrete variable, on which the training procedure tries to make a split, takes more than |
|
maxCategories values, the precise best subset estimation may take a very long time because the |
|
algorithm is exponential. Instead, many decision trees engines (including our implementation) |
|
try to find sub-optimal split in this case by clustering all the samples into maxCategories |
|
clusters that is some categories are merged together. The clustering is applied only in n \> |
|
2-class classification problems for categorical variables with N \> max_categories possible |
|
values. In case of regression and 2-class classification the optimal split can be found |
|
efficiently without employing clustering, thus the parameter is not used in these cases. |
|
Default value is 10.*/ |
|
/** @see setMaxCategories */ |
|
CV_WRAP virtual int getMaxCategories() const = 0; |
|
/** @copybrief getMaxCategories @see getMaxCategories */ |
|
CV_WRAP virtual void setMaxCategories(int val) = 0; |
|
|
|
/** The maximum possible depth of the tree. |
|
That is the training algorithms attempts to split a node while its depth is less than maxDepth. |
|
The root node has zero depth. The actual depth may be smaller if the other termination criteria |
|
are met (see the outline of the training procedure @ref ml_intro_trees "here"), and/or if the |
|
tree is pruned. Default value is INT_MAX.*/ |
|
/** @see setMaxDepth */ |
|
CV_WRAP virtual int getMaxDepth() const = 0; |
|
/** @copybrief getMaxDepth @see getMaxDepth */ |
|
CV_WRAP virtual void setMaxDepth(int val) = 0; |
|
|
|
/** If the number of samples in a node is less than this parameter then the node will not be split. |
|
|
|
Default value is 10.*/ |
|
/** @see setMinSampleCount */ |
|
CV_WRAP virtual int getMinSampleCount() const = 0; |
|
/** @copybrief getMinSampleCount @see getMinSampleCount */ |
|
CV_WRAP virtual void setMinSampleCount(int val) = 0; |
|
|
|
/** If CVFolds \> 1 then algorithms prunes the built decision tree using K-fold |
|
cross-validation procedure where K is equal to CVFolds. |
|
Default value is 10.*/ |
|
/** @see setCVFolds */ |
|
CV_WRAP virtual int getCVFolds() const = 0; |
|
/** @copybrief getCVFolds @see getCVFolds */ |
|
CV_WRAP virtual void setCVFolds(int val) = 0; |
|
|
|
/** If true then surrogate splits will be built. |
|
These splits allow to work with missing data and compute variable importance correctly. |
|
Default value is false. |
|
@note currently it's not implemented.*/ |
|
/** @see setUseSurrogates */ |
|
CV_WRAP virtual bool getUseSurrogates() const = 0; |
|
/** @copybrief getUseSurrogates @see getUseSurrogates */ |
|
CV_WRAP virtual void setUseSurrogates(bool val) = 0; |
|
|
|
/** If true then a pruning will be harsher. |
|
This will make a tree more compact and more resistant to the training data noise but a bit less |
|
accurate. Default value is true.*/ |
|
/** @see setUse1SERule */ |
|
CV_WRAP virtual bool getUse1SERule() const = 0; |
|
/** @copybrief getUse1SERule @see getUse1SERule */ |
|
CV_WRAP virtual void setUse1SERule(bool val) = 0; |
|
|
|
/** If true then pruned branches are physically removed from the tree. |
|
Otherwise they are retained and it is possible to get results from the original unpruned (or |
|
pruned less aggressively) tree. Default value is true.*/ |
|
/** @see setTruncatePrunedTree */ |
|
CV_WRAP virtual bool getTruncatePrunedTree() const = 0; |
|
/** @copybrief getTruncatePrunedTree @see getTruncatePrunedTree */ |
|
CV_WRAP virtual void setTruncatePrunedTree(bool val) = 0; |
|
|
|
/** Termination criteria for regression trees. |
|
If all absolute differences between an estimated value in a node and values of train samples |
|
in this node are less than this parameter then the node will not be split further. Default |
|
value is 0.01f*/ |
|
/** @see setRegressionAccuracy */ |
|
CV_WRAP virtual float getRegressionAccuracy() const = 0; |
|
/** @copybrief getRegressionAccuracy @see getRegressionAccuracy */ |
|
CV_WRAP virtual void setRegressionAccuracy(float val) = 0; |
|
|
|
/** @brief The array of a priori class probabilities, sorted by the class label value. |
|
|
|
The parameter can be used to tune the decision tree preferences toward a certain class. For |
|
example, if you want to detect some rare anomaly occurrence, the training base will likely |
|
contain much more normal cases than anomalies, so a very good classification performance |
|
will be achieved just by considering every case as normal. To avoid this, the priors can be |
|
specified, where the anomaly probability is artificially increased (up to 0.5 or even |
|
greater), so the weight of the misclassified anomalies becomes much bigger, and the tree is |
|
adjusted properly. |
|
|
|
You can also think about this parameter as weights of prediction categories which determine |
|
relative weights that you give to misclassification. That is, if the weight of the first |
|
category is 1 and the weight of the second category is 10, then each mistake in predicting |
|
the second category is equivalent to making 10 mistakes in predicting the first category. |
|
Default value is empty Mat.*/ |
|
/** @see setPriors */ |
|
CV_WRAP virtual cv::Mat getPriors() const = 0; |
|
/** @copybrief getPriors @see getPriors */ |
|
CV_WRAP virtual void setPriors(const cv::Mat &val) = 0; |
|
|
|
/** @brief The class represents a decision tree node. |
|
*/ |
|
class CV_EXPORTS Node |
|
{ |
|
public: |
|
Node(); |
|
double value; //!< Value at the node: a class label in case of classification or estimated |
|
//!< function value in case of regression. |
|
int classIdx; //!< Class index normalized to 0..class_count-1 range and assigned to the |
|
//!< node. It is used internally in classification trees and tree ensembles. |
|
int parent; //!< Index of the parent node |
|
int left; //!< Index of the left child node |
|
int right; //!< Index of right child node |
|
int defaultDir; //!< Default direction where to go (-1: left or +1: right). It helps in the |
|
//!< case of missing values. |
|
int split; //!< Index of the first split |
|
}; |
|
|
|
/** @brief The class represents split in a decision tree. |
|
*/ |
|
class CV_EXPORTS Split |
|
{ |
|
public: |
|
Split(); |
|
int varIdx; //!< Index of variable on which the split is created. |
|
bool inversed; //!< If true, then the inverse split rule is used (i.e. left and right |
|
//!< branches are exchanged in the rule expressions below). |
|
float quality; //!< The split quality, a positive number. It is used to choose the best split. |
|
int next; //!< Index of the next split in the list of splits for the node |
|
float c; /**< The threshold value in case of split on an ordered variable. |
|
The rule is: |
|
@code{.none} |
|
if var_value < c |
|
then next_node <- left |
|
else next_node <- right |
|
@endcode */ |
|
int subsetOfs; /**< Offset of the bitset used by the split on a categorical variable. |
|
The rule is: |
|
@code{.none} |
|
if bitset[var_value] == 1 |
|
then next_node <- left |
|
else next_node <- right |
|
@endcode */ |
|
}; |
|
|
|
/** @brief Returns indices of root nodes |
|
*/ |
|
virtual const std::vector<int>& getRoots() const = 0; |
|
/** @brief Returns all the nodes |
|
|
|
all the node indices are indices in the returned vector |
|
*/ |
|
virtual const std::vector<Node>& getNodes() const = 0; |
|
/** @brief Returns all the splits |
|
|
|
all the split indices are indices in the returned vector |
|
*/ |
|
virtual const std::vector<Split>& getSplits() const = 0; |
|
/** @brief Returns all the bitsets for categorical splits |
|
|
|
Split::subsetOfs is an offset in the returned vector |
|
*/ |
|
virtual const std::vector<int>& getSubsets() const = 0; |
|
|
|
/** @brief Creates the empty model |
|
|
|
The static method creates empty decision tree with the specified parameters. It should be then |
|
trained using train method (see StatModel::train). Alternatively, you can load the model from |
|
file using Algorithm::load\<DTrees\>(filename). |
|
*/ |
|
CV_WRAP static Ptr<DTrees> create(); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Random Trees Classifier * |
|
\****************************************************************************************/ |
|
|
|
/** @brief The class implements the random forest predictor. |
|
|
|
@sa @ref ml_intro_rtrees |
|
*/ |
|
class CV_EXPORTS_W RTrees : public DTrees |
|
{ |
|
public: |
|
|
|
/** If true then variable importance will be calculated and then it can be retrieved by RTrees::getVarImportance. |
|
Default value is false.*/ |
|
/** @see setCalculateVarImportance */ |
|
CV_WRAP virtual bool getCalculateVarImportance() const = 0; |
|
/** @copybrief getCalculateVarImportance @see getCalculateVarImportance */ |
|
CV_WRAP virtual void setCalculateVarImportance(bool val) = 0; |
|
|
|
/** The size of the randomly selected subset of features at each tree node and that are used |
|
to find the best split(s). |
|
If you set it to 0 then the size will be set to the square root of the total number of |
|
features. Default value is 0.*/ |
|
/** @see setActiveVarCount */ |
|
CV_WRAP virtual int getActiveVarCount() const = 0; |
|
/** @copybrief getActiveVarCount @see getActiveVarCount */ |
|
CV_WRAP virtual void setActiveVarCount(int val) = 0; |
|
|
|
/** The termination criteria that specifies when the training algorithm stops. |
|
Either when the specified number of trees is trained and added to the ensemble or when |
|
sufficient accuracy (measured as OOB error) is achieved. Typically the more trees you have the |
|
better the accuracy. However, the improvement in accuracy generally diminishes and asymptotes |
|
pass a certain number of trees. Also to keep in mind, the number of tree increases the |
|
prediction time linearly. Default value is TermCriteria(TermCriteria::MAX_ITERS + |
|
TermCriteria::EPS, 50, 0.1)*/ |
|
/** @see setTermCriteria */ |
|
CV_WRAP virtual TermCriteria getTermCriteria() const = 0; |
|
/** @copybrief getTermCriteria @see getTermCriteria */ |
|
CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0; |
|
|
|
/** Returns the variable importance array. |
|
The method returns the variable importance vector, computed at the training stage when |
|
CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is |
|
returned. |
|
*/ |
|
CV_WRAP virtual Mat getVarImportance() const = 0; |
|
|
|
/** Creates the empty model. |
|
Use StatModel::train to train the model, StatModel::train to create and train the model, |
|
Algorithm::load to load the pre-trained model. |
|
*/ |
|
CV_WRAP static Ptr<RTrees> create(); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Boosted tree classifier * |
|
\****************************************************************************************/ |
|
|
|
/** @brief Boosted tree classifier derived from DTrees |
|
|
|
@sa @ref ml_intro_boost |
|
*/ |
|
class CV_EXPORTS_W Boost : public DTrees |
|
{ |
|
public: |
|
/** Type of the boosting algorithm. |
|
See Boost::Types. Default value is Boost::REAL. */ |
|
/** @see setBoostType */ |
|
CV_WRAP virtual int getBoostType() const = 0; |
|
/** @copybrief getBoostType @see getBoostType */ |
|
CV_WRAP virtual void setBoostType(int val) = 0; |
|
|
|
/** The number of weak classifiers. |
|
Default value is 100. */ |
|
/** @see setWeakCount */ |
|
CV_WRAP virtual int getWeakCount() const = 0; |
|
/** @copybrief getWeakCount @see getWeakCount */ |
|
CV_WRAP virtual void setWeakCount(int val) = 0; |
|
|
|
/** A threshold between 0 and 1 used to save computational time. |
|
Samples with summary weight \f$\leq 1 - weight_trim_rate\f$ do not participate in the *next* |
|
iteration of training. Set this parameter to 0 to turn off this functionality. Default value is 0.95.*/ |
|
/** @see setWeightTrimRate */ |
|
CV_WRAP virtual double getWeightTrimRate() const = 0; |
|
/** @copybrief getWeightTrimRate @see getWeightTrimRate */ |
|
CV_WRAP virtual void setWeightTrimRate(double val) = 0; |
|
|
|
/** Boosting type. |
|
Gentle AdaBoost and Real AdaBoost are often the preferable choices. */ |
|
enum Types { |
|
DISCRETE=0, //!< Discrete AdaBoost. |
|
REAL=1, //!< Real AdaBoost. It is a technique that utilizes confidence-rated predictions |
|
//!< and works well with categorical data. |
|
LOGIT=2, //!< LogitBoost. It can produce good regression fits. |
|
GENTLE=3 //!< Gentle AdaBoost. It puts less weight on outlier data points and for that |
|
//!<reason is often good with regression data. |
|
}; |
|
|
|
/** Creates the empty model. |
|
Use StatModel::train to train the model, Algorithm::load\<Boost\>(filename) to load the pre-trained model. */ |
|
CV_WRAP static Ptr<Boost> create(); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Gradient Boosted Trees * |
|
\****************************************************************************************/ |
|
|
|
/*class CV_EXPORTS_W GBTrees : public DTrees |
|
{ |
|
public: |
|
struct CV_EXPORTS_W_MAP Params : public DTrees::Params |
|
{ |
|
CV_PROP_RW int weakCount; |
|
CV_PROP_RW int lossFunctionType; |
|
CV_PROP_RW float subsamplePortion; |
|
CV_PROP_RW float shrinkage; |
|
|
|
Params(); |
|
Params( int lossFunctionType, int weakCount, float shrinkage, |
|
float subsamplePortion, int maxDepth, bool useSurrogates ); |
|
}; |
|
|
|
enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS}; |
|
|
|
virtual void setK(int k) = 0; |
|
|
|
virtual float predictSerial( InputArray samples, |
|
OutputArray weakResponses, int flags) const = 0; |
|
|
|
static Ptr<GBTrees> create(const Params& p); |
|
};*/ |
|
|
|
/****************************************************************************************\ |
|
* Artificial Neural Networks (ANN) * |
|
\****************************************************************************************/ |
|
|
|
/////////////////////////////////// Multi-Layer Perceptrons ////////////////////////////// |
|
|
|
/** @brief Artificial Neural Networks - Multi-Layer Perceptrons. |
|
|
|
Unlike many other models in ML that are constructed and trained at once, in the MLP model these |
|
steps are separated. First, a network with the specified topology is created using the non-default |
|
constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is |
|
trained using a set of input and output vectors. The training procedure can be repeated more than |
|
once, that is, the weights can be adjusted based on the new training data. |
|
|
|
Additional flags for StatModel::train are available: ANN_MLP::TrainFlags. |
|
|
|
@sa @ref ml_intro_ann |
|
*/ |
|
class CV_EXPORTS_W ANN_MLP : public StatModel |
|
{ |
|
public: |
|
/** Available training methods */ |
|
enum TrainingMethods { |
|
BACKPROP=0, //!< The back-propagation algorithm. |
|
RPROP=1 //!< The RPROP algorithm. See @cite RPROP93 for details. |
|
}; |
|
|
|
/** Sets training method and common parameters. |
|
@param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods. |
|
@param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP |
|
@param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP. |
|
*/ |
|
CV_WRAP virtual void setTrainMethod(int method, double param1 = 0, double param2 = 0) = 0; |
|
|
|
/** Returns current training method */ |
|
CV_WRAP virtual int getTrainMethod() const = 0; |
|
|
|
/** Initialize the activation function for each neuron. |
|
Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM. |
|
@param type The type of activation function. See ANN_MLP::ActivationFunctions. |
|
@param param1 The first parameter of the activation function, \f$\alpha\f$. Default value is 0. |
|
@param param2 The second parameter of the activation function, \f$\beta\f$. Default value is 0. |
|
*/ |
|
CV_WRAP virtual void setActivationFunction(int type, double param1 = 0, double param2 = 0) = 0; |
|
|
|
/** Integer vector specifying the number of neurons in each layer including the input and output layers. |
|
The very first element specifies the number of elements in the input layer. |
|
The last element - number of elements in the output layer. Default value is empty Mat. |
|
@sa getLayerSizes */ |
|
CV_WRAP virtual void setLayerSizes(InputArray _layer_sizes) = 0; |
|
|
|
/** Integer vector specifying the number of neurons in each layer including the input and output layers. |
|
The very first element specifies the number of elements in the input layer. |
|
The last element - number of elements in the output layer. |
|
@sa setLayerSizes */ |
|
CV_WRAP virtual cv::Mat getLayerSizes() const = 0; |
|
|
|
/** Termination criteria of the training algorithm. |
|
You can specify the maximum number of iterations (maxCount) and/or how much the error could |
|
change between the iterations to make the algorithm continue (epsilon). Default value is |
|
TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01).*/ |
|
/** @see setTermCriteria */ |
|
CV_WRAP virtual TermCriteria getTermCriteria() const = 0; |
|
/** @copybrief getTermCriteria @see getTermCriteria */ |
|
CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0; |
|
|
|
/** BPROP: Strength of the weight gradient term. |
|
The recommended value is about 0.1. Default value is 0.1.*/ |
|
/** @see setBackpropWeightScale */ |
|
CV_WRAP virtual double getBackpropWeightScale() const = 0; |
|
/** @copybrief getBackpropWeightScale @see getBackpropWeightScale */ |
|
CV_WRAP virtual void setBackpropWeightScale(double val) = 0; |
|
|
|
/** BPROP: Strength of the momentum term (the difference between weights on the 2 previous iterations). |
|
This parameter provides some inertia to smooth the random fluctuations of the weights. It can |
|
vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough. |
|
Default value is 0.1.*/ |
|
/** @see setBackpropMomentumScale */ |
|
CV_WRAP virtual double getBackpropMomentumScale() const = 0; |
|
/** @copybrief getBackpropMomentumScale @see getBackpropMomentumScale */ |
|
CV_WRAP virtual void setBackpropMomentumScale(double val) = 0; |
|
|
|
/** RPROP: Initial value \f$\Delta_0\f$ of update-values \f$\Delta_{ij}\f$. |
|
Default value is 0.1.*/ |
|
/** @see setRpropDW0 */ |
|
CV_WRAP virtual double getRpropDW0() const = 0; |
|
/** @copybrief getRpropDW0 @see getRpropDW0 */ |
|
CV_WRAP virtual void setRpropDW0(double val) = 0; |
|
|
|
/** RPROP: Increase factor \f$\eta^+\f$. |
|
It must be \>1. Default value is 1.2.*/ |
|
/** @see setRpropDWPlus */ |
|
CV_WRAP virtual double getRpropDWPlus() const = 0; |
|
/** @copybrief getRpropDWPlus @see getRpropDWPlus */ |
|
CV_WRAP virtual void setRpropDWPlus(double val) = 0; |
|
|
|
/** RPROP: Decrease factor \f$\eta^-\f$. |
|
It must be \<1. Default value is 0.5.*/ |
|
/** @see setRpropDWMinus */ |
|
CV_WRAP virtual double getRpropDWMinus() const = 0; |
|
/** @copybrief getRpropDWMinus @see getRpropDWMinus */ |
|
CV_WRAP virtual void setRpropDWMinus(double val) = 0; |
|
|
|
/** RPROP: Update-values lower limit \f$\Delta_{min}\f$. |
|
It must be positive. Default value is FLT_EPSILON.*/ |
|
/** @see setRpropDWMin */ |
|
CV_WRAP virtual double getRpropDWMin() const = 0; |
|
/** @copybrief getRpropDWMin @see getRpropDWMin */ |
|
CV_WRAP virtual void setRpropDWMin(double val) = 0; |
|
|
|
/** RPROP: Update-values upper limit \f$\Delta_{max}\f$. |
|
It must be \>1. Default value is 50.*/ |
|
/** @see setRpropDWMax */ |
|
CV_WRAP virtual double getRpropDWMax() const = 0; |
|
/** @copybrief getRpropDWMax @see getRpropDWMax */ |
|
CV_WRAP virtual void setRpropDWMax(double val) = 0; |
|
|
|
/** possible activation functions */ |
|
enum ActivationFunctions { |
|
/** Identity function: \f$f(x)=x\f$ */ |
|
IDENTITY = 0, |
|
/** Symmetrical sigmoid: \f$f(x)=\beta*(1-e^{-\alpha x})/(1+e^{-\alpha x}\f$ |
|
@note |
|
If you are using the default sigmoid activation function with the default parameter values |
|
fparam1=0 and fparam2=0 then the function used is y = 1.7159\*tanh(2/3 \* x), so the output |
|
will range from [-1.7159, 1.7159], instead of [0,1].*/ |
|
SIGMOID_SYM = 1, |
|
/** Gaussian function: \f$f(x)=\beta e^{-\alpha x*x}\f$ */ |
|
GAUSSIAN = 2 |
|
}; |
|
|
|
/** Train options */ |
|
enum TrainFlags { |
|
/** Update the network weights, rather than compute them from scratch. In the latter case |
|
the weights are initialized using the Nguyen-Widrow algorithm. */ |
|
UPDATE_WEIGHTS = 1, |
|
/** Do not normalize the input vectors. If this flag is not set, the training algorithm |
|
normalizes each input feature independently, shifting its mean value to 0 and making the |
|
standard deviation equal to 1. If the network is assumed to be updated frequently, the new |
|
training data could be much different from original one. In this case, you should take care |
|
of proper normalization. */ |
|
NO_INPUT_SCALE = 2, |
|
/** Do not normalize the output vectors. If the flag is not set, the training algorithm |
|
normalizes each output feature independently, by transforming it to the certain range |
|
depending on the used activation function. */ |
|
NO_OUTPUT_SCALE = 4 |
|
}; |
|
|
|
CV_WRAP virtual Mat getWeights(int layerIdx) const = 0; |
|
|
|
/** @brief Creates empty model |
|
|
|
Use StatModel::train to train the model, Algorithm::load\<ANN_MLP\>(filename) to load the pre-trained model. |
|
Note that the train method has optional flags: ANN_MLP::TrainFlags. |
|
*/ |
|
CV_WRAP static Ptr<ANN_MLP> create(); |
|
|
|
/** @brief Loads and creates a serialized ANN from a file |
|
* |
|
* Use ANN::save to serialize and store an ANN to disk. |
|
* Load the ANN from this file again, by calling this function with the path to the file. |
|
* |
|
* @param filepath path to serialized ANN |
|
*/ |
|
CV_WRAP static Ptr<ANN_MLP> load(const String& filepath); |
|
|
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Logistic Regression * |
|
\****************************************************************************************/ |
|
|
|
/** @brief Implements Logistic Regression classifier. |
|
|
|
@sa @ref ml_intro_lr |
|
*/ |
|
class CV_EXPORTS_W LogisticRegression : public StatModel |
|
{ |
|
public: |
|
|
|
/** Learning rate. */ |
|
/** @see setLearningRate */ |
|
CV_WRAP virtual double getLearningRate() const = 0; |
|
/** @copybrief getLearningRate @see getLearningRate */ |
|
CV_WRAP virtual void setLearningRate(double val) = 0; |
|
|
|
/** Number of iterations. */ |
|
/** @see setIterations */ |
|
CV_WRAP virtual int getIterations() const = 0; |
|
/** @copybrief getIterations @see getIterations */ |
|
CV_WRAP virtual void setIterations(int val) = 0; |
|
|
|
/** Kind of regularization to be applied. See LogisticRegression::RegKinds. */ |
|
/** @see setRegularization */ |
|
CV_WRAP virtual int getRegularization() const = 0; |
|
/** @copybrief getRegularization @see getRegularization */ |
|
CV_WRAP virtual void setRegularization(int val) = 0; |
|
|
|
/** Kind of training method used. See LogisticRegression::Methods. */ |
|
/** @see setTrainMethod */ |
|
CV_WRAP virtual int getTrainMethod() const = 0; |
|
/** @copybrief getTrainMethod @see getTrainMethod */ |
|
CV_WRAP virtual void setTrainMethod(int val) = 0; |
|
|
|
/** Specifies the number of training samples taken in each step of Mini-Batch Gradient |
|
Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It |
|
has to take values less than the total number of training samples. */ |
|
/** @see setMiniBatchSize */ |
|
CV_WRAP virtual int getMiniBatchSize() const = 0; |
|
/** @copybrief getMiniBatchSize @see getMiniBatchSize */ |
|
CV_WRAP virtual void setMiniBatchSize(int val) = 0; |
|
|
|
/** Termination criteria of the algorithm. */ |
|
/** @see setTermCriteria */ |
|
CV_WRAP virtual TermCriteria getTermCriteria() const = 0; |
|
/** @copybrief getTermCriteria @see getTermCriteria */ |
|
CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0; |
|
|
|
//! Regularization kinds |
|
enum RegKinds { |
|
REG_DISABLE = -1, //!< Regularization disabled |
|
REG_L1 = 0, //!< %L1 norm |
|
REG_L2 = 1 //!< %L2 norm |
|
}; |
|
|
|
//! Training methods |
|
enum Methods { |
|
BATCH = 0, |
|
MINI_BATCH = 1 //!< Set MiniBatchSize to a positive integer when using this method. |
|
}; |
|
|
|
/** @brief Predicts responses for input samples and returns a float type. |
|
|
|
@param samples The input data for the prediction algorithm. Matrix [m x n], where each row |
|
contains variables (features) of one object being classified. Should have data type CV_32F. |
|
@param results Predicted labels as a column matrix of type CV_32S. |
|
@param flags Not used. |
|
*/ |
|
CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0; |
|
|
|
/** @brief This function returns the trained paramters arranged across rows. |
|
|
|
For a two class classifcation problem, it returns a row matrix. It returns learnt paramters of |
|
the Logistic Regression as a matrix of type CV_32F. |
|
*/ |
|
CV_WRAP virtual Mat get_learnt_thetas() const = 0; |
|
|
|
/** @brief Creates empty model. |
|
|
|
Creates Logistic Regression model with parameters given. |
|
*/ |
|
CV_WRAP static Ptr<LogisticRegression> create(); |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* Stochastic Gradient Descent SVM Classifier * |
|
\****************************************************************************************/ |
|
|
|
/*! |
|
@brief Stochastic Gradient Descent SVM classifier |
|
|
|
SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach, |
|
as presented in @cite bottou2010large. |
|
|
|
The classifier has following parameters: |
|
- model type, |
|
- margin type, |
|
- margin regularization (\f$\lambda\f$), |
|
- initial step size (\f$\gamma_0\f$), |
|
- step decreasing power (\f$c\f$), |
|
- and termination criteria. |
|
|
|
The model type may have one of the following values: \ref SGD and \ref ASGD. |
|
|
|
- \ref SGD is the classic version of SVMSGD classifier: every next step is calculated by the formula |
|
\f[w_{t+1} = w_t - \gamma(t) \frac{dQ_i}{dw} |_{w = w_t}\f] |
|
where |
|
- \f$w_t\f$ is the weights vector for decision function at step \f$t\f$, |
|
- \f$\gamma(t)\f$ is the step size of model parameters at the iteration \f$t\f$, it is decreased on each step by the formula |
|
\f$\gamma(t) = \gamma_0 (1 + \lambda \gamma_0 t) ^ {-c}\f$ |
|
- \f$Q_i\f$ is the target functional from SVM task for sample with number \f$i\f$, this sample is chosen stochastically on each step of the algorithm. |
|
|
|
- \ref ASGD is Average Stochastic Gradient Descent SVM Classifier. ASGD classifier averages weights vector on each step of algorithm by the formula |
|
\f$\widehat{w}_{t+1} = \frac{t}{1+t}\widehat{w}_{t} + \frac{1}{1+t}w_{t+1}\f$ |
|
|
|
The recommended model type is ASGD (following @cite bottou2010large). |
|
|
|
The margin type may have one of the following values: \ref SOFT_MARGIN or \ref HARD_MARGIN. |
|
|
|
- You should use \ref HARD_MARGIN type, if you have linearly separable sets. |
|
- You should use \ref SOFT_MARGIN type, if you have non-linearly separable sets or sets with outliers. |
|
- In the general case (if you know nothing about linear separability of your sets), use SOFT_MARGIN. |
|
|
|
The other parameters may be described as follows: |
|
- Margin regularization parameter is responsible for weights decreasing at each step and for the strength of restrictions on outliers |
|
(the less the parameter, the less probability that an outlier will be ignored). |
|
Recommended value for SGD model is 0.0001, for ASGD model is 0.00001. |
|
|
|
- Initial step size parameter is the initial value for the step size \f$\gamma(t)\f$. |
|
You will have to find the best initial step for your problem. |
|
|
|
- Step decreasing power is the power parameter for \f$\gamma(t)\f$ decreasing by the formula, mentioned above. |
|
Recommended value for SGD model is 1, for ASGD model is 0.75. |
|
|
|
- Termination criteria can be TermCriteria::COUNT, TermCriteria::EPS or TermCriteria::COUNT + TermCriteria::EPS. |
|
You will have to find the best termination criteria for your problem. |
|
|
|
Note that the parameters margin regularization, initial step size, and step decreasing power should be positive. |
|
|
|
To use SVMSGD algorithm do as follows: |
|
|
|
- first, create the SVMSGD object. The algoorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(), |
|
setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower(). |
|
|
|
- then the SVM model can be trained using the train features and the correspondent labels by the method train(). |
|
|
|
- after that, the label of a new feature vector can be predicted using the method predict(). |
|
|
|
@code |
|
// Create empty object |
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create(); |
|
|
|
// Train the Stochastic Gradient Descent SVM |
|
svmsgd->train(trainData); |
|
|
|
// Predict labels for the new samples |
|
svmsgd->predict(samples, responses); |
|
@endcode |
|
|
|
*/ |
|
|
|
class CV_EXPORTS_W SVMSGD : public cv::ml::StatModel |
|
{ |
|
public: |
|
|
|
/** SVMSGD type. |
|
ASGD is often the preferable choice. */ |
|
enum SvmsgdType |
|
{ |
|
SGD, //!< Stochastic Gradient Descent |
|
ASGD //!< Average Stochastic Gradient Descent |
|
}; |
|
|
|
/** Margin type.*/ |
|
enum MarginType |
|
{ |
|
SOFT_MARGIN, //!< General case, suits to the case of non-linearly separable sets, allows outliers. |
|
HARD_MARGIN //!< More accurate for the case of linearly separable sets. |
|
}; |
|
|
|
/** |
|
* @return the weights of the trained model (decision function f(x) = weights * x + shift). |
|
*/ |
|
CV_WRAP virtual Mat getWeights() = 0; |
|
|
|
/** |
|
* @return the shift of the trained model (decision function f(x) = weights * x + shift). |
|
*/ |
|
CV_WRAP virtual float getShift() = 0; |
|
|
|
/** @brief Creates empty model. |
|
* Use StatModel::train to train the model. Since %SVMSGD has several parameters, you may want to |
|
* find the best parameters for your problem or use setOptimalParameters() to set some default parameters. |
|
*/ |
|
CV_WRAP static Ptr<SVMSGD> create(); |
|
|
|
/** @brief Function sets optimal parameters values for chosen SVM SGD model. |
|
* @param svmsgdType is the type of SVMSGD classifier. |
|
* @param marginType is the type of margin constraint. |
|
*/ |
|
CV_WRAP virtual void setOptimalParameters(int svmsgdType = SVMSGD::ASGD, int marginType = SVMSGD::SOFT_MARGIN) = 0; |
|
|
|
/** @brief %Algorithm type, one of SVMSGD::SvmsgdType. */ |
|
/** @see setSvmsgdType */ |
|
CV_WRAP virtual int getSvmsgdType() const = 0; |
|
/** @copybrief getSvmsgdType @see getSvmsgdType */ |
|
CV_WRAP virtual void setSvmsgdType(int svmsgdType) = 0; |
|
|
|
/** @brief %Margin type, one of SVMSGD::MarginType. */ |
|
/** @see setMarginType */ |
|
CV_WRAP virtual int getMarginType() const = 0; |
|
/** @copybrief getMarginType @see getMarginType */ |
|
CV_WRAP virtual void setMarginType(int marginType) = 0; |
|
|
|
/** @brief Parameter marginRegularization of a %SVMSGD optimization problem. */ |
|
/** @see setMarginRegularization */ |
|
CV_WRAP virtual float getMarginRegularization() const = 0; |
|
/** @copybrief getMarginRegularization @see getMarginRegularization */ |
|
CV_WRAP virtual void setMarginRegularization(float marginRegularization) = 0; |
|
|
|
/** @brief Parameter initialStepSize of a %SVMSGD optimization problem. */ |
|
/** @see setInitialStepSize */ |
|
CV_WRAP virtual float getInitialStepSize() const = 0; |
|
/** @copybrief getInitialStepSize @see getInitialStepSize */ |
|
CV_WRAP virtual void setInitialStepSize(float InitialStepSize) = 0; |
|
|
|
/** @brief Parameter stepDecreasingPower of a %SVMSGD optimization problem. */ |
|
/** @see setStepDecreasingPower */ |
|
CV_WRAP virtual float getStepDecreasingPower() const = 0; |
|
/** @copybrief getStepDecreasingPower @see getStepDecreasingPower */ |
|
CV_WRAP virtual void setStepDecreasingPower(float stepDecreasingPower) = 0; |
|
|
|
/** @brief Termination criteria of the training algorithm. |
|
You can specify the maximum number of iterations (maxCount) and/or how much the error could |
|
change between the iterations to make the algorithm continue (epsilon).*/ |
|
/** @see setTermCriteria */ |
|
CV_WRAP virtual TermCriteria getTermCriteria() const = 0; |
|
/** @copybrief getTermCriteria @see getTermCriteria */ |
|
CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0; |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* Auxilary functions declarations * |
|
\****************************************************************************************/ |
|
|
|
/** @brief Generates _sample_ from multivariate normal distribution |
|
|
|
@param mean an average row vector |
|
@param cov symmetric covariation matrix |
|
@param nsamples returned samples count |
|
@param samples returned samples array |
|
*/ |
|
CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples); |
|
|
|
/** @brief Creates test set */ |
|
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses, |
|
OutputArray samples, OutputArray responses); |
|
|
|
//! @} ml |
|
|
|
} |
|
} |
|
|
|
#endif // __cplusplus |
|
#endif // __OPENCV_ML_HPP__ |
|
|
|
/* End of file. */
|
|
|