mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
5.5 KiB
169 lines
5.5 KiB
/* |
|
* jfdctflt.c |
|
* |
|
* Copyright (C) 1994-1996, Thomas G. Lane. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README.ijg |
|
* file. |
|
* |
|
* This file contains a floating-point implementation of the |
|
* forward DCT (Discrete Cosine Transform). |
|
* |
|
* This implementation should be more accurate than either of the integer |
|
* DCT implementations. However, it may not give the same results on all |
|
* machines because of differences in roundoff behavior. Speed will depend |
|
* on the hardware's floating point capacity. |
|
* |
|
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
|
* on each column. Direct algorithms are also available, but they are |
|
* much more complex and seem not to be any faster when reduced to code. |
|
* |
|
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
|
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
|
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
|
* JPEG textbook (see REFERENCES section in file README.ijg). The following |
|
* code is based directly on figure 4-8 in P&M. |
|
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
|
* possible to arrange the computation so that many of the multiplies are |
|
* simple scalings of the final outputs. These multiplies can then be |
|
* folded into the multiplications or divisions by the JPEG quantization |
|
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
|
* to be done in the DCT itself. |
|
* The primary disadvantage of this method is that with a fixed-point |
|
* implementation, accuracy is lost due to imprecise representation of the |
|
* scaled quantization values. However, that problem does not arise if |
|
* we use floating point arithmetic. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
#include "jdct.h" /* Private declarations for DCT subsystem */ |
|
|
|
#ifdef DCT_FLOAT_SUPPORTED |
|
|
|
|
|
/* |
|
* This module is specialized to the case DCTSIZE = 8. |
|
*/ |
|
|
|
#if DCTSIZE != 8 |
|
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
|
#endif |
|
|
|
|
|
/* |
|
* Perform the forward DCT on one block of samples. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jpeg_fdct_float(FAST_FLOAT *data) |
|
{ |
|
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
|
FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
|
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; |
|
FAST_FLOAT *dataptr; |
|
int ctr; |
|
|
|
/* Pass 1: process rows. */ |
|
|
|
dataptr = data; |
|
for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { |
|
tmp0 = dataptr[0] + dataptr[7]; |
|
tmp7 = dataptr[0] - dataptr[7]; |
|
tmp1 = dataptr[1] + dataptr[6]; |
|
tmp6 = dataptr[1] - dataptr[6]; |
|
tmp2 = dataptr[2] + dataptr[5]; |
|
tmp5 = dataptr[2] - dataptr[5]; |
|
tmp3 = dataptr[3] + dataptr[4]; |
|
tmp4 = dataptr[3] - dataptr[4]; |
|
|
|
/* Even part */ |
|
|
|
tmp10 = tmp0 + tmp3; /* phase 2 */ |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
|
|
dataptr[0] = tmp10 + tmp11; /* phase 3 */ |
|
dataptr[4] = tmp10 - tmp11; |
|
|
|
z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */ |
|
dataptr[2] = tmp13 + z1; /* phase 5 */ |
|
dataptr[6] = tmp13 - z1; |
|
|
|
/* Odd part */ |
|
|
|
tmp10 = tmp4 + tmp5; /* phase 2 */ |
|
tmp11 = tmp5 + tmp6; |
|
tmp12 = tmp6 + tmp7; |
|
|
|
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
|
z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */ |
|
z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */ |
|
z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */ |
|
z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */ |
|
|
|
z11 = tmp7 + z3; /* phase 5 */ |
|
z13 = tmp7 - z3; |
|
|
|
dataptr[5] = z13 + z2; /* phase 6 */ |
|
dataptr[3] = z13 - z2; |
|
dataptr[1] = z11 + z4; |
|
dataptr[7] = z11 - z4; |
|
|
|
dataptr += DCTSIZE; /* advance pointer to next row */ |
|
} |
|
|
|
/* Pass 2: process columns. */ |
|
|
|
dataptr = data; |
|
for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { |
|
tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7]; |
|
tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7]; |
|
tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6]; |
|
tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6]; |
|
tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5]; |
|
tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5]; |
|
tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4]; |
|
tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4]; |
|
|
|
/* Even part */ |
|
|
|
tmp10 = tmp0 + tmp3; /* phase 2 */ |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
|
|
dataptr[DCTSIZE * 0] = tmp10 + tmp11; /* phase 3 */ |
|
dataptr[DCTSIZE * 4] = tmp10 - tmp11; |
|
|
|
z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */ |
|
dataptr[DCTSIZE * 2] = tmp13 + z1; /* phase 5 */ |
|
dataptr[DCTSIZE * 6] = tmp13 - z1; |
|
|
|
/* Odd part */ |
|
|
|
tmp10 = tmp4 + tmp5; /* phase 2 */ |
|
tmp11 = tmp5 + tmp6; |
|
tmp12 = tmp6 + tmp7; |
|
|
|
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
|
z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */ |
|
z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */ |
|
z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */ |
|
z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */ |
|
|
|
z11 = tmp7 + z3; /* phase 5 */ |
|
z13 = tmp7 - z3; |
|
|
|
dataptr[DCTSIZE * 5] = z13 + z2; /* phase 6 */ |
|
dataptr[DCTSIZE * 3] = z13 - z2; |
|
dataptr[DCTSIZE * 1] = z11 + z4; |
|
dataptr[DCTSIZE * 7] = z11 - z4; |
|
|
|
dataptr++; /* advance pointer to next column */ |
|
} |
|
} |
|
|
|
#endif /* DCT_FLOAT_SUPPORTED */
|
|
|