mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
6.7 KiB
208 lines
6.7 KiB
#include <iostream> // for standard I/O |
|
#include <string> // for strings |
|
#include <iomanip> // for controlling float print precision |
|
#include <sstream> // string to number conversion |
|
|
|
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar) |
|
#include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur |
|
#include <opencv2/videoio/videoio.hpp> |
|
#include <opencv2/highgui/highgui.hpp> // OpenCV window I/O |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
double getPSNR ( const Mat& I1, const Mat& I2); |
|
Scalar getMSSIM( const Mat& I1, const Mat& I2); |
|
|
|
static void help() |
|
{ |
|
cout |
|
<< "------------------------------------------------------------------------------" << endl |
|
<< "This program shows how to read a video file with OpenCV. In addition, it " |
|
<< "tests the similarity of two input videos first with PSNR, and for the frames " |
|
<< "below a PSNR trigger value, also with MSSIM." << endl |
|
<< "Usage:" << endl |
|
<< "./video-source referenceVideo useCaseTestVideo PSNR_Trigger_Value Wait_Between_Frames " << endl |
|
<< "--------------------------------------------------------------------------" << endl |
|
<< endl; |
|
} |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
help(); |
|
|
|
if (argc != 5) |
|
{ |
|
cout << "Not enough parameters" << endl; |
|
return -1; |
|
} |
|
|
|
stringstream conv; |
|
|
|
const string sourceReference = argv[1], sourceCompareWith = argv[2]; |
|
int psnrTriggerValue, delay; |
|
conv << argv[3] << endl << argv[4]; // put in the strings |
|
conv >> psnrTriggerValue >> delay; // take out the numbers |
|
|
|
char c; |
|
int frameNum = -1; // Frame counter |
|
|
|
VideoCapture captRefrnc(sourceReference), captUndTst(sourceCompareWith); |
|
|
|
if (!captRefrnc.isOpened()) |
|
{ |
|
cout << "Could not open reference " << sourceReference << endl; |
|
return -1; |
|
} |
|
|
|
if (!captUndTst.isOpened()) |
|
{ |
|
cout << "Could not open case test " << sourceCompareWith << endl; |
|
return -1; |
|
} |
|
|
|
Size refS = Size((int) captRefrnc.get(CAP_PROP_FRAME_WIDTH), |
|
(int) captRefrnc.get(CAP_PROP_FRAME_HEIGHT)), |
|
uTSi = Size((int) captUndTst.get(CAP_PROP_FRAME_WIDTH), |
|
(int) captUndTst.get(CAP_PROP_FRAME_HEIGHT)); |
|
|
|
if (refS != uTSi) |
|
{ |
|
cout << "Inputs have different size!!! Closing." << endl; |
|
return -1; |
|
} |
|
|
|
const char* WIN_UT = "Under Test"; |
|
const char* WIN_RF = "Reference"; |
|
|
|
// Windows |
|
namedWindow(WIN_RF, WINDOW_AUTOSIZE); |
|
namedWindow(WIN_UT, WINDOW_AUTOSIZE); |
|
moveWindow(WIN_RF, 400 , 0); //750, 2 (bernat =0) |
|
moveWindow(WIN_UT, refS.width, 0); //1500, 2 |
|
|
|
cout << "Reference frame resolution: Width=" << refS.width << " Height=" << refS.height |
|
<< " of nr#: " << captRefrnc.get(CAP_PROP_FRAME_COUNT) << endl; |
|
|
|
cout << "PSNR trigger value " << setiosflags(ios::fixed) << setprecision(3) |
|
<< psnrTriggerValue << endl; |
|
|
|
Mat frameReference, frameUnderTest; |
|
double psnrV; |
|
Scalar mssimV; |
|
|
|
for(;;) //Show the image captured in the window and repeat |
|
{ |
|
captRefrnc >> frameReference; |
|
captUndTst >> frameUnderTest; |
|
|
|
if (frameReference.empty() || frameUnderTest.empty()) |
|
{ |
|
cout << " < < < Game over! > > > "; |
|
break; |
|
} |
|
|
|
++frameNum; |
|
cout << "Frame: " << frameNum << "# "; |
|
|
|
///////////////////////////////// PSNR //////////////////////////////////////////////////// |
|
psnrV = getPSNR(frameReference,frameUnderTest); |
|
cout << setiosflags(ios::fixed) << setprecision(3) << psnrV << "dB"; |
|
|
|
//////////////////////////////////// MSSIM ///////////////////////////////////////////////// |
|
if (psnrV < psnrTriggerValue && psnrV) |
|
{ |
|
mssimV = getMSSIM(frameReference, frameUnderTest); |
|
|
|
cout << " MSSIM: " |
|
<< " R " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[2] * 100 << "%" |
|
<< " G " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[1] * 100 << "%" |
|
<< " B " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[0] * 100 << "%"; |
|
} |
|
|
|
cout << endl; |
|
|
|
////////////////////////////////// Show Image ///////////////////////////////////////////// |
|
imshow(WIN_RF, frameReference); |
|
imshow(WIN_UT, frameUnderTest); |
|
|
|
c = (char)waitKey(delay); |
|
if (c == 27) break; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
double getPSNR(const Mat& I1, const Mat& I2) |
|
{ |
|
Mat s1; |
|
absdiff(I1, I2, s1); // |I1 - I2| |
|
s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits |
|
s1 = s1.mul(s1); // |I1 - I2|^2 |
|
|
|
Scalar s = sum(s1); // sum elements per channel |
|
|
|
double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels |
|
|
|
if( sse <= 1e-10) // for small values return zero |
|
return 0; |
|
else |
|
{ |
|
double mse = sse / (double)(I1.channels() * I1.total()); |
|
double psnr = 10.0 * log10((255 * 255) / mse); |
|
return psnr; |
|
} |
|
} |
|
|
|
Scalar getMSSIM( const Mat& i1, const Mat& i2) |
|
{ |
|
const double C1 = 6.5025, C2 = 58.5225; |
|
/***************************** INITS **********************************/ |
|
int d = CV_32F; |
|
|
|
Mat I1, I2; |
|
i1.convertTo(I1, d); // cannot calculate on one byte large values |
|
i2.convertTo(I2, d); |
|
|
|
Mat I2_2 = I2.mul(I2); // I2^2 |
|
Mat I1_2 = I1.mul(I1); // I1^2 |
|
Mat I1_I2 = I1.mul(I2); // I1 * I2 |
|
|
|
/*************************** END INITS **********************************/ |
|
|
|
Mat mu1, mu2; // PRELIMINARY COMPUTING |
|
GaussianBlur(I1, mu1, Size(11, 11), 1.5); |
|
GaussianBlur(I2, mu2, Size(11, 11), 1.5); |
|
|
|
Mat mu1_2 = mu1.mul(mu1); |
|
Mat mu2_2 = mu2.mul(mu2); |
|
Mat mu1_mu2 = mu1.mul(mu2); |
|
|
|
Mat sigma1_2, sigma2_2, sigma12; |
|
|
|
GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5); |
|
sigma1_2 -= mu1_2; |
|
|
|
GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5); |
|
sigma2_2 -= mu2_2; |
|
|
|
GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5); |
|
sigma12 -= mu1_mu2; |
|
|
|
///////////////////////////////// FORMULA //////////////////////////////// |
|
Mat t1, t2, t3; |
|
|
|
t1 = 2 * mu1_mu2 + C1; |
|
t2 = 2 * sigma12 + C2; |
|
t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2)) |
|
|
|
t1 = mu1_2 + mu2_2 + C1; |
|
t2 = sigma1_2 + sigma2_2 + C2; |
|
t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2)) |
|
|
|
Mat ssim_map; |
|
divide(t3, t1, ssim_map); // ssim_map = t3./t1; |
|
|
|
Scalar mssim = mean(ssim_map); // mssim = average of ssim map |
|
return mssim; |
|
}
|
|
|