mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
401 lines
15 KiB
401 lines
15 KiB
/* |
|
* jctrans.c |
|
* |
|
* This file was part of the Independent JPEG Group's software: |
|
* Copyright (C) 1995-1998, Thomas G. Lane. |
|
* Modified 2000-2009 by Guido Vollbeding. |
|
* libjpeg-turbo Modifications: |
|
* Copyright (C) 2020, 2022, D. R. Commander. |
|
* For conditions of distribution and use, see the accompanying README.ijg |
|
* file. |
|
* |
|
* This file contains library routines for transcoding compression, |
|
* that is, writing raw DCT coefficient arrays to an output JPEG file. |
|
* The routines in jcapimin.c will also be needed by a transcoder. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
#include "jpegcomp.h" |
|
|
|
|
|
/* Forward declarations */ |
|
LOCAL(void) transencode_master_selection(j_compress_ptr cinfo, |
|
jvirt_barray_ptr *coef_arrays); |
|
LOCAL(void) transencode_coef_controller(j_compress_ptr cinfo, |
|
jvirt_barray_ptr *coef_arrays); |
|
|
|
|
|
/* |
|
* Compression initialization for writing raw-coefficient data. |
|
* Before calling this, all parameters and a data destination must be set up. |
|
* Call jpeg_finish_compress() to actually write the data. |
|
* |
|
* The number of passed virtual arrays must match cinfo->num_components. |
|
* Note that the virtual arrays need not be filled or even realized at |
|
* the time write_coefficients is called; indeed, if the virtual arrays |
|
* were requested from this compression object's memory manager, they |
|
* typically will be realized during this routine and filled afterwards. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jpeg_write_coefficients(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays) |
|
{ |
|
if (cinfo->global_state != CSTATE_START) |
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
|
/* Mark all tables to be written */ |
|
jpeg_suppress_tables(cinfo, FALSE); |
|
/* (Re)initialize error mgr and destination modules */ |
|
(*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo); |
|
(*cinfo->dest->init_destination) (cinfo); |
|
/* Perform master selection of active modules */ |
|
transencode_master_selection(cinfo, coef_arrays); |
|
/* Wait for jpeg_finish_compress() call */ |
|
cinfo->next_scanline = 0; /* so jpeg_write_marker works */ |
|
cinfo->global_state = CSTATE_WRCOEFS; |
|
} |
|
|
|
|
|
/* |
|
* Initialize the compression object with default parameters, |
|
* then copy from the source object all parameters needed for lossless |
|
* transcoding. Parameters that can be varied without loss (such as |
|
* scan script and Huffman optimization) are left in their default states. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jpeg_copy_critical_parameters(j_decompress_ptr srcinfo, j_compress_ptr dstinfo) |
|
{ |
|
JQUANT_TBL **qtblptr; |
|
jpeg_component_info *incomp, *outcomp; |
|
JQUANT_TBL *c_quant, *slot_quant; |
|
int tblno, ci, coefi; |
|
|
|
/* Safety check to ensure start_compress not called yet. */ |
|
if (dstinfo->global_state != CSTATE_START) |
|
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); |
|
/* Copy fundamental image dimensions */ |
|
dstinfo->image_width = srcinfo->image_width; |
|
dstinfo->image_height = srcinfo->image_height; |
|
dstinfo->input_components = srcinfo->num_components; |
|
dstinfo->in_color_space = srcinfo->jpeg_color_space; |
|
#if JPEG_LIB_VERSION >= 70 |
|
dstinfo->jpeg_width = srcinfo->output_width; |
|
dstinfo->jpeg_height = srcinfo->output_height; |
|
dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size; |
|
dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size; |
|
#endif |
|
/* Initialize all parameters to default values */ |
|
jpeg_set_defaults(dstinfo); |
|
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB. |
|
* Fix it to get the right header markers for the image colorspace. |
|
*/ |
|
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); |
|
dstinfo->data_precision = srcinfo->data_precision; |
|
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; |
|
/* Copy the source's quantization tables. */ |
|
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { |
|
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { |
|
qtblptr = &dstinfo->quant_tbl_ptrs[tblno]; |
|
if (*qtblptr == NULL) |
|
*qtblptr = jpeg_alloc_quant_table((j_common_ptr)dstinfo); |
|
memcpy((*qtblptr)->quantval, srcinfo->quant_tbl_ptrs[tblno]->quantval, |
|
sizeof((*qtblptr)->quantval)); |
|
(*qtblptr)->sent_table = FALSE; |
|
} |
|
} |
|
/* Copy the source's per-component info. |
|
* Note we assume jpeg_set_defaults has allocated the dest comp_info array. |
|
*/ |
|
dstinfo->num_components = srcinfo->num_components; |
|
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) |
|
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, |
|
MAX_COMPONENTS); |
|
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; |
|
ci < dstinfo->num_components; ci++, incomp++, outcomp++) { |
|
outcomp->component_id = incomp->component_id; |
|
outcomp->h_samp_factor = incomp->h_samp_factor; |
|
outcomp->v_samp_factor = incomp->v_samp_factor; |
|
outcomp->quant_tbl_no = incomp->quant_tbl_no; |
|
/* Make sure saved quantization table for component matches the qtable |
|
* slot. If not, the input file re-used this qtable slot. |
|
* IJG encoder currently cannot duplicate this. |
|
*/ |
|
tblno = outcomp->quant_tbl_no; |
|
if (tblno < 0 || tblno >= NUM_QUANT_TBLS || |
|
srcinfo->quant_tbl_ptrs[tblno] == NULL) |
|
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); |
|
slot_quant = srcinfo->quant_tbl_ptrs[tblno]; |
|
c_quant = incomp->quant_table; |
|
if (c_quant != NULL) { |
|
for (coefi = 0; coefi < DCTSIZE2; coefi++) { |
|
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) |
|
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); |
|
} |
|
} |
|
/* Note: we do not copy the source's Huffman table assignments; |
|
* instead we rely on jpeg_set_colorspace to have made a suitable choice. |
|
*/ |
|
} |
|
/* Also copy JFIF version and resolution information, if available. |
|
* Strictly speaking this isn't "critical" info, but it's nearly |
|
* always appropriate to copy it if available. In particular, |
|
* if the application chooses to copy JFIF 1.02 extension markers from |
|
* the source file, we need to copy the version to make sure we don't |
|
* emit a file that has 1.02 extensions but a claimed version of 1.01. |
|
* We will *not*, however, copy version info from mislabeled "2.01" files. |
|
*/ |
|
if (srcinfo->saw_JFIF_marker) { |
|
if (srcinfo->JFIF_major_version == 1) { |
|
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; |
|
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; |
|
} |
|
dstinfo->density_unit = srcinfo->density_unit; |
|
dstinfo->X_density = srcinfo->X_density; |
|
dstinfo->Y_density = srcinfo->Y_density; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Master selection of compression modules for transcoding. |
|
* This substitutes for jcinit.c's initialization of the full compressor. |
|
*/ |
|
|
|
LOCAL(void) |
|
transencode_master_selection(j_compress_ptr cinfo, |
|
jvirt_barray_ptr *coef_arrays) |
|
{ |
|
/* Although we don't actually use input_components for transcoding, |
|
* jcmaster.c's initial_setup will complain if input_components is 0. |
|
*/ |
|
cinfo->input_components = 1; |
|
/* Initialize master control (includes parameter checking/processing) */ |
|
jinit_c_master_control(cinfo, TRUE /* transcode only */); |
|
|
|
/* Entropy encoding: either Huffman or arithmetic coding. */ |
|
if (cinfo->arith_code) { |
|
#ifdef C_ARITH_CODING_SUPPORTED |
|
jinit_arith_encoder(cinfo); |
|
#else |
|
ERREXIT(cinfo, JERR_ARITH_NOTIMPL); |
|
#endif |
|
} else { |
|
if (cinfo->progressive_mode) { |
|
#ifdef C_PROGRESSIVE_SUPPORTED |
|
jinit_phuff_encoder(cinfo); |
|
#else |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
#endif |
|
} else |
|
jinit_huff_encoder(cinfo); |
|
} |
|
|
|
/* We need a special coefficient buffer controller. */ |
|
transencode_coef_controller(cinfo, coef_arrays); |
|
|
|
jinit_marker_writer(cinfo); |
|
|
|
/* We can now tell the memory manager to allocate virtual arrays. */ |
|
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo); |
|
|
|
/* Write the datastream header (SOI, JFIF) immediately. |
|
* Frame and scan headers are postponed till later. |
|
* This lets application insert special markers after the SOI. |
|
*/ |
|
(*cinfo->marker->write_file_header) (cinfo); |
|
} |
|
|
|
|
|
/* |
|
* The rest of this file is a special implementation of the coefficient |
|
* buffer controller. This is similar to jccoefct.c, but it handles only |
|
* output from presupplied virtual arrays. Furthermore, we generate any |
|
* dummy padding blocks on-the-fly rather than expecting them to be present |
|
* in the arrays. |
|
*/ |
|
|
|
/* Private buffer controller object */ |
|
|
|
typedef struct { |
|
struct jpeg_c_coef_controller pub; /* public fields */ |
|
|
|
JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
|
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ |
|
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
|
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
|
|
|
/* Virtual block array for each component. */ |
|
jvirt_barray_ptr *whole_image; |
|
|
|
/* Workspace for constructing dummy blocks at right/bottom edges. */ |
|
JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU]; |
|
} my_coef_controller; |
|
|
|
typedef my_coef_controller *my_coef_ptr; |
|
|
|
|
|
LOCAL(void) |
|
start_iMCU_row(j_compress_ptr cinfo) |
|
/* Reset within-iMCU-row counters for a new row */ |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
|
|
|
/* In an interleaved scan, an MCU row is the same as an iMCU row. |
|
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
|
* But at the bottom of the image, process only what's left. |
|
*/ |
|
if (cinfo->comps_in_scan > 1) { |
|
coef->MCU_rows_per_iMCU_row = 1; |
|
} else { |
|
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows - 1)) |
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
|
else |
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
|
} |
|
|
|
coef->mcu_ctr = 0; |
|
coef->MCU_vert_offset = 0; |
|
} |
|
|
|
|
|
/* |
|
* Initialize for a processing pass. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_coef(j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
|
|
|
if (pass_mode != JBUF_CRANK_DEST) |
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
|
|
|
coef->iMCU_row_num = 0; |
|
start_iMCU_row(cinfo); |
|
} |
|
|
|
|
|
/* |
|
* Process some data. |
|
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
|
* per call, ie, v_samp_factor block rows for each component in the scan. |
|
* The data is obtained from the virtual arrays and fed to the entropy coder. |
|
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
|
* |
|
* NB: input_buf is ignored; it is likely to be a NULL pointer. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
compress_output(j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
|
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
|
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
|
int blkn, ci, xindex, yindex, yoffset, blockcnt; |
|
JDIMENSION start_col; |
|
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
|
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
|
JBLOCKROW buffer_ptr; |
|
jpeg_component_info *compptr; |
|
|
|
/* Align the virtual buffers for the components used in this scan. */ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
buffer[ci] = (*cinfo->mem->access_virt_barray) |
|
((j_common_ptr)cinfo, coef->whole_image[compptr->component_index], |
|
coef->iMCU_row_num * compptr->v_samp_factor, |
|
(JDIMENSION)compptr->v_samp_factor, FALSE); |
|
} |
|
|
|
/* Loop to process one whole iMCU row */ |
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
|
yoffset++) { |
|
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; |
|
MCU_col_num++) { |
|
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
|
blkn = 0; /* index of current DCT block within MCU */ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
start_col = MCU_col_num * compptr->MCU_width; |
|
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : |
|
compptr->last_col_width; |
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
|
if (coef->iMCU_row_num < last_iMCU_row || |
|
yindex + yoffset < compptr->last_row_height) { |
|
/* Fill in pointers to real blocks in this row */ |
|
buffer_ptr = buffer[ci][yindex + yoffset] + start_col; |
|
for (xindex = 0; xindex < blockcnt; xindex++) |
|
MCU_buffer[blkn++] = buffer_ptr++; |
|
} else { |
|
/* At bottom of image, need a whole row of dummy blocks */ |
|
xindex = 0; |
|
} |
|
/* Fill in any dummy blocks needed in this row. |
|
* Dummy blocks are filled in the same way as in jccoefct.c: |
|
* all zeroes in the AC entries, DC entries equal to previous |
|
* block's DC value. The init routine has already zeroed the |
|
* AC entries, so we need only set the DC entries correctly. |
|
*/ |
|
for (; xindex < compptr->MCU_width; xindex++) { |
|
MCU_buffer[blkn] = coef->dummy_buffer[blkn]; |
|
MCU_buffer[blkn][0][0] = MCU_buffer[blkn - 1][0][0]; |
|
blkn++; |
|
} |
|
} |
|
} |
|
/* Try to write the MCU. */ |
|
if (!(*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { |
|
/* Suspension forced; update state counters and exit */ |
|
coef->MCU_vert_offset = yoffset; |
|
coef->mcu_ctr = MCU_col_num; |
|
return FALSE; |
|
} |
|
} |
|
/* Completed an MCU row, but perhaps not an iMCU row */ |
|
coef->mcu_ctr = 0; |
|
} |
|
/* Completed the iMCU row, advance counters for next one */ |
|
coef->iMCU_row_num++; |
|
start_iMCU_row(cinfo); |
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* Initialize coefficient buffer controller. |
|
* |
|
* Each passed coefficient array must be the right size for that |
|
* coefficient: width_in_blocks wide and height_in_blocks high, |
|
* with unitheight at least v_samp_factor. |
|
*/ |
|
|
|
LOCAL(void) |
|
transencode_coef_controller(j_compress_ptr cinfo, |
|
jvirt_barray_ptr *coef_arrays) |
|
{ |
|
my_coef_ptr coef; |
|
JBLOCKROW buffer; |
|
int i; |
|
|
|
coef = (my_coef_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
sizeof(my_coef_controller)); |
|
cinfo->coef = (struct jpeg_c_coef_controller *)coef; |
|
coef->pub.start_pass = start_pass_coef; |
|
coef->pub.compress_data = compress_output; |
|
|
|
/* Save pointer to virtual arrays */ |
|
coef->whole_image = coef_arrays; |
|
|
|
/* Allocate and pre-zero space for dummy DCT blocks. */ |
|
buffer = (JBLOCKROW) |
|
(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |
|
jzero_far((void *)buffer, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |
|
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { |
|
coef->dummy_buffer[i] = buffer + i; |
|
} |
|
}
|
|
|