mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
348 lines
11 KiB
348 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "perf_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HoughLines |
|
|
|
namespace |
|
{ |
|
struct Vec4iComparator |
|
{ |
|
bool operator()(const cv::Vec4i& a, const cv::Vec4i b) const |
|
{ |
|
if (a[0] != b[0]) return a[0] < b[0]; |
|
else if(a[1] != b[1]) return a[1] < b[1]; |
|
else if(a[2] != b[2]) return a[2] < b[2]; |
|
else return a[3] < b[3]; |
|
} |
|
}; |
|
struct Vec3fComparator |
|
{ |
|
bool operator()(const cv::Vec3f& a, const cv::Vec3f b) const |
|
{ |
|
if(a[0] != b[0]) return a[0] < b[0]; |
|
else if(a[1] != b[1]) return a[1] < b[1]; |
|
else return a[2] < b[2]; |
|
} |
|
}; |
|
struct Vec2fComparator |
|
{ |
|
bool operator()(const cv::Vec2f& a, const cv::Vec2f b) const |
|
{ |
|
if(a[0] != b[0]) return a[0] < b[0]; |
|
else return a[1] < b[1]; |
|
} |
|
}; |
|
} |
|
|
|
PERF_TEST_P(Sz, HoughLines, |
|
CUDA_TYPICAL_MAT_SIZES) |
|
{ |
|
declare.time(30.0); |
|
|
|
const cv::Size size = GetParam(); |
|
|
|
const float rho = 1.0f; |
|
const float theta = static_cast<float>(CV_PI / 180.0); |
|
const int threshold = 300; |
|
|
|
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0)); |
|
cv::line(src, cv::Point(0, 100), cv::Point(src.cols, 100), cv::Scalar::all(255), 1); |
|
cv::line(src, cv::Point(0, 200), cv::Point(src.cols, 200), cv::Scalar::all(255), 1); |
|
cv::line(src, cv::Point(0, 400), cv::Point(src.cols, 400), cv::Scalar::all(255), 1); |
|
cv::line(src, cv::Point(100, 0), cv::Point(100, src.rows), cv::Scalar::all(255), 1); |
|
cv::line(src, cv::Point(200, 0), cv::Point(200, src.rows), cv::Scalar::all(255), 1); |
|
cv::line(src, cv::Point(400, 0), cv::Point(400, src.rows), cv::Scalar::all(255), 1); |
|
|
|
if (PERF_RUN_CUDA()) |
|
{ |
|
const cv::cuda::GpuMat d_src(src); |
|
cv::cuda::GpuMat d_lines; |
|
|
|
cv::Ptr<cv::cuda::HoughLinesDetector> hough = cv::cuda::createHoughLinesDetector(rho, theta, threshold); |
|
|
|
TEST_CYCLE() hough->detect(d_src, d_lines); |
|
|
|
cv::Mat gpu_lines(d_lines.row(0)); |
|
cv::Vec2f* begin = gpu_lines.ptr<cv::Vec2f>(0); |
|
cv::Vec2f* end = begin + gpu_lines.cols; |
|
std::sort(begin, end, Vec2fComparator()); |
|
SANITY_CHECK(gpu_lines); |
|
} |
|
else |
|
{ |
|
std::vector<cv::Vec2f> cpu_lines; |
|
|
|
TEST_CYCLE() cv::HoughLines(src, cpu_lines, rho, theta, threshold); |
|
|
|
SANITY_CHECK(cpu_lines); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HoughLinesP |
|
|
|
DEF_PARAM_TEST_1(Image, std::string); |
|
|
|
PERF_TEST_P(Image, HoughLinesP, |
|
testing::Values("cv/shared/pic5.png", "stitching/a1.png")) |
|
{ |
|
declare.time(30.0); |
|
|
|
const std::string fileName = getDataPath(GetParam()); |
|
|
|
const float rho = 1.0f; |
|
const float theta = static_cast<float>(CV_PI / 180.0); |
|
const int threshold = 100; |
|
const int minLineLength = 50; |
|
const int maxLineGap = 5; |
|
|
|
const cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::Mat mask; |
|
cv::Canny(image, mask, 50, 100); |
|
|
|
if (PERF_RUN_CUDA()) |
|
{ |
|
const cv::cuda::GpuMat d_mask(mask); |
|
cv::cuda::GpuMat d_lines; |
|
|
|
cv::Ptr<cv::cuda::HoughSegmentDetector> hough = cv::cuda::createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap); |
|
|
|
TEST_CYCLE() hough->detect(d_mask, d_lines); |
|
|
|
cv::Mat gpu_lines(d_lines); |
|
cv::Vec4i* begin = gpu_lines.ptr<cv::Vec4i>(); |
|
cv::Vec4i* end = begin + gpu_lines.cols; |
|
std::sort(begin, end, Vec4iComparator()); |
|
SANITY_CHECK(gpu_lines); |
|
} |
|
else |
|
{ |
|
std::vector<cv::Vec4i> cpu_lines; |
|
|
|
TEST_CYCLE() cv::HoughLinesP(mask, cpu_lines, rho, theta, threshold, minLineLength, maxLineGap); |
|
|
|
SANITY_CHECK(cpu_lines); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HoughCircles |
|
|
|
DEF_PARAM_TEST(Sz_Dp_MinDist, cv::Size, float, float); |
|
|
|
PERF_TEST_P(Sz_Dp_MinDist, HoughCircles, |
|
Combine(CUDA_TYPICAL_MAT_SIZES, |
|
Values(1.0f, 2.0f, 4.0f), |
|
Values(1.0f))) |
|
{ |
|
declare.time(30.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const float dp = GET_PARAM(1); |
|
const float minDist = GET_PARAM(2); |
|
|
|
const int minRadius = 10; |
|
const int maxRadius = 30; |
|
const int cannyThreshold = 100; |
|
const int votesThreshold = 15; |
|
|
|
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0)); |
|
cv::circle(src, cv::Point(100, 100), 20, cv::Scalar::all(255), -1); |
|
cv::circle(src, cv::Point(200, 200), 25, cv::Scalar::all(255), -1); |
|
cv::circle(src, cv::Point(200, 100), 25, cv::Scalar::all(255), -1); |
|
|
|
if (PERF_RUN_CUDA()) |
|
{ |
|
const cv::cuda::GpuMat d_src(src); |
|
cv::cuda::GpuMat d_circles; |
|
|
|
cv::Ptr<cv::cuda::HoughCirclesDetector> houghCircles = cv::cuda::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius); |
|
|
|
TEST_CYCLE() houghCircles->detect(d_src, d_circles); |
|
|
|
cv::Mat gpu_circles(d_circles); |
|
cv::Vec3f* begin = gpu_circles.ptr<cv::Vec3f>(0); |
|
cv::Vec3f* end = begin + gpu_circles.cols; |
|
std::sort(begin, end, Vec3fComparator()); |
|
SANITY_CHECK(gpu_circles); |
|
} |
|
else |
|
{ |
|
std::vector<cv::Vec3f> cpu_circles; |
|
|
|
TEST_CYCLE() cv::HoughCircles(src, cpu_circles, cv::HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius); |
|
|
|
SANITY_CHECK(cpu_circles); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// GeneralizedHough |
|
|
|
PERF_TEST_P(Sz, GeneralizedHoughBallard, CUDA_TYPICAL_MAT_SIZES) |
|
{ |
|
declare.time(10); |
|
|
|
const cv::Size imageSize = GetParam(); |
|
|
|
const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(templ.empty()); |
|
|
|
cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0)); |
|
templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows))); |
|
|
|
cv::Mat edges; |
|
cv::Canny(image, edges, 50, 100); |
|
|
|
cv::Mat dx, dy; |
|
cv::Sobel(image, dx, CV_32F, 1, 0); |
|
cv::Sobel(image, dy, CV_32F, 0, 1); |
|
|
|
if (PERF_RUN_CUDA()) |
|
{ |
|
cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::cuda::createGeneralizedHoughBallard(); |
|
|
|
const cv::cuda::GpuMat d_edges(edges); |
|
const cv::cuda::GpuMat d_dx(dx); |
|
const cv::cuda::GpuMat d_dy(dy); |
|
cv::cuda::GpuMat positions; |
|
|
|
alg->setTemplate(cv::cuda::GpuMat(templ)); |
|
|
|
TEST_CYCLE() alg->detect(d_edges, d_dx, d_dy, positions); |
|
|
|
CUDA_SANITY_CHECK(positions); |
|
} |
|
else |
|
{ |
|
cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::createGeneralizedHoughBallard(); |
|
|
|
cv::Mat positions; |
|
|
|
alg->setTemplate(templ); |
|
|
|
TEST_CYCLE() alg->detect(edges, dx, dy, positions); |
|
|
|
CPU_SANITY_CHECK(positions); |
|
} |
|
} |
|
|
|
PERF_TEST_P(Sz, DISABLED_GeneralizedHoughGuil, CUDA_TYPICAL_MAT_SIZES) |
|
{ |
|
declare.time(10); |
|
|
|
const cv::Size imageSize = GetParam(); |
|
|
|
const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(templ.empty()); |
|
|
|
cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0)); |
|
templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows))); |
|
|
|
cv::RNG rng(123456789); |
|
const int objCount = rng.uniform(5, 15); |
|
for (int i = 0; i < objCount; ++i) |
|
{ |
|
double scale = rng.uniform(0.7, 1.3); |
|
bool rotate = 1 == rng.uniform(0, 2); |
|
|
|
cv::Mat obj; |
|
cv::resize(templ, obj, cv::Size(), scale, scale); |
|
if (rotate) |
|
obj = obj.t(); |
|
|
|
cv::Point pos; |
|
|
|
pos.x = rng.uniform(0, image.cols - obj.cols); |
|
pos.y = rng.uniform(0, image.rows - obj.rows); |
|
|
|
cv::Mat roi = image(cv::Rect(pos, obj.size())); |
|
cv::add(roi, obj, roi); |
|
} |
|
|
|
cv::Mat edges; |
|
cv::Canny(image, edges, 50, 100); |
|
|
|
cv::Mat dx, dy; |
|
cv::Sobel(image, dx, CV_32F, 1, 0); |
|
cv::Sobel(image, dy, CV_32F, 0, 1); |
|
|
|
if (PERF_RUN_CUDA()) |
|
{ |
|
cv::Ptr<cv::GeneralizedHoughGuil> alg = cv::cuda::createGeneralizedHoughGuil(); |
|
alg->setMaxAngle(90.0); |
|
alg->setAngleStep(2.0); |
|
|
|
const cv::cuda::GpuMat d_edges(edges); |
|
const cv::cuda::GpuMat d_dx(dx); |
|
const cv::cuda::GpuMat d_dy(dy); |
|
cv::cuda::GpuMat positions; |
|
|
|
alg->setTemplate(cv::cuda::GpuMat(templ)); |
|
|
|
TEST_CYCLE() alg->detect(d_edges, d_dx, d_dy, positions); |
|
} |
|
else |
|
{ |
|
cv::Ptr<cv::GeneralizedHoughGuil> alg = cv::createGeneralizedHoughGuil(); |
|
alg->setMaxAngle(90.0); |
|
alg->setAngleStep(2.0); |
|
|
|
cv::Mat positions; |
|
|
|
alg->setTemplate(templ); |
|
|
|
TEST_CYCLE() alg->detect(edges, dx, dy, positions); |
|
} |
|
|
|
// The algorithm is not stable yet. |
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
}} // namespace
|
|
|