mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2573 lines
107 KiB
2573 lines
107 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
/* Haar features calculation */ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/imgproc/imgproc_c.h" |
|
#include "opencv2/objdetect/objdetect_c.h" |
|
#include <stdio.h> |
|
|
|
#if CV_SSE2 |
|
# if 1 /*!CV_SSE4_1 && !CV_SSE4_2*/ |
|
# define _mm_blendv_pd(a, b, m) _mm_xor_pd(a, _mm_and_pd(_mm_xor_pd(b, a), m)) |
|
# define _mm_blendv_ps(a, b, m) _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(b, a), m)) |
|
# endif |
|
#endif |
|
|
|
#if 0 /*CV_AVX*/ |
|
# define CV_HAAR_USE_AVX 1 |
|
# if defined _MSC_VER |
|
# pragma warning( disable : 4752 ) |
|
# endif |
|
#else |
|
# if CV_SSE2 |
|
# define CV_HAAR_USE_SSE 1 |
|
# endif |
|
#endif |
|
|
|
/* these settings affect the quality of detection: change with care */ |
|
#define CV_ADJUST_FEATURES 1 |
|
#define CV_ADJUST_WEIGHTS 0 |
|
|
|
typedef int sumtype; |
|
typedef double sqsumtype; |
|
|
|
typedef struct CvHidHaarFeature |
|
{ |
|
struct |
|
{ |
|
sumtype *p0, *p1, *p2, *p3; |
|
float weight; |
|
} |
|
rect[CV_HAAR_FEATURE_MAX]; |
|
} CvHidHaarFeature; |
|
|
|
|
|
typedef struct CvHidHaarTreeNode |
|
{ |
|
CvHidHaarFeature feature; |
|
float threshold; |
|
int left; |
|
int right; |
|
} CvHidHaarTreeNode; |
|
|
|
|
|
typedef struct CvHidHaarClassifier |
|
{ |
|
int count; |
|
//CvHaarFeature* orig_feature; |
|
CvHidHaarTreeNode* node; |
|
float* alpha; |
|
} CvHidHaarClassifier; |
|
|
|
|
|
typedef struct CvHidHaarStageClassifier |
|
{ |
|
int count; |
|
float threshold; |
|
CvHidHaarClassifier* classifier; |
|
int two_rects; |
|
|
|
struct CvHidHaarStageClassifier* next; |
|
struct CvHidHaarStageClassifier* child; |
|
struct CvHidHaarStageClassifier* parent; |
|
} CvHidHaarStageClassifier; |
|
|
|
|
|
typedef struct CvHidHaarClassifierCascade |
|
{ |
|
int count; |
|
int isStumpBased; |
|
int has_tilted_features; |
|
int is_tree; |
|
double inv_window_area; |
|
CvMat sum, sqsum, tilted; |
|
CvHidHaarStageClassifier* stage_classifier; |
|
sqsumtype *pq0, *pq1, *pq2, *pq3; |
|
sumtype *p0, *p1, *p2, *p3; |
|
|
|
void** ipp_stages; |
|
} CvHidHaarClassifierCascade; |
|
|
|
|
|
const int icv_object_win_border = 1; |
|
const float icv_stage_threshold_bias = 0.0001f; |
|
|
|
static CvHaarClassifierCascade* |
|
icvCreateHaarClassifierCascade( int stage_count ) |
|
{ |
|
CvHaarClassifierCascade* cascade = 0; |
|
|
|
int block_size = sizeof(*cascade) + stage_count*sizeof(*cascade->stage_classifier); |
|
|
|
if( stage_count <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "Number of stages should be positive" ); |
|
|
|
cascade = (CvHaarClassifierCascade*)cvAlloc( block_size ); |
|
memset( cascade, 0, block_size ); |
|
|
|
cascade->stage_classifier = (CvHaarStageClassifier*)(cascade + 1); |
|
cascade->flags = CV_HAAR_MAGIC_VAL; |
|
cascade->count = stage_count; |
|
|
|
return cascade; |
|
} |
|
|
|
static void |
|
icvReleaseHidHaarClassifierCascade( CvHidHaarClassifierCascade** _cascade ) |
|
{ |
|
if( _cascade && *_cascade ) |
|
{ |
|
#ifdef HAVE_IPP |
|
CvHidHaarClassifierCascade* cascade = *_cascade; |
|
if( CV_IPP_CHECK_COND && cascade->ipp_stages ) |
|
{ |
|
int i; |
|
for( i = 0; i < cascade->count; i++ ) |
|
{ |
|
if( cascade->ipp_stages[i] ) |
|
#if IPP_VERSION_X100 < 900 |
|
ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)cascade->ipp_stages[i] ); |
|
#else |
|
cvFree(&cascade->ipp_stages[i]); |
|
#endif |
|
} |
|
} |
|
cvFree( &cascade->ipp_stages ); |
|
#endif |
|
cvFree( _cascade ); |
|
} |
|
} |
|
|
|
/* create more efficient internal representation of haar classifier cascade */ |
|
static CvHidHaarClassifierCascade* |
|
icvCreateHidHaarClassifierCascade( CvHaarClassifierCascade* cascade ) |
|
{ |
|
CvRect* ipp_features = 0; |
|
float *ipp_weights = 0, *ipp_thresholds = 0, *ipp_val1 = 0, *ipp_val2 = 0; |
|
int* ipp_counts = 0; |
|
|
|
CvHidHaarClassifierCascade* out = 0; |
|
|
|
int i, j, k, l; |
|
int datasize; |
|
int total_classifiers = 0; |
|
int total_nodes = 0; |
|
char errorstr[1000]; |
|
CvHidHaarClassifier* haar_classifier_ptr; |
|
CvHidHaarTreeNode* haar_node_ptr; |
|
CvSize orig_window_size; |
|
int has_tilted_features = 0; |
|
int max_count = 0; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) ) |
|
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); |
|
|
|
if( cascade->hid_cascade ) |
|
CV_Error( CV_StsError, "hid_cascade has been already created" ); |
|
|
|
if( !cascade->stage_classifier ) |
|
CV_Error( CV_StsNullPtr, "" ); |
|
|
|
if( cascade->count <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" ); |
|
|
|
orig_window_size = cascade->orig_window_size; |
|
|
|
/* check input structure correctness and calculate total memory size needed for |
|
internal representation of the classifier cascade */ |
|
for( i = 0; i < cascade->count; i++ ) |
|
{ |
|
CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i; |
|
|
|
if( !stage_classifier->classifier || |
|
stage_classifier->count <= 0 ) |
|
{ |
|
sprintf( errorstr, "header of the stage classifier #%d is invalid " |
|
"(has null pointers or non-positive classfier count)", i ); |
|
CV_Error( CV_StsError, errorstr ); |
|
} |
|
|
|
max_count = MAX( max_count, stage_classifier->count ); |
|
total_classifiers += stage_classifier->count; |
|
|
|
for( j = 0; j < stage_classifier->count; j++ ) |
|
{ |
|
CvHaarClassifier* classifier = stage_classifier->classifier + j; |
|
|
|
total_nodes += classifier->count; |
|
for( l = 0; l < classifier->count; l++ ) |
|
{ |
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) |
|
{ |
|
if( classifier->haar_feature[l].rect[k].r.width ) |
|
{ |
|
CvRect r = classifier->haar_feature[l].rect[k].r; |
|
int tilted = classifier->haar_feature[l].tilted; |
|
has_tilted_features |= tilted != 0; |
|
if( r.width < 0 || r.height < 0 || r.y < 0 || |
|
r.x + r.width > orig_window_size.width |
|
|| |
|
(!tilted && |
|
(r.x < 0 || r.y + r.height > orig_window_size.height)) |
|
|| |
|
(tilted && (r.x - r.height < 0 || |
|
r.y + r.width + r.height > orig_window_size.height))) |
|
{ |
|
sprintf( errorstr, "rectangle #%d of the classifier #%d of " |
|
"the stage classifier #%d is not inside " |
|
"the reference (original) cascade window", k, j, i ); |
|
CV_Error( CV_StsNullPtr, errorstr ); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// this is an upper boundary for the whole hidden cascade size |
|
datasize = sizeof(CvHidHaarClassifierCascade) + |
|
sizeof(CvHidHaarStageClassifier)*cascade->count + |
|
sizeof(CvHidHaarClassifier) * total_classifiers + |
|
sizeof(CvHidHaarTreeNode) * total_nodes + |
|
sizeof(void*)*(total_nodes + total_classifiers); |
|
|
|
out = (CvHidHaarClassifierCascade*)cvAlloc( datasize ); |
|
memset( out, 0, sizeof(*out) ); |
|
|
|
/* init header */ |
|
out->count = cascade->count; |
|
out->stage_classifier = (CvHidHaarStageClassifier*)(out + 1); |
|
haar_classifier_ptr = (CvHidHaarClassifier*)(out->stage_classifier + cascade->count); |
|
haar_node_ptr = (CvHidHaarTreeNode*)(haar_classifier_ptr + total_classifiers); |
|
|
|
out->isStumpBased = 1; |
|
out->has_tilted_features = has_tilted_features; |
|
out->is_tree = 0; |
|
|
|
/* initialize internal representation */ |
|
for( i = 0; i < cascade->count; i++ ) |
|
{ |
|
CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i; |
|
CvHidHaarStageClassifier* hid_stage_classifier = out->stage_classifier + i; |
|
|
|
hid_stage_classifier->count = stage_classifier->count; |
|
hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias; |
|
hid_stage_classifier->classifier = haar_classifier_ptr; |
|
hid_stage_classifier->two_rects = 1; |
|
haar_classifier_ptr += stage_classifier->count; |
|
|
|
hid_stage_classifier->parent = (stage_classifier->parent == -1) |
|
? NULL : out->stage_classifier + stage_classifier->parent; |
|
hid_stage_classifier->next = (stage_classifier->next == -1) |
|
? NULL : out->stage_classifier + stage_classifier->next; |
|
hid_stage_classifier->child = (stage_classifier->child == -1) |
|
? NULL : out->stage_classifier + stage_classifier->child; |
|
|
|
out->is_tree |= hid_stage_classifier->next != NULL; |
|
|
|
for( j = 0; j < stage_classifier->count; j++ ) |
|
{ |
|
CvHaarClassifier* classifier = stage_classifier->classifier + j; |
|
CvHidHaarClassifier* hid_classifier = hid_stage_classifier->classifier + j; |
|
int node_count = classifier->count; |
|
float* alpha_ptr = (float*)(haar_node_ptr + node_count); |
|
|
|
hid_classifier->count = node_count; |
|
hid_classifier->node = haar_node_ptr; |
|
hid_classifier->alpha = alpha_ptr; |
|
|
|
for( l = 0; l < node_count; l++ ) |
|
{ |
|
CvHidHaarTreeNode* node = hid_classifier->node + l; |
|
CvHaarFeature* feature = classifier->haar_feature + l; |
|
memset( node, -1, sizeof(*node) ); |
|
node->threshold = classifier->threshold[l]; |
|
node->left = classifier->left[l]; |
|
node->right = classifier->right[l]; |
|
|
|
if( fabs(feature->rect[2].weight) < DBL_EPSILON || |
|
feature->rect[2].r.width == 0 || |
|
feature->rect[2].r.height == 0 ) |
|
memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) ); |
|
else |
|
hid_stage_classifier->two_rects = 0; |
|
} |
|
|
|
memcpy( alpha_ptr, classifier->alpha, (node_count+1)*sizeof(alpha_ptr[0])); |
|
haar_node_ptr = |
|
(CvHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*)); |
|
|
|
out->isStumpBased &= node_count == 1; |
|
} |
|
} |
|
/* |
|
#ifdef HAVE_IPP |
|
int can_use_ipp = CV_IPP_CHECK_COND && (!out->has_tilted_features && !out->is_tree && out->isStumpBased); |
|
|
|
if( can_use_ipp ) |
|
{ |
|
int ipp_datasize = cascade->count*sizeof(out->ipp_stages[0]); |
|
float ipp_weight_scale=(float)(1./((orig_window_size.width-icv_object_win_border*2)* |
|
(orig_window_size.height-icv_object_win_border*2))); |
|
|
|
out->ipp_stages = (void**)cvAlloc( ipp_datasize ); |
|
memset( out->ipp_stages, 0, ipp_datasize ); |
|
|
|
ipp_features = (CvRect*)cvAlloc( max_count*3*sizeof(ipp_features[0]) ); |
|
ipp_weights = (float*)cvAlloc( max_count*3*sizeof(ipp_weights[0]) ); |
|
ipp_thresholds = (float*)cvAlloc( max_count*sizeof(ipp_thresholds[0]) ); |
|
ipp_val1 = (float*)cvAlloc( max_count*sizeof(ipp_val1[0]) ); |
|
ipp_val2 = (float*)cvAlloc( max_count*sizeof(ipp_val2[0]) ); |
|
ipp_counts = (int*)cvAlloc( max_count*sizeof(ipp_counts[0]) ); |
|
|
|
for( i = 0; i < cascade->count; i++ ) |
|
{ |
|
CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i; |
|
for( j = 0, k = 0; j < stage_classifier->count; j++ ) |
|
{ |
|
CvHaarClassifier* classifier = stage_classifier->classifier + j; |
|
int rect_count = 2 + (classifier->haar_feature->rect[2].r.width != 0); |
|
|
|
ipp_thresholds[j] = classifier->threshold[0]; |
|
ipp_val1[j] = classifier->alpha[0]; |
|
ipp_val2[j] = classifier->alpha[1]; |
|
ipp_counts[j] = rect_count; |
|
|
|
for( l = 0; l < rect_count; l++, k++ ) |
|
{ |
|
ipp_features[k] = classifier->haar_feature->rect[l].r; |
|
//ipp_features[k].y = orig_window_size.height - ipp_features[k].y - ipp_features[k].height; |
|
ipp_weights[k] = classifier->haar_feature->rect[l].weight*ipp_weight_scale; |
|
} |
|
} |
|
|
|
if( ippiHaarClassifierInitAlloc_32f( (IppiHaarClassifier_32f**)&out->ipp_stages[i], |
|
(const IppiRect*)ipp_features, ipp_weights, ipp_thresholds, |
|
ipp_val1, ipp_val2, ipp_counts, stage_classifier->count ) < 0 ) |
|
break; |
|
} |
|
|
|
if( i < cascade->count ) |
|
{ |
|
for( j = 0; j < i; j++ ) |
|
if( out->ipp_stages[i] ) |
|
ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)out->ipp_stages[i] ); |
|
cvFree( &out->ipp_stages ); |
|
} |
|
} |
|
#endif |
|
*/ |
|
cascade->hid_cascade = out; |
|
assert( (char*)haar_node_ptr - (char*)out <= datasize ); |
|
|
|
cvFree( &ipp_features ); |
|
cvFree( &ipp_weights ); |
|
cvFree( &ipp_thresholds ); |
|
cvFree( &ipp_val1 ); |
|
cvFree( &ipp_val2 ); |
|
cvFree( &ipp_counts ); |
|
|
|
return out; |
|
} |
|
|
|
|
|
#define sum_elem_ptr(sum,row,col) \ |
|
((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype))) |
|
|
|
#define sqsum_elem_ptr(sqsum,row,col) \ |
|
((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype))) |
|
|
|
#define calc_sum(rect,offset) \ |
|
((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) |
|
|
|
#define calc_sumf(rect,offset) \ |
|
static_cast<float>((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) |
|
|
|
|
|
CV_IMPL void |
|
cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade, |
|
const CvArr* _sum, |
|
const CvArr* _sqsum, |
|
const CvArr* _tilted_sum, |
|
double scale ) |
|
{ |
|
CvMat sum_stub, *sum = (CvMat*)_sum; |
|
CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum; |
|
CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum; |
|
CvHidHaarClassifierCascade* cascade; |
|
int coi0 = 0, coi1 = 0; |
|
int i; |
|
CvRect equRect; |
|
double weight_scale; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) |
|
CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); |
|
|
|
if( scale <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "Scale must be positive" ); |
|
|
|
sum = cvGetMat( sum, &sum_stub, &coi0 ); |
|
sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 ); |
|
|
|
if( coi0 || coi1 ) |
|
CV_Error( CV_BadCOI, "COI is not supported" ); |
|
|
|
if( !CV_ARE_SIZES_EQ( sum, sqsum )) |
|
CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" ); |
|
|
|
if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 || |
|
CV_MAT_TYPE(sum->type) != CV_32SC1 ) |
|
CV_Error( CV_StsUnsupportedFormat, |
|
"Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" ); |
|
|
|
if( !_cascade->hid_cascade ) |
|
icvCreateHidHaarClassifierCascade(_cascade); |
|
|
|
cascade = _cascade->hid_cascade; |
|
|
|
if( cascade->has_tilted_features ) |
|
{ |
|
tilted = cvGetMat( tilted, &tilted_stub, &coi1 ); |
|
|
|
if( CV_MAT_TYPE(tilted->type) != CV_32SC1 ) |
|
CV_Error( CV_StsUnsupportedFormat, |
|
"Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" ); |
|
|
|
if( sum->step != tilted->step ) |
|
CV_Error( CV_StsUnmatchedSizes, |
|
"Sum and tilted_sum must have the same stride (step, widthStep)" ); |
|
|
|
if( !CV_ARE_SIZES_EQ( sum, tilted )) |
|
CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" ); |
|
cascade->tilted = *tilted; |
|
} |
|
|
|
_cascade->scale = scale; |
|
_cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale ); |
|
_cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale ); |
|
|
|
cascade->sum = *sum; |
|
cascade->sqsum = *sqsum; |
|
|
|
equRect.x = equRect.y = cvRound(scale); |
|
equRect.width = cvRound((_cascade->orig_window_size.width-2)*scale); |
|
equRect.height = cvRound((_cascade->orig_window_size.height-2)*scale); |
|
weight_scale = 1./(equRect.width*equRect.height); |
|
cascade->inv_window_area = weight_scale; |
|
|
|
cascade->p0 = sum_elem_ptr(*sum, equRect.y, equRect.x); |
|
cascade->p1 = sum_elem_ptr(*sum, equRect.y, equRect.x + equRect.width ); |
|
cascade->p2 = sum_elem_ptr(*sum, equRect.y + equRect.height, equRect.x ); |
|
cascade->p3 = sum_elem_ptr(*sum, equRect.y + equRect.height, |
|
equRect.x + equRect.width ); |
|
|
|
cascade->pq0 = sqsum_elem_ptr(*sqsum, equRect.y, equRect.x); |
|
cascade->pq1 = sqsum_elem_ptr(*sqsum, equRect.y, equRect.x + equRect.width ); |
|
cascade->pq2 = sqsum_elem_ptr(*sqsum, equRect.y + equRect.height, equRect.x ); |
|
cascade->pq3 = sqsum_elem_ptr(*sqsum, equRect.y + equRect.height, |
|
equRect.x + equRect.width ); |
|
|
|
/* init pointers in haar features according to real window size and |
|
given image pointers */ |
|
for( i = 0; i < _cascade->count; i++ ) |
|
{ |
|
int j, k, l; |
|
for( j = 0; j < cascade->stage_classifier[i].count; j++ ) |
|
{ |
|
for( l = 0; l < cascade->stage_classifier[i].classifier[j].count; l++ ) |
|
{ |
|
CvHaarFeature* feature = |
|
&_cascade->stage_classifier[i].classifier[j].haar_feature[l]; |
|
/* CvHidHaarClassifier* classifier = |
|
cascade->stage_classifier[i].classifier + j; */ |
|
CvHidHaarFeature* hidfeature = |
|
&cascade->stage_classifier[i].classifier[j].node[l].feature; |
|
double sum0 = 0, area0 = 0; |
|
CvRect r[3]; |
|
|
|
int base_w = -1, base_h = -1; |
|
int new_base_w = 0, new_base_h = 0; |
|
int kx, ky; |
|
int flagx = 0, flagy = 0; |
|
int x0 = 0, y0 = 0; |
|
int nr; |
|
|
|
/* align blocks */ |
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) |
|
{ |
|
if( !hidfeature->rect[k].p0 ) |
|
break; |
|
r[k] = feature->rect[k].r; |
|
base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) ); |
|
base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) ); |
|
base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) ); |
|
base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) ); |
|
} |
|
|
|
nr = k; |
|
|
|
base_w += 1; |
|
base_h += 1; |
|
kx = r[0].width / base_w; |
|
ky = r[0].height / base_h; |
|
|
|
if( kx <= 0 ) |
|
{ |
|
flagx = 1; |
|
new_base_w = cvRound( r[0].width * scale ) / kx; |
|
x0 = cvRound( r[0].x * scale ); |
|
} |
|
|
|
if( ky <= 0 ) |
|
{ |
|
flagy = 1; |
|
new_base_h = cvRound( r[0].height * scale ) / ky; |
|
y0 = cvRound( r[0].y * scale ); |
|
} |
|
|
|
for( k = 0; k < nr; k++ ) |
|
{ |
|
CvRect tr; |
|
double correction_ratio; |
|
|
|
if( flagx ) |
|
{ |
|
tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0; |
|
tr.width = r[k].width * new_base_w / base_w; |
|
} |
|
else |
|
{ |
|
tr.x = cvRound( r[k].x * scale ); |
|
tr.width = cvRound( r[k].width * scale ); |
|
} |
|
|
|
if( flagy ) |
|
{ |
|
tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0; |
|
tr.height = r[k].height * new_base_h / base_h; |
|
} |
|
else |
|
{ |
|
tr.y = cvRound( r[k].y * scale ); |
|
tr.height = cvRound( r[k].height * scale ); |
|
} |
|
|
|
#if CV_ADJUST_WEIGHTS |
|
{ |
|
// RAINER START |
|
const float orig_feature_size = (float)(feature->rect[k].r.width)*feature->rect[k].r.height; |
|
const float orig_norm_size = (float)(_cascade->orig_window_size.width)*(_cascade->orig_window_size.height); |
|
const float feature_size = float(tr.width*tr.height); |
|
//const float normSize = float(equRect.width*equRect.height); |
|
float target_ratio = orig_feature_size / orig_norm_size; |
|
//float isRatio = featureSize / normSize; |
|
//correctionRatio = targetRatio / isRatio / normSize; |
|
correction_ratio = target_ratio / feature_size; |
|
// RAINER END |
|
} |
|
#else |
|
correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5); |
|
#endif |
|
|
|
if( !feature->tilted ) |
|
{ |
|
hidfeature->rect[k].p0 = sum_elem_ptr(*sum, tr.y, tr.x); |
|
hidfeature->rect[k].p1 = sum_elem_ptr(*sum, tr.y, tr.x + tr.width); |
|
hidfeature->rect[k].p2 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x); |
|
hidfeature->rect[k].p3 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x + tr.width); |
|
} |
|
else |
|
{ |
|
hidfeature->rect[k].p2 = sum_elem_ptr(*tilted, tr.y + tr.width, tr.x + tr.width); |
|
hidfeature->rect[k].p3 = sum_elem_ptr(*tilted, tr.y + tr.width + tr.height, |
|
tr.x + tr.width - tr.height); |
|
hidfeature->rect[k].p0 = sum_elem_ptr(*tilted, tr.y, tr.x); |
|
hidfeature->rect[k].p1 = sum_elem_ptr(*tilted, tr.y + tr.height, tr.x - tr.height); |
|
} |
|
|
|
hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio); |
|
|
|
if( k == 0 ) |
|
area0 = tr.width * tr.height; |
|
else |
|
sum0 += hidfeature->rect[k].weight * tr.width * tr.height; |
|
} |
|
|
|
hidfeature->rect[0].weight = (float)(-sum0/area0); |
|
} /* l */ |
|
} /* j */ |
|
} |
|
} |
|
|
|
|
|
// AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!! |
|
#ifdef CV_HAAR_USE_AVX |
|
CV_INLINE |
|
double icvEvalHidHaarClassifierAVX( CvHidHaarClassifier* classifier, |
|
double variance_norm_factor, size_t p_offset ) |
|
{ |
|
int CV_DECL_ALIGNED(32) idxV[8] = {0,0,0,0,0,0,0,0}; |
|
uchar flags[8] = {0,0,0,0,0,0,0,0}; |
|
CvHidHaarTreeNode* nodes[8]; |
|
double res = 0; |
|
uchar exitConditionFlag = 0; |
|
for(;;) |
|
{ |
|
float CV_DECL_ALIGNED(32) tmp[8] = {0,0,0,0,0,0,0,0}; |
|
nodes[0] = (classifier+0)->node + idxV[0]; |
|
nodes[1] = (classifier+1)->node + idxV[1]; |
|
nodes[2] = (classifier+2)->node + idxV[2]; |
|
nodes[3] = (classifier+3)->node + idxV[3]; |
|
nodes[4] = (classifier+4)->node + idxV[4]; |
|
nodes[5] = (classifier+5)->node + idxV[5]; |
|
nodes[6] = (classifier+6)->node + idxV[6]; |
|
nodes[7] = (classifier+7)->node + idxV[7]; |
|
|
|
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor)); |
|
|
|
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold, |
|
nodes[6]->threshold, |
|
nodes[5]->threshold, |
|
nodes[4]->threshold, |
|
nodes[3]->threshold, |
|
nodes[2]->threshold, |
|
nodes[1]->threshold, |
|
nodes[0]->threshold)); |
|
|
|
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[6]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[5]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[4]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[3]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[2]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[1]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[0]->feature.rect[0], p_offset)); |
|
|
|
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, |
|
nodes[6]->feature.rect[0].weight, |
|
nodes[5]->feature.rect[0].weight, |
|
nodes[4]->feature.rect[0].weight, |
|
nodes[3]->feature.rect[0].weight, |
|
nodes[2]->feature.rect[0].weight, |
|
nodes[1]->feature.rect[0].weight, |
|
nodes[0]->feature.rect[0].weight); |
|
|
|
__m256 sum = _mm256_mul_ps(offset, weight); |
|
|
|
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[6]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[5]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[4]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[3]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[2]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[1]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[0]->feature.rect[1], p_offset)); |
|
|
|
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, |
|
nodes[6]->feature.rect[1].weight, |
|
nodes[5]->feature.rect[1].weight, |
|
nodes[4]->feature.rect[1].weight, |
|
nodes[3]->feature.rect[1].weight, |
|
nodes[2]->feature.rect[1].weight, |
|
nodes[1]->feature.rect[1].weight, |
|
nodes[0]->feature.rect[1].weight); |
|
|
|
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight)); |
|
|
|
if( nodes[0]->feature.rect[2].p0 ) |
|
tmp[0] = calc_sumf(nodes[0]->feature.rect[2], p_offset) * nodes[0]->feature.rect[2].weight; |
|
if( nodes[1]->feature.rect[2].p0 ) |
|
tmp[1] = calc_sumf(nodes[1]->feature.rect[2], p_offset) * nodes[1]->feature.rect[2].weight; |
|
if( nodes[2]->feature.rect[2].p0 ) |
|
tmp[2] = calc_sumf(nodes[2]->feature.rect[2], p_offset) * nodes[2]->feature.rect[2].weight; |
|
if( nodes[3]->feature.rect[2].p0 ) |
|
tmp[3] = calc_sumf(nodes[3]->feature.rect[2], p_offset) * nodes[3]->feature.rect[2].weight; |
|
if( nodes[4]->feature.rect[2].p0 ) |
|
tmp[4] = calc_sumf(nodes[4]->feature.rect[2], p_offset) * nodes[4]->feature.rect[2].weight; |
|
if( nodes[5]->feature.rect[2].p0 ) |
|
tmp[5] = calc_sumf(nodes[5]->feature.rect[2], p_offset) * nodes[5]->feature.rect[2].weight; |
|
if( nodes[6]->feature.rect[2].p0 ) |
|
tmp[6] = calc_sumf(nodes[6]->feature.rect[2], p_offset) * nodes[6]->feature.rect[2].weight; |
|
if( nodes[7]->feature.rect[2].p0 ) |
|
tmp[7] = calc_sumf(nodes[7]->feature.rect[2], p_offset) * nodes[7]->feature.rect[2].weight; |
|
|
|
sum = _mm256_add_ps(sum,_mm256_load_ps(tmp)); |
|
|
|
__m256 left = _mm256_set_ps(static_cast<float>(nodes[7]->left), static_cast<float>(nodes[6]->left), |
|
static_cast<float>(nodes[5]->left), static_cast<float>(nodes[4]->left), |
|
static_cast<float>(nodes[3]->left), static_cast<float>(nodes[2]->left), |
|
static_cast<float>(nodes[1]->left), static_cast<float>(nodes[0]->left)); |
|
__m256 right = _mm256_set_ps(static_cast<float>(nodes[7]->right),static_cast<float>(nodes[6]->right), |
|
static_cast<float>(nodes[5]->right),static_cast<float>(nodes[4]->right), |
|
static_cast<float>(nodes[3]->right),static_cast<float>(nodes[2]->right), |
|
static_cast<float>(nodes[1]->right),static_cast<float>(nodes[0]->right)); |
|
|
|
_mm256_store_si256((__m256i*)idxV, _mm256_cvttps_epi32(_mm256_blendv_ps(right, left, _mm256_cmp_ps(sum, t, _CMP_LT_OQ)))); |
|
|
|
for(int i = 0; i < 8; i++) |
|
{ |
|
if(idxV[i]<=0) |
|
{ |
|
if(!flags[i]) |
|
{ |
|
exitConditionFlag++; |
|
flags[i] = 1; |
|
res += (classifier+i)->alpha[-idxV[i]]; |
|
} |
|
idxV[i]=0; |
|
} |
|
} |
|
if(exitConditionFlag == 8) |
|
return res; |
|
} |
|
} |
|
#endif //CV_HAAR_USE_AVX |
|
|
|
CV_INLINE |
|
double icvEvalHidHaarClassifier( CvHidHaarClassifier* classifier, |
|
double variance_norm_factor, |
|
size_t p_offset ) |
|
{ |
|
int idx = 0; |
|
/*#if CV_HAAR_USE_SSE && !CV_HAAR_USE_AVX |
|
if(cv::checkHardwareSupport(CV_CPU_SSE2))//based on old SSE variant. Works slow |
|
{ |
|
double CV_DECL_ALIGNED(16) temp[2]; |
|
__m128d zero = _mm_setzero_pd(); |
|
do |
|
{ |
|
CvHidHaarTreeNode* node = classifier->node + idx; |
|
__m128d t = _mm_set1_pd((node->threshold)*variance_norm_factor); |
|
__m128d left = _mm_set1_pd(node->left); |
|
__m128d right = _mm_set1_pd(node->right); |
|
|
|
double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; |
|
_sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight; |
|
if( node->feature.rect[2].p0 ) |
|
_sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight; |
|
|
|
__m128d sum = _mm_set1_pd(_sum); |
|
t = _mm_cmplt_sd(sum, t); |
|
sum = _mm_blendv_pd(right, left, t); |
|
|
|
_mm_store_pd(temp, sum); |
|
idx = (int)temp[0]; |
|
} |
|
while(idx > 0 ); |
|
|
|
} |
|
else |
|
#endif*/ |
|
{ |
|
do |
|
{ |
|
CvHidHaarTreeNode* node = classifier->node + idx; |
|
double t = node->threshold * variance_norm_factor; |
|
|
|
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; |
|
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight; |
|
|
|
if( node->feature.rect[2].p0 ) |
|
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight; |
|
|
|
idx = sum < t ? node->left : node->right; |
|
} |
|
while( idx > 0 ); |
|
} |
|
return classifier->alpha[-idx]; |
|
} |
|
|
|
|
|
|
|
static int |
|
cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade, |
|
CvPoint pt, double& stage_sum, int start_stage ) |
|
{ |
|
#ifdef CV_HAAR_USE_AVX |
|
bool haveAVX = false; |
|
if(cv::checkHardwareSupport(CV_CPU_AVX)) |
|
if(__xgetbv()&0x6)// Check if the OS will save the YMM registers |
|
haveAVX = true; |
|
#else |
|
# ifdef CV_HAAR_USE_SSE |
|
bool haveSSE2 = cv::checkHardwareSupport(CV_CPU_SSE2); |
|
# endif |
|
#endif |
|
|
|
int p_offset, pq_offset; |
|
int i, j; |
|
double mean, variance_norm_factor; |
|
CvHidHaarClassifierCascade* cascade; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) |
|
CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid cascade pointer" ); |
|
|
|
cascade = _cascade->hid_cascade; |
|
if( !cascade ) |
|
CV_Error( CV_StsNullPtr, "Hidden cascade has not been created.\n" |
|
"Use cvSetImagesForHaarClassifierCascade" ); |
|
|
|
if( pt.x < 0 || pt.y < 0 || |
|
pt.x + _cascade->real_window_size.width >= cascade->sum.width || |
|
pt.y + _cascade->real_window_size.height >= cascade->sum.height ) |
|
return -1; |
|
|
|
p_offset = pt.y * (cascade->sum.step/sizeof(sumtype)) + pt.x; |
|
pq_offset = pt.y * (cascade->sqsum.step/sizeof(sqsumtype)) + pt.x; |
|
mean = calc_sum(*cascade,p_offset)*cascade->inv_window_area; |
|
variance_norm_factor = cascade->pq0[pq_offset] - cascade->pq1[pq_offset] - |
|
cascade->pq2[pq_offset] + cascade->pq3[pq_offset]; |
|
variance_norm_factor = variance_norm_factor*cascade->inv_window_area - mean*mean; |
|
if( variance_norm_factor >= 0. ) |
|
variance_norm_factor = std::sqrt(variance_norm_factor); |
|
else |
|
variance_norm_factor = 1.; |
|
|
|
if( cascade->is_tree ) |
|
{ |
|
CvHidHaarStageClassifier* ptr = cascade->stage_classifier; |
|
assert( start_stage == 0 ); |
|
|
|
while( ptr ) |
|
{ |
|
stage_sum = 0.0; |
|
j = 0; |
|
|
|
#ifdef CV_HAAR_USE_AVX |
|
if(haveAVX) |
|
{ |
|
for( ; j <= ptr->count - 8; j += 8 ) |
|
{ |
|
stage_sum += icvEvalHidHaarClassifierAVX( |
|
ptr->classifier + j, |
|
variance_norm_factor, p_offset ); |
|
} |
|
} |
|
#endif |
|
for( ; j < ptr->count; j++ ) |
|
{ |
|
stage_sum += icvEvalHidHaarClassifier( ptr->classifier + j, variance_norm_factor, p_offset ); |
|
} |
|
|
|
if( stage_sum >= ptr->threshold ) |
|
{ |
|
ptr = ptr->child; |
|
} |
|
else |
|
{ |
|
while( ptr && ptr->next == NULL ) ptr = ptr->parent; |
|
if( ptr == NULL ) |
|
return 0; |
|
ptr = ptr->next; |
|
} |
|
} |
|
} |
|
else if( cascade->isStumpBased ) |
|
{ |
|
#ifdef CV_HAAR_USE_AVX |
|
if(haveAVX) |
|
{ |
|
CvHidHaarClassifier* classifiers[8]; |
|
CvHidHaarTreeNode* nodes[8]; |
|
for( i = start_stage; i < cascade->count; i++ ) |
|
{ |
|
stage_sum = 0.0; |
|
j = 0; |
|
float CV_DECL_ALIGNED(32) buf[8]; |
|
if( cascade->stage_classifier[i].two_rects ) |
|
{ |
|
for( ; j <= cascade->stage_classifier[i].count - 8; j += 8 ) |
|
{ |
|
classifiers[0] = cascade->stage_classifier[i].classifier + j; |
|
nodes[0] = classifiers[0]->node; |
|
classifiers[1] = cascade->stage_classifier[i].classifier + j + 1; |
|
nodes[1] = classifiers[1]->node; |
|
classifiers[2] = cascade->stage_classifier[i].classifier + j + 2; |
|
nodes[2] = classifiers[2]->node; |
|
classifiers[3] = cascade->stage_classifier[i].classifier + j + 3; |
|
nodes[3] = classifiers[3]->node; |
|
classifiers[4] = cascade->stage_classifier[i].classifier + j + 4; |
|
nodes[4] = classifiers[4]->node; |
|
classifiers[5] = cascade->stage_classifier[i].classifier + j + 5; |
|
nodes[5] = classifiers[5]->node; |
|
classifiers[6] = cascade->stage_classifier[i].classifier + j + 6; |
|
nodes[6] = classifiers[6]->node; |
|
classifiers[7] = cascade->stage_classifier[i].classifier + j + 7; |
|
nodes[7] = classifiers[7]->node; |
|
|
|
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor)); |
|
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold, |
|
nodes[6]->threshold, |
|
nodes[5]->threshold, |
|
nodes[4]->threshold, |
|
nodes[3]->threshold, |
|
nodes[2]->threshold, |
|
nodes[1]->threshold, |
|
nodes[0]->threshold)); |
|
|
|
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[6]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[5]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[4]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[3]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[2]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[1]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[0]->feature.rect[0], p_offset)); |
|
|
|
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, |
|
nodes[6]->feature.rect[0].weight, |
|
nodes[5]->feature.rect[0].weight, |
|
nodes[4]->feature.rect[0].weight, |
|
nodes[3]->feature.rect[0].weight, |
|
nodes[2]->feature.rect[0].weight, |
|
nodes[1]->feature.rect[0].weight, |
|
nodes[0]->feature.rect[0].weight); |
|
|
|
__m256 sum = _mm256_mul_ps(offset, weight); |
|
|
|
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[6]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[5]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[4]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[3]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[2]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[1]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[0]->feature.rect[1], p_offset)); |
|
|
|
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, |
|
nodes[6]->feature.rect[1].weight, |
|
nodes[5]->feature.rect[1].weight, |
|
nodes[4]->feature.rect[1].weight, |
|
nodes[3]->feature.rect[1].weight, |
|
nodes[2]->feature.rect[1].weight, |
|
nodes[1]->feature.rect[1].weight, |
|
nodes[0]->feature.rect[1].weight); |
|
|
|
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight)); |
|
|
|
__m256 alpha0 = _mm256_set_ps(classifiers[7]->alpha[0], |
|
classifiers[6]->alpha[0], |
|
classifiers[5]->alpha[0], |
|
classifiers[4]->alpha[0], |
|
classifiers[3]->alpha[0], |
|
classifiers[2]->alpha[0], |
|
classifiers[1]->alpha[0], |
|
classifiers[0]->alpha[0]); |
|
__m256 alpha1 = _mm256_set_ps(classifiers[7]->alpha[1], |
|
classifiers[6]->alpha[1], |
|
classifiers[5]->alpha[1], |
|
classifiers[4]->alpha[1], |
|
classifiers[3]->alpha[1], |
|
classifiers[2]->alpha[1], |
|
classifiers[1]->alpha[1], |
|
classifiers[0]->alpha[1]); |
|
|
|
_mm256_store_ps(buf, _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ))); |
|
stage_sum += (buf[0]+buf[1]+buf[2]+buf[3]+buf[4]+buf[5]+buf[6]+buf[7]); |
|
} |
|
|
|
for( ; j < cascade->stage_classifier[i].count; j++ ) |
|
{ |
|
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; |
|
CvHidHaarTreeNode* node = classifier->node; |
|
|
|
double t = node->threshold*variance_norm_factor; |
|
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; |
|
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight; |
|
stage_sum += classifier->alpha[sum >= t]; |
|
} |
|
} |
|
else |
|
{ |
|
for( ; j <= (cascade->stage_classifier[i].count)-8; j+=8 ) |
|
{ |
|
float CV_DECL_ALIGNED(32) tmp[8] = {0,0,0,0,0,0,0,0}; |
|
|
|
classifiers[0] = cascade->stage_classifier[i].classifier + j; |
|
nodes[0] = classifiers[0]->node; |
|
classifiers[1] = cascade->stage_classifier[i].classifier + j + 1; |
|
nodes[1] = classifiers[1]->node; |
|
classifiers[2] = cascade->stage_classifier[i].classifier + j + 2; |
|
nodes[2] = classifiers[2]->node; |
|
classifiers[3] = cascade->stage_classifier[i].classifier + j + 3; |
|
nodes[3] = classifiers[3]->node; |
|
classifiers[4] = cascade->stage_classifier[i].classifier + j + 4; |
|
nodes[4] = classifiers[4]->node; |
|
classifiers[5] = cascade->stage_classifier[i].classifier + j + 5; |
|
nodes[5] = classifiers[5]->node; |
|
classifiers[6] = cascade->stage_classifier[i].classifier + j + 6; |
|
nodes[6] = classifiers[6]->node; |
|
classifiers[7] = cascade->stage_classifier[i].classifier + j + 7; |
|
nodes[7] = classifiers[7]->node; |
|
|
|
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor)); |
|
|
|
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold, |
|
nodes[6]->threshold, |
|
nodes[5]->threshold, |
|
nodes[4]->threshold, |
|
nodes[3]->threshold, |
|
nodes[2]->threshold, |
|
nodes[1]->threshold, |
|
nodes[0]->threshold)); |
|
|
|
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[6]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[5]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[4]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[3]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[2]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[1]->feature.rect[0], p_offset), |
|
calc_sumf(nodes[0]->feature.rect[0], p_offset)); |
|
|
|
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, |
|
nodes[6]->feature.rect[0].weight, |
|
nodes[5]->feature.rect[0].weight, |
|
nodes[4]->feature.rect[0].weight, |
|
nodes[3]->feature.rect[0].weight, |
|
nodes[2]->feature.rect[0].weight, |
|
nodes[1]->feature.rect[0].weight, |
|
nodes[0]->feature.rect[0].weight); |
|
|
|
__m256 sum = _mm256_mul_ps(offset, weight); |
|
|
|
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[6]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[5]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[4]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[3]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[2]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[1]->feature.rect[1], p_offset), |
|
calc_sumf(nodes[0]->feature.rect[1], p_offset)); |
|
|
|
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, |
|
nodes[6]->feature.rect[1].weight, |
|
nodes[5]->feature.rect[1].weight, |
|
nodes[4]->feature.rect[1].weight, |
|
nodes[3]->feature.rect[1].weight, |
|
nodes[2]->feature.rect[1].weight, |
|
nodes[1]->feature.rect[1].weight, |
|
nodes[0]->feature.rect[1].weight); |
|
|
|
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight)); |
|
|
|
if( nodes[0]->feature.rect[2].p0 ) |
|
tmp[0] = calc_sumf(nodes[0]->feature.rect[2],p_offset) * nodes[0]->feature.rect[2].weight; |
|
if( nodes[1]->feature.rect[2].p0 ) |
|
tmp[1] = calc_sumf(nodes[1]->feature.rect[2],p_offset) * nodes[1]->feature.rect[2].weight; |
|
if( nodes[2]->feature.rect[2].p0 ) |
|
tmp[2] = calc_sumf(nodes[2]->feature.rect[2],p_offset) * nodes[2]->feature.rect[2].weight; |
|
if( nodes[3]->feature.rect[2].p0 ) |
|
tmp[3] = calc_sumf(nodes[3]->feature.rect[2],p_offset) * nodes[3]->feature.rect[2].weight; |
|
if( nodes[4]->feature.rect[2].p0 ) |
|
tmp[4] = calc_sumf(nodes[4]->feature.rect[2],p_offset) * nodes[4]->feature.rect[2].weight; |
|
if( nodes[5]->feature.rect[2].p0 ) |
|
tmp[5] = calc_sumf(nodes[5]->feature.rect[2],p_offset) * nodes[5]->feature.rect[2].weight; |
|
if( nodes[6]->feature.rect[2].p0 ) |
|
tmp[6] = calc_sumf(nodes[6]->feature.rect[2],p_offset) * nodes[6]->feature.rect[2].weight; |
|
if( nodes[7]->feature.rect[2].p0 ) |
|
tmp[7] = calc_sumf(nodes[7]->feature.rect[2],p_offset) * nodes[7]->feature.rect[2].weight; |
|
|
|
sum = _mm256_add_ps(sum, _mm256_load_ps(tmp)); |
|
|
|
__m256 alpha0 = _mm256_set_ps(classifiers[7]->alpha[0], |
|
classifiers[6]->alpha[0], |
|
classifiers[5]->alpha[0], |
|
classifiers[4]->alpha[0], |
|
classifiers[3]->alpha[0], |
|
classifiers[2]->alpha[0], |
|
classifiers[1]->alpha[0], |
|
classifiers[0]->alpha[0]); |
|
__m256 alpha1 = _mm256_set_ps(classifiers[7]->alpha[1], |
|
classifiers[6]->alpha[1], |
|
classifiers[5]->alpha[1], |
|
classifiers[4]->alpha[1], |
|
classifiers[3]->alpha[1], |
|
classifiers[2]->alpha[1], |
|
classifiers[1]->alpha[1], |
|
classifiers[0]->alpha[1]); |
|
|
|
__m256 outBuf = _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ )); |
|
outBuf = _mm256_hadd_ps(outBuf, outBuf); |
|
outBuf = _mm256_hadd_ps(outBuf, outBuf); |
|
_mm256_store_ps(buf, outBuf); |
|
stage_sum += (buf[0] + buf[4]); |
|
} |
|
|
|
for( ; j < cascade->stage_classifier[i].count; j++ ) |
|
{ |
|
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; |
|
CvHidHaarTreeNode* node = classifier->node; |
|
|
|
double t = node->threshold*variance_norm_factor; |
|
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; |
|
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight; |
|
if( node->feature.rect[2].p0 ) |
|
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight; |
|
stage_sum += classifier->alpha[sum >= t]; |
|
} |
|
} |
|
if( stage_sum < cascade->stage_classifier[i].threshold ) |
|
return -i; |
|
} |
|
} |
|
else |
|
#elif defined CV_HAAR_USE_SSE //old SSE optimization |
|
if(haveSSE2) |
|
{ |
|
for( i = start_stage; i < cascade->count; i++ ) |
|
{ |
|
__m128d vstage_sum = _mm_setzero_pd(); |
|
if( cascade->stage_classifier[i].two_rects ) |
|
{ |
|
for( j = 0; j < cascade->stage_classifier[i].count; j++ ) |
|
{ |
|
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; |
|
CvHidHaarTreeNode* node = classifier->node; |
|
|
|
// ayasin - NHM perf optim. Avoid use of costly flaky jcc |
|
__m128d t = _mm_set_sd(node->threshold*variance_norm_factor); |
|
__m128d a = _mm_set_sd(classifier->alpha[0]); |
|
__m128d b = _mm_set_sd(classifier->alpha[1]); |
|
__m128d sum = _mm_set_sd(calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight + |
|
calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight); |
|
t = _mm_cmpgt_sd(t, sum); |
|
vstage_sum = _mm_add_sd(vstage_sum, _mm_blendv_pd(b, a, t)); |
|
} |
|
} |
|
else |
|
{ |
|
for( j = 0; j < cascade->stage_classifier[i].count; j++ ) |
|
{ |
|
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; |
|
CvHidHaarTreeNode* node = classifier->node; |
|
// ayasin - NHM perf optim. Avoid use of costly flaky jcc |
|
__m128d t = _mm_set_sd(node->threshold*variance_norm_factor); |
|
__m128d a = _mm_set_sd(classifier->alpha[0]); |
|
__m128d b = _mm_set_sd(classifier->alpha[1]); |
|
double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; |
|
_sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight; |
|
if( node->feature.rect[2].p0 ) |
|
_sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight; |
|
__m128d sum = _mm_set_sd(_sum); |
|
|
|
t = _mm_cmpgt_sd(t, sum); |
|
vstage_sum = _mm_add_sd(vstage_sum, _mm_blendv_pd(b, a, t)); |
|
} |
|
} |
|
__m128d i_threshold = _mm_set1_pd(cascade->stage_classifier[i].threshold); |
|
if( _mm_comilt_sd(vstage_sum, i_threshold) ) |
|
return -i; |
|
} |
|
} |
|
else |
|
#endif // AVX or SSE |
|
{ |
|
for( i = start_stage; i < cascade->count; i++ ) |
|
{ |
|
stage_sum = 0.0; |
|
if( cascade->stage_classifier[i].two_rects ) |
|
{ |
|
for( j = 0; j < cascade->stage_classifier[i].count; j++ ) |
|
{ |
|
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; |
|
CvHidHaarTreeNode* node = classifier->node; |
|
double t = node->threshold*variance_norm_factor; |
|
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; |
|
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight; |
|
stage_sum += classifier->alpha[sum >= t]; |
|
} |
|
} |
|
else |
|
{ |
|
for( j = 0; j < cascade->stage_classifier[i].count; j++ ) |
|
{ |
|
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; |
|
CvHidHaarTreeNode* node = classifier->node; |
|
double t = node->threshold*variance_norm_factor; |
|
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; |
|
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight; |
|
if( node->feature.rect[2].p0 ) |
|
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight; |
|
stage_sum += classifier->alpha[sum >= t]; |
|
} |
|
} |
|
if( stage_sum < cascade->stage_classifier[i].threshold ) |
|
return -i; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( i = start_stage; i < cascade->count; i++ ) |
|
{ |
|
stage_sum = 0.0; |
|
int k = 0; |
|
|
|
#ifdef CV_HAAR_USE_AVX |
|
if(haveAVX) |
|
{ |
|
for( ; k < cascade->stage_classifier[i].count - 8; k += 8 ) |
|
{ |
|
stage_sum += icvEvalHidHaarClassifierAVX( |
|
cascade->stage_classifier[i].classifier + k, |
|
variance_norm_factor, p_offset ); |
|
} |
|
} |
|
#endif |
|
for(; k < cascade->stage_classifier[i].count; k++ ) |
|
{ |
|
|
|
stage_sum += icvEvalHidHaarClassifier( |
|
cascade->stage_classifier[i].classifier + k, |
|
variance_norm_factor, p_offset ); |
|
} |
|
|
|
if( stage_sum < cascade->stage_classifier[i].threshold ) |
|
return -i; |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
|
|
CV_IMPL int |
|
cvRunHaarClassifierCascade( const CvHaarClassifierCascade* _cascade, |
|
CvPoint pt, int start_stage ) |
|
{ |
|
double stage_sum; |
|
return cvRunHaarClassifierCascadeSum(_cascade, pt, stage_sum, start_stage); |
|
} |
|
|
|
namespace cv |
|
{ |
|
|
|
class HaarDetectObjects_ScaleImage_Invoker : public ParallelLoopBody |
|
{ |
|
public: |
|
HaarDetectObjects_ScaleImage_Invoker( const CvHaarClassifierCascade* _cascade, |
|
int _stripSize, double _factor, |
|
const Mat& _sum1, const Mat& _sqsum1, Mat* _norm1, |
|
Mat* _mask1, Rect _equRect, std::vector<Rect>& _vec, |
|
std::vector<int>& _levels, std::vector<double>& _weights, |
|
bool _outputLevels, Mutex *_mtx ) |
|
{ |
|
cascade = _cascade; |
|
stripSize = _stripSize; |
|
factor = _factor; |
|
sum1 = _sum1; |
|
sqsum1 = _sqsum1; |
|
norm1 = _norm1; |
|
mask1 = _mask1; |
|
equRect = _equRect; |
|
vec = &_vec; |
|
rejectLevels = _outputLevels ? &_levels : 0; |
|
levelWeights = _outputLevels ? &_weights : 0; |
|
mtx = _mtx; |
|
} |
|
|
|
void operator()( const Range& range ) const |
|
{ |
|
Size winSize0 = cascade->orig_window_size; |
|
Size winSize(cvRound(winSize0.width*factor), cvRound(winSize0.height*factor)); |
|
int y1 = range.start*stripSize, y2 = std::min(range.end*stripSize, sum1.rows - 1 - winSize0.height); |
|
|
|
if (y2 <= y1 || sum1.cols <= 1 + winSize0.width) |
|
return; |
|
|
|
Size ssz(sum1.cols - 1 - winSize0.width, y2 - y1); |
|
int x, y, ystep = factor > 2 ? 1 : 2; |
|
|
|
#ifdef HAVE_IPP |
|
if(CV_IPP_CHECK_COND && cascade->hid_cascade->ipp_stages ) |
|
{ |
|
IppiRect iequRect = {equRect.x, equRect.y, equRect.width, equRect.height}; |
|
ippiRectStdDev_32f_C1R(sum1.ptr<float>(y1), (int)sum1.step, |
|
sqsum1.ptr<double>(y1), (int)sqsum1.step, |
|
norm1->ptr<float>(y1), (int)norm1->step, |
|
ippiSize(ssz.width, ssz.height), iequRect ); |
|
|
|
int positive = (ssz.width/ystep)*((ssz.height + ystep-1)/ystep); |
|
|
|
if( ystep == 1 ) |
|
(*mask1) = Scalar::all(1); |
|
else |
|
for( y = y1; y < y2; y++ ) |
|
{ |
|
uchar* mask1row = mask1->ptr(y); |
|
memset( mask1row, 0, ssz.width ); |
|
|
|
if( y % ystep == 0 ) |
|
for( x = 0; x < ssz.width; x += ystep ) |
|
mask1row[x] = (uchar)1; |
|
} |
|
|
|
for( int j = 0; j < cascade->count; j++ ) |
|
{ |
|
if( ippiApplyHaarClassifier_32f_C1R( |
|
sum1.ptr<float>(y1), (int)sum1.step, |
|
norm1->ptr<float>(y1), (int)norm1->step, |
|
mask1->ptr<uchar>(y1), (int)mask1->step, |
|
ippiSize(ssz.width, ssz.height), &positive, |
|
cascade->hid_cascade->stage_classifier[j].threshold, |
|
(IppiHaarClassifier_32f*)cascade->hid_cascade->ipp_stages[j]) < 0 ) |
|
positive = 0; |
|
if( positive <= 0 ) |
|
break; |
|
} |
|
CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT); |
|
|
|
if( positive > 0 ) |
|
for( y = y1; y < y2; y += ystep ) |
|
{ |
|
uchar* mask1row = mask1->ptr(y); |
|
for( x = 0; x < ssz.width; x += ystep ) |
|
if( mask1row[x] != 0 ) |
|
{ |
|
mtx->lock(); |
|
vec->push_back(Rect(cvRound(x*factor), cvRound(y*factor), |
|
winSize.width, winSize.height)); |
|
mtx->unlock(); |
|
if( --positive == 0 ) |
|
break; |
|
} |
|
if( positive == 0 ) |
|
break; |
|
} |
|
} |
|
else |
|
#endif // IPP |
|
for( y = y1; y < y2; y += ystep ) |
|
for( x = 0; x < ssz.width; x += ystep ) |
|
{ |
|
double gypWeight; |
|
int result = cvRunHaarClassifierCascadeSum( cascade, cvPoint(x,y), gypWeight, 0 ); |
|
if( rejectLevels ) |
|
{ |
|
if( result == 1 ) |
|
result = -1*cascade->count; |
|
if( cascade->count + result < 4 ) |
|
{ |
|
mtx->lock(); |
|
vec->push_back(Rect(cvRound(x*factor), cvRound(y*factor), |
|
winSize.width, winSize.height)); |
|
rejectLevels->push_back(-result); |
|
levelWeights->push_back(gypWeight); |
|
mtx->unlock(); |
|
} |
|
} |
|
else |
|
{ |
|
if( result > 0 ) |
|
{ |
|
mtx->lock(); |
|
vec->push_back(Rect(cvRound(x*factor), cvRound(y*factor), |
|
winSize.width, winSize.height)); |
|
mtx->unlock(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
const CvHaarClassifierCascade* cascade; |
|
int stripSize; |
|
double factor; |
|
Mat sum1, sqsum1, *norm1, *mask1; |
|
Rect equRect; |
|
std::vector<Rect>* vec; |
|
std::vector<int>* rejectLevels; |
|
std::vector<double>* levelWeights; |
|
Mutex* mtx; |
|
}; |
|
|
|
|
|
class HaarDetectObjects_ScaleCascade_Invoker : public ParallelLoopBody |
|
{ |
|
public: |
|
HaarDetectObjects_ScaleCascade_Invoker( const CvHaarClassifierCascade* _cascade, |
|
Size _winsize, const Range& _xrange, double _ystep, |
|
size_t _sumstep, const int** _p, const int** _pq, |
|
std::vector<Rect>& _vec, Mutex* _mtx ) |
|
{ |
|
cascade = _cascade; |
|
winsize = _winsize; |
|
xrange = _xrange; |
|
ystep = _ystep; |
|
sumstep = _sumstep; |
|
p = _p; pq = _pq; |
|
vec = &_vec; |
|
mtx = _mtx; |
|
} |
|
|
|
void operator()( const Range& range ) const |
|
{ |
|
int iy, startY = range.start, endY = range.end; |
|
const int *p0 = p[0], *p1 = p[1], *p2 = p[2], *p3 = p[3]; |
|
const int *pq0 = pq[0], *pq1 = pq[1], *pq2 = pq[2], *pq3 = pq[3]; |
|
bool doCannyPruning = p0 != 0; |
|
int sstep = (int)(sumstep/sizeof(p0[0])); |
|
|
|
for( iy = startY; iy < endY; iy++ ) |
|
{ |
|
int ix, y = cvRound(iy*ystep), ixstep = 1; |
|
for( ix = xrange.start; ix < xrange.end; ix += ixstep ) |
|
{ |
|
int x = cvRound(ix*ystep); // it should really be ystep, not ixstep |
|
|
|
if( doCannyPruning ) |
|
{ |
|
int offset = y*sstep + x; |
|
int s = p0[offset] - p1[offset] - p2[offset] + p3[offset]; |
|
int sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset]; |
|
if( s < 100 || sq < 20 ) |
|
{ |
|
ixstep = 2; |
|
continue; |
|
} |
|
} |
|
|
|
int result = cvRunHaarClassifierCascade( cascade, cvPoint(x, y), 0 ); |
|
if( result > 0 ) |
|
{ |
|
mtx->lock(); |
|
vec->push_back(Rect(x, y, winsize.width, winsize.height)); |
|
mtx->unlock(); |
|
} |
|
ixstep = result != 0 ? 1 : 2; |
|
} |
|
} |
|
} |
|
|
|
const CvHaarClassifierCascade* cascade; |
|
double ystep; |
|
size_t sumstep; |
|
Size winsize; |
|
Range xrange; |
|
const int** p; |
|
const int** pq; |
|
std::vector<Rect>* vec; |
|
Mutex* mtx; |
|
}; |
|
|
|
|
|
} |
|
|
|
|
|
CvSeq* |
|
cvHaarDetectObjectsForROC( const CvArr* _img, |
|
CvHaarClassifierCascade* cascade, CvMemStorage* storage, |
|
std::vector<int>& rejectLevels, std::vector<double>& levelWeights, |
|
double scaleFactor, int minNeighbors, int flags, |
|
CvSize minSize, CvSize maxSize, bool outputRejectLevels ) |
|
{ |
|
const double GROUP_EPS = 0.2; |
|
CvMat stub, *img = (CvMat*)_img; |
|
cv::Ptr<CvMat> temp, sum, tilted, sqsum, normImg, sumcanny, imgSmall; |
|
CvSeq* result_seq = 0; |
|
cv::Ptr<CvMemStorage> temp_storage; |
|
|
|
std::vector<cv::Rect> allCandidates; |
|
std::vector<cv::Rect> rectList; |
|
std::vector<int> rweights; |
|
double factor; |
|
int coi; |
|
bool doCannyPruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0; |
|
bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0; |
|
bool roughSearch = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0; |
|
cv::Mutex mtx; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) ) |
|
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" ); |
|
|
|
if( !storage ) |
|
CV_Error( CV_StsNullPtr, "Null storage pointer" ); |
|
|
|
img = cvGetMat( img, &stub, &coi ); |
|
if( coi ) |
|
CV_Error( CV_BadCOI, "COI is not supported" ); |
|
|
|
if( CV_MAT_DEPTH(img->type) != CV_8U ) |
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); |
|
|
|
if( scaleFactor <= 1 ) |
|
CV_Error( CV_StsOutOfRange, "scale factor must be > 1" ); |
|
|
|
if( findBiggestObject ) |
|
flags &= ~CV_HAAR_SCALE_IMAGE; |
|
|
|
if( maxSize.height == 0 || maxSize.width == 0 ) |
|
{ |
|
maxSize.height = img->rows; |
|
maxSize.width = img->cols; |
|
} |
|
|
|
temp.reset(cvCreateMat( img->rows, img->cols, CV_8UC1 )); |
|
sum.reset(cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 )); |
|
sqsum.reset(cvCreateMat( img->rows + 1, img->cols + 1, CV_64FC1 )); |
|
|
|
if( !cascade->hid_cascade ) |
|
icvCreateHidHaarClassifierCascade(cascade); |
|
|
|
if( cascade->hid_cascade->has_tilted_features ) |
|
tilted.reset(cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 )); |
|
|
|
result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage ); |
|
|
|
if( CV_MAT_CN(img->type) > 1 ) |
|
{ |
|
cvCvtColor( img, temp, CV_BGR2GRAY ); |
|
img = temp; |
|
} |
|
|
|
if( findBiggestObject ) |
|
flags &= ~(CV_HAAR_SCALE_IMAGE|CV_HAAR_DO_CANNY_PRUNING); |
|
|
|
if( flags & CV_HAAR_SCALE_IMAGE ) |
|
{ |
|
CvSize winSize0 = cascade->orig_window_size; |
|
#ifdef HAVE_IPP |
|
int use_ipp = CV_IPP_CHECK_COND && (cascade->hid_cascade->ipp_stages != 0); |
|
|
|
if( use_ipp ) |
|
normImg.reset(cvCreateMat( img->rows, img->cols, CV_32FC1)); |
|
#endif |
|
imgSmall.reset(cvCreateMat( img->rows + 1, img->cols + 1, CV_8UC1 )); |
|
|
|
for( factor = 1; ; factor *= scaleFactor ) |
|
{ |
|
CvSize winSize(cvRound(winSize0.width*factor), |
|
cvRound(winSize0.height*factor)); |
|
CvSize sz(cvRound( img->cols/factor ), cvRound( img->rows/factor )); |
|
CvSize sz1(sz.width - winSize0.width + 1, sz.height - winSize0.height + 1); |
|
|
|
CvRect equRect(icv_object_win_border, icv_object_win_border, |
|
winSize0.width - icv_object_win_border*2, |
|
winSize0.height - icv_object_win_border*2); |
|
|
|
CvMat img1, sum1, sqsum1, norm1, tilted1, mask1; |
|
CvMat* _tilted = 0; |
|
|
|
if( sz1.width <= 0 || sz1.height <= 0 ) |
|
break; |
|
if( winSize.width > maxSize.width || winSize.height > maxSize.height ) |
|
break; |
|
if( winSize.width < minSize.width || winSize.height < minSize.height ) |
|
continue; |
|
|
|
img1 = cvMat( sz.height, sz.width, CV_8UC1, imgSmall->data.ptr ); |
|
sum1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, sum->data.ptr ); |
|
sqsum1 = cvMat( sz.height+1, sz.width+1, CV_64FC1, sqsum->data.ptr ); |
|
if( tilted ) |
|
{ |
|
tilted1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, tilted->data.ptr ); |
|
_tilted = &tilted1; |
|
} |
|
norm1 = cvMat( sz1.height, sz1.width, CV_32FC1, normImg ? normImg->data.ptr : 0 ); |
|
mask1 = cvMat( sz1.height, sz1.width, CV_8UC1, temp->data.ptr ); |
|
|
|
cvResize( img, &img1, CV_INTER_LINEAR ); |
|
cvIntegral( &img1, &sum1, &sqsum1, _tilted ); |
|
|
|
int ystep = factor > 2 ? 1 : 2; |
|
const int LOCS_PER_THREAD = 1000; |
|
int stripCount = ((sz1.width/ystep)*(sz1.height + ystep-1)/ystep + LOCS_PER_THREAD/2)/LOCS_PER_THREAD; |
|
stripCount = std::min(std::max(stripCount, 1), 100); |
|
|
|
#ifdef HAVE_IPP |
|
if( use_ipp ) |
|
{ |
|
cv::Mat fsum(sum1.rows, sum1.cols, CV_32F, sum1.data.ptr, sum1.step); |
|
cv::cvarrToMat(&sum1).convertTo(fsum, CV_32F, 1, -(1<<24)); |
|
} |
|
else |
|
#endif |
|
cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, _tilted, 1. ); |
|
|
|
cv::Mat _norm1 = cv::cvarrToMat(&norm1), _mask1 = cv::cvarrToMat(&mask1); |
|
cv::parallel_for_(cv::Range(0, stripCount), |
|
cv::HaarDetectObjects_ScaleImage_Invoker(cascade, |
|
(((sz1.height + stripCount - 1)/stripCount + ystep-1)/ystep)*ystep, |
|
factor, cv::cvarrToMat(&sum1), cv::cvarrToMat(&sqsum1), &_norm1, &_mask1, |
|
cv::Rect(equRect), allCandidates, rejectLevels, levelWeights, outputRejectLevels, &mtx)); |
|
} |
|
} |
|
else |
|
{ |
|
int n_factors = 0; |
|
cv::Rect scanROI; |
|
|
|
cvIntegral( img, sum, sqsum, tilted ); |
|
|
|
if( doCannyPruning ) |
|
{ |
|
sumcanny.reset(cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 )); |
|
cvCanny( img, temp, 0, 50, 3 ); |
|
cvIntegral( temp, sumcanny ); |
|
} |
|
|
|
for( n_factors = 0, factor = 1; |
|
factor*cascade->orig_window_size.width < img->cols - 10 && |
|
factor*cascade->orig_window_size.height < img->rows - 10; |
|
n_factors++, factor *= scaleFactor ) |
|
; |
|
|
|
if( findBiggestObject ) |
|
{ |
|
scaleFactor = 1./scaleFactor; |
|
factor *= scaleFactor; |
|
} |
|
else |
|
factor = 1; |
|
|
|
for( ; n_factors-- > 0; factor *= scaleFactor ) |
|
{ |
|
const double ystep = std::max( 2., factor ); |
|
CvSize winSize(cvRound( cascade->orig_window_size.width * factor ), |
|
cvRound( cascade->orig_window_size.height * factor )); |
|
CvRect equRect; |
|
int *p[4] = {0,0,0,0}; |
|
int *pq[4] = {0,0,0,0}; |
|
int startX = 0, startY = 0; |
|
int endX = cvRound((img->cols - winSize.width) / ystep); |
|
int endY = cvRound((img->rows - winSize.height) / ystep); |
|
|
|
if( winSize.width < minSize.width || winSize.height < minSize.height ) |
|
{ |
|
if( findBiggestObject ) |
|
break; |
|
continue; |
|
} |
|
|
|
if ( winSize.width > maxSize.width || winSize.height > maxSize.height ) |
|
{ |
|
if( !findBiggestObject ) |
|
break; |
|
continue; |
|
} |
|
|
|
cvSetImagesForHaarClassifierCascade( cascade, sum, sqsum, tilted, factor ); |
|
cvZero( temp ); |
|
|
|
if( doCannyPruning ) |
|
{ |
|
equRect.x = cvRound(winSize.width*0.15); |
|
equRect.y = cvRound(winSize.height*0.15); |
|
equRect.width = cvRound(winSize.width*0.7); |
|
equRect.height = cvRound(winSize.height*0.7); |
|
|
|
p[0] = (int*)(sumcanny->data.ptr + equRect.y*sumcanny->step) + equRect.x; |
|
p[1] = (int*)(sumcanny->data.ptr + equRect.y*sumcanny->step) |
|
+ equRect.x + equRect.width; |
|
p[2] = (int*)(sumcanny->data.ptr + (equRect.y + equRect.height)*sumcanny->step) + equRect.x; |
|
p[3] = (int*)(sumcanny->data.ptr + (equRect.y + equRect.height)*sumcanny->step) |
|
+ equRect.x + equRect.width; |
|
|
|
pq[0] = (int*)(sum->data.ptr + equRect.y*sum->step) + equRect.x; |
|
pq[1] = (int*)(sum->data.ptr + equRect.y*sum->step) |
|
+ equRect.x + equRect.width; |
|
pq[2] = (int*)(sum->data.ptr + (equRect.y + equRect.height)*sum->step) + equRect.x; |
|
pq[3] = (int*)(sum->data.ptr + (equRect.y + equRect.height)*sum->step) |
|
+ equRect.x + equRect.width; |
|
} |
|
|
|
if( scanROI.area() > 0 ) |
|
{ |
|
//adjust start_height and stop_height |
|
startY = cvRound(scanROI.y / ystep); |
|
endY = cvRound((scanROI.y + scanROI.height - winSize.height) / ystep); |
|
|
|
startX = cvRound(scanROI.x / ystep); |
|
endX = cvRound((scanROI.x + scanROI.width - winSize.width) / ystep); |
|
} |
|
|
|
cv::parallel_for_(cv::Range(startY, endY), |
|
cv::HaarDetectObjects_ScaleCascade_Invoker(cascade, winSize, cv::Range(startX, endX), |
|
ystep, sum->step, (const int**)p, |
|
(const int**)pq, allCandidates, &mtx )); |
|
|
|
if( findBiggestObject && !allCandidates.empty() && scanROI.area() == 0 ) |
|
{ |
|
rectList.resize(allCandidates.size()); |
|
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); |
|
|
|
groupRectangles(rectList, std::max(minNeighbors, 1), GROUP_EPS); |
|
|
|
if( !rectList.empty() ) |
|
{ |
|
size_t i, sz = rectList.size(); |
|
cv::Rect maxRect; |
|
|
|
for( i = 0; i < sz; i++ ) |
|
{ |
|
if( rectList[i].area() > maxRect.area() ) |
|
maxRect = rectList[i]; |
|
} |
|
|
|
allCandidates.push_back(maxRect); |
|
|
|
scanROI = maxRect; |
|
int dx = cvRound(maxRect.width*GROUP_EPS); |
|
int dy = cvRound(maxRect.height*GROUP_EPS); |
|
scanROI.x = std::max(scanROI.x - dx, 0); |
|
scanROI.y = std::max(scanROI.y - dy, 0); |
|
scanROI.width = std::min(scanROI.width + dx*2, img->cols-1-scanROI.x); |
|
scanROI.height = std::min(scanROI.height + dy*2, img->rows-1-scanROI.y); |
|
|
|
double minScale = roughSearch ? 0.6 : 0.4; |
|
minSize.width = cvRound(maxRect.width*minScale); |
|
minSize.height = cvRound(maxRect.height*minScale); |
|
} |
|
} |
|
} |
|
} |
|
|
|
rectList.resize(allCandidates.size()); |
|
if(!allCandidates.empty()) |
|
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); |
|
|
|
if( minNeighbors != 0 || findBiggestObject ) |
|
{ |
|
if( outputRejectLevels ) |
|
{ |
|
groupRectangles(rectList, rejectLevels, levelWeights, minNeighbors, GROUP_EPS ); |
|
} |
|
else |
|
{ |
|
groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS); |
|
} |
|
} |
|
else |
|
rweights.resize(rectList.size(),0); |
|
|
|
if( findBiggestObject && rectList.size() ) |
|
{ |
|
CvAvgComp result_comp = {CvRect(),0}; |
|
|
|
for( size_t i = 0; i < rectList.size(); i++ ) |
|
{ |
|
cv::Rect r = rectList[i]; |
|
if( r.area() > cv::Rect(result_comp.rect).area() ) |
|
{ |
|
result_comp.rect = r; |
|
result_comp.neighbors = rweights[i]; |
|
} |
|
} |
|
cvSeqPush( result_seq, &result_comp ); |
|
} |
|
else |
|
{ |
|
for( size_t i = 0; i < rectList.size(); i++ ) |
|
{ |
|
CvAvgComp c; |
|
c.rect = rectList[i]; |
|
c.neighbors = !rweights.empty() ? rweights[i] : 0; |
|
cvSeqPush( result_seq, &c ); |
|
} |
|
} |
|
|
|
return result_seq; |
|
} |
|
|
|
CV_IMPL CvSeq* |
|
cvHaarDetectObjects( const CvArr* _img, |
|
CvHaarClassifierCascade* cascade, CvMemStorage* storage, |
|
double scaleFactor, |
|
int minNeighbors, int flags, CvSize minSize, CvSize maxSize ) |
|
{ |
|
std::vector<int> fakeLevels; |
|
std::vector<double> fakeWeights; |
|
return cvHaarDetectObjectsForROC( _img, cascade, storage, fakeLevels, fakeWeights, |
|
scaleFactor, minNeighbors, flags, minSize, maxSize, false ); |
|
|
|
} |
|
|
|
|
|
static CvHaarClassifierCascade* |
|
icvLoadCascadeCART( const char** input_cascade, int n, CvSize orig_window_size ) |
|
{ |
|
int i; |
|
CvHaarClassifierCascade* cascade = icvCreateHaarClassifierCascade(n); |
|
cascade->orig_window_size = orig_window_size; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
int j, count, l; |
|
float threshold = 0; |
|
const char* stage = input_cascade[i]; |
|
int dl = 0; |
|
|
|
/* tree links */ |
|
int parent = -1; |
|
int next = -1; |
|
|
|
sscanf( stage, "%d%n", &count, &dl ); |
|
stage += dl; |
|
|
|
assert( count > 0 ); |
|
cascade->stage_classifier[i].count = count; |
|
cascade->stage_classifier[i].classifier = |
|
(CvHaarClassifier*)cvAlloc( count*sizeof(cascade->stage_classifier[i].classifier[0])); |
|
|
|
for( j = 0; j < count; j++ ) |
|
{ |
|
CvHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; |
|
int k, rects = 0; |
|
char str[100]; |
|
|
|
sscanf( stage, "%d%n", &classifier->count, &dl ); |
|
stage += dl; |
|
|
|
classifier->haar_feature = (CvHaarFeature*) cvAlloc( |
|
classifier->count * ( sizeof( *classifier->haar_feature ) + |
|
sizeof( *classifier->threshold ) + |
|
sizeof( *classifier->left ) + |
|
sizeof( *classifier->right ) ) + |
|
(classifier->count + 1) * sizeof( *classifier->alpha ) ); |
|
classifier->threshold = (float*) (classifier->haar_feature+classifier->count); |
|
classifier->left = (int*) (classifier->threshold + classifier->count); |
|
classifier->right = (int*) (classifier->left + classifier->count); |
|
classifier->alpha = (float*) (classifier->right + classifier->count); |
|
|
|
for( l = 0; l < classifier->count; l++ ) |
|
{ |
|
sscanf( stage, "%d%n", &rects, &dl ); |
|
stage += dl; |
|
|
|
assert( rects >= 2 && rects <= CV_HAAR_FEATURE_MAX ); |
|
|
|
for( k = 0; k < rects; k++ ) |
|
{ |
|
CvRect r; |
|
int band = 0; |
|
sscanf( stage, "%d%d%d%d%d%f%n", |
|
&r.x, &r.y, &r.width, &r.height, &band, |
|
&(classifier->haar_feature[l].rect[k].weight), &dl ); |
|
stage += dl; |
|
classifier->haar_feature[l].rect[k].r = r; |
|
} |
|
sscanf( stage, "%s%n", str, &dl ); |
|
stage += dl; |
|
|
|
classifier->haar_feature[l].tilted = strncmp( str, "tilted", 6 ) == 0; |
|
|
|
for( k = rects; k < CV_HAAR_FEATURE_MAX; k++ ) |
|
{ |
|
memset( classifier->haar_feature[l].rect + k, 0, |
|
sizeof(classifier->haar_feature[l].rect[k]) ); |
|
} |
|
|
|
sscanf( stage, "%f%d%d%n", &(classifier->threshold[l]), |
|
&(classifier->left[l]), |
|
&(classifier->right[l]), &dl ); |
|
stage += dl; |
|
} |
|
for( l = 0; l <= classifier->count; l++ ) |
|
{ |
|
sscanf( stage, "%f%n", &(classifier->alpha[l]), &dl ); |
|
stage += dl; |
|
} |
|
} |
|
|
|
sscanf( stage, "%f%n", &threshold, &dl ); |
|
stage += dl; |
|
|
|
cascade->stage_classifier[i].threshold = threshold; |
|
|
|
/* load tree links */ |
|
if( sscanf( stage, "%d%d%n", &parent, &next, &dl ) != 2 ) |
|
{ |
|
parent = i - 1; |
|
next = -1; |
|
} |
|
stage += dl; |
|
|
|
cascade->stage_classifier[i].parent = parent; |
|
cascade->stage_classifier[i].next = next; |
|
cascade->stage_classifier[i].child = -1; |
|
|
|
if( parent != -1 && cascade->stage_classifier[parent].child == -1 ) |
|
{ |
|
cascade->stage_classifier[parent].child = i; |
|
} |
|
} |
|
|
|
return cascade; |
|
} |
|
|
|
#ifndef _MAX_PATH |
|
#define _MAX_PATH 1024 |
|
#endif |
|
|
|
CV_IMPL CvHaarClassifierCascade* |
|
cvLoadHaarClassifierCascade( const char* directory, CvSize orig_window_size ) |
|
{ |
|
if( !directory ) |
|
CV_Error( CV_StsNullPtr, "Null path is passed" ); |
|
|
|
char name[_MAX_PATH]; |
|
|
|
int n = (int)strlen(directory)-1; |
|
const char* slash = directory[n] == '\\' || directory[n] == '/' ? "" : "/"; |
|
int size = 0; |
|
|
|
/* try to read the classifier from directory */ |
|
for( n = 0; ; n++ ) |
|
{ |
|
sprintf( name, "%s%s%d/AdaBoostCARTHaarClassifier.txt", directory, slash, n ); |
|
FILE* f = fopen( name, "rb" ); |
|
if( !f ) |
|
break; |
|
fseek( f, 0, SEEK_END ); |
|
size += ftell( f ) + 1; |
|
fclose(f); |
|
} |
|
|
|
if( n == 0 && slash[0] ) |
|
return (CvHaarClassifierCascade*)cvLoad( directory ); |
|
|
|
if( n == 0 ) |
|
CV_Error( CV_StsBadArg, "Invalid path" ); |
|
|
|
size += (n+1)*sizeof(char*); |
|
const char** input_cascade = (const char**)cvAlloc( size ); |
|
|
|
if( !input_cascade ) |
|
CV_Error( CV_StsNoMem, "Could not allocate memory for input_cascade" ); |
|
|
|
char* ptr = (char*)(input_cascade + n + 1); |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
sprintf( name, "%s/%d/AdaBoostCARTHaarClassifier.txt", directory, i ); |
|
FILE* f = fopen( name, "rb" ); |
|
if( !f ) |
|
CV_Error( CV_StsError, "" ); |
|
fseek( f, 0, SEEK_END ); |
|
size = (int)ftell( f ); |
|
fseek( f, 0, SEEK_SET ); |
|
size_t elements_read = fread( ptr, 1, size, f ); |
|
CV_Assert(elements_read == (size_t)(size)); |
|
fclose(f); |
|
input_cascade[i] = ptr; |
|
ptr += size; |
|
*ptr++ = '\0'; |
|
} |
|
|
|
input_cascade[n] = 0; |
|
|
|
CvHaarClassifierCascade* cascade = icvLoadCascadeCART( input_cascade, n, orig_window_size ); |
|
|
|
if( input_cascade ) |
|
cvFree( &input_cascade ); |
|
|
|
return cascade; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** _cascade ) |
|
{ |
|
if( _cascade && *_cascade ) |
|
{ |
|
int i, j; |
|
CvHaarClassifierCascade* cascade = *_cascade; |
|
|
|
for( i = 0; i < cascade->count; i++ ) |
|
{ |
|
for( j = 0; j < cascade->stage_classifier[i].count; j++ ) |
|
cvFree( &cascade->stage_classifier[i].classifier[j].haar_feature ); |
|
cvFree( &cascade->stage_classifier[i].classifier ); |
|
} |
|
icvReleaseHidHaarClassifierCascade( &cascade->hid_cascade ); |
|
cvFree( _cascade ); |
|
} |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Persistence functions * |
|
\****************************************************************************************/ |
|
|
|
/* field names */ |
|
|
|
#define ICV_HAAR_SIZE_NAME "size" |
|
#define ICV_HAAR_STAGES_NAME "stages" |
|
#define ICV_HAAR_TREES_NAME "trees" |
|
#define ICV_HAAR_FEATURE_NAME "feature" |
|
#define ICV_HAAR_RECTS_NAME "rects" |
|
#define ICV_HAAR_TILTED_NAME "tilted" |
|
#define ICV_HAAR_THRESHOLD_NAME "threshold" |
|
#define ICV_HAAR_LEFT_NODE_NAME "left_node" |
|
#define ICV_HAAR_LEFT_VAL_NAME "left_val" |
|
#define ICV_HAAR_RIGHT_NODE_NAME "right_node" |
|
#define ICV_HAAR_RIGHT_VAL_NAME "right_val" |
|
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold" |
|
#define ICV_HAAR_PARENT_NAME "parent" |
|
#define ICV_HAAR_NEXT_NAME "next" |
|
|
|
static int |
|
icvIsHaarClassifier( const void* struct_ptr ) |
|
{ |
|
return CV_IS_HAAR_CLASSIFIER( struct_ptr ); |
|
} |
|
|
|
static void* |
|
icvReadHaarClassifier( CvFileStorage* fs, CvFileNode* node ) |
|
{ |
|
CvHaarClassifierCascade* cascade = NULL; |
|
|
|
char buf[256]; |
|
CvFileNode* seq_fn = NULL; /* sequence */ |
|
CvFileNode* fn = NULL; |
|
CvFileNode* stages_fn = NULL; |
|
CvSeqReader stages_reader; |
|
int n; |
|
int i, j, k, l; |
|
int parent, next; |
|
|
|
stages_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_STAGES_NAME ); |
|
if( !stages_fn || !CV_NODE_IS_SEQ( stages_fn->tag) ) |
|
CV_Error( CV_StsError, "Invalid stages node" ); |
|
|
|
n = stages_fn->data.seq->total; |
|
cascade = icvCreateHaarClassifierCascade(n); |
|
|
|
/* read size */ |
|
seq_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_SIZE_NAME ); |
|
if( !seq_fn || !CV_NODE_IS_SEQ( seq_fn->tag ) || seq_fn->data.seq->total != 2 ) |
|
CV_Error( CV_StsError, "size node is not a valid sequence." ); |
|
fn = (CvFileNode*) cvGetSeqElem( seq_fn->data.seq, 0 ); |
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 ) |
|
CV_Error( CV_StsError, "Invalid size node: width must be positive integer" ); |
|
cascade->orig_window_size.width = fn->data.i; |
|
fn = (CvFileNode*) cvGetSeqElem( seq_fn->data.seq, 1 ); |
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 ) |
|
CV_Error( CV_StsError, "Invalid size node: height must be positive integer" ); |
|
cascade->orig_window_size.height = fn->data.i; |
|
|
|
cvStartReadSeq( stages_fn->data.seq, &stages_reader ); |
|
for( i = 0; i < n; ++i ) |
|
{ |
|
CvFileNode* stage_fn; |
|
CvFileNode* trees_fn; |
|
CvSeqReader trees_reader; |
|
|
|
stage_fn = (CvFileNode*) stages_reader.ptr; |
|
if( !CV_NODE_IS_MAP( stage_fn->tag ) ) |
|
{ |
|
sprintf( buf, "Invalid stage %d", i ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
|
|
trees_fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_TREES_NAME ); |
|
if( !trees_fn || !CV_NODE_IS_SEQ( trees_fn->tag ) |
|
|| trees_fn->data.seq->total <= 0 ) |
|
{ |
|
sprintf( buf, "Trees node is not a valid sequence. (stage %d)", i ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
|
|
cascade->stage_classifier[i].classifier = |
|
(CvHaarClassifier*) cvAlloc( trees_fn->data.seq->total |
|
* sizeof( cascade->stage_classifier[i].classifier[0] ) ); |
|
for( j = 0; j < trees_fn->data.seq->total; ++j ) |
|
{ |
|
cascade->stage_classifier[i].classifier[j].haar_feature = NULL; |
|
} |
|
cascade->stage_classifier[i].count = trees_fn->data.seq->total; |
|
|
|
cvStartReadSeq( trees_fn->data.seq, &trees_reader ); |
|
for( j = 0; j < trees_fn->data.seq->total; ++j ) |
|
{ |
|
CvFileNode* tree_fn; |
|
CvSeqReader tree_reader; |
|
CvHaarClassifier* classifier; |
|
int last_idx; |
|
|
|
classifier = &cascade->stage_classifier[i].classifier[j]; |
|
tree_fn = (CvFileNode*) trees_reader.ptr; |
|
if( !CV_NODE_IS_SEQ( tree_fn->tag ) || tree_fn->data.seq->total <= 0 ) |
|
{ |
|
sprintf( buf, "Tree node is not a valid sequence." |
|
" (stage %d, tree %d)", i, j ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
|
|
classifier->count = tree_fn->data.seq->total; |
|
classifier->haar_feature = (CvHaarFeature*) cvAlloc( |
|
classifier->count * ( sizeof( *classifier->haar_feature ) + |
|
sizeof( *classifier->threshold ) + |
|
sizeof( *classifier->left ) + |
|
sizeof( *classifier->right ) ) + |
|
(classifier->count + 1) * sizeof( *classifier->alpha ) ); |
|
classifier->threshold = (float*) (classifier->haar_feature+classifier->count); |
|
classifier->left = (int*) (classifier->threshold + classifier->count); |
|
classifier->right = (int*) (classifier->left + classifier->count); |
|
classifier->alpha = (float*) (classifier->right + classifier->count); |
|
|
|
cvStartReadSeq( tree_fn->data.seq, &tree_reader ); |
|
for( k = 0, last_idx = 0; k < tree_fn->data.seq->total; ++k ) |
|
{ |
|
CvFileNode* node_fn; |
|
CvFileNode* feature_fn; |
|
CvFileNode* rects_fn; |
|
CvSeqReader rects_reader; |
|
|
|
node_fn = (CvFileNode*) tree_reader.ptr; |
|
if( !CV_NODE_IS_MAP( node_fn->tag ) ) |
|
{ |
|
sprintf( buf, "Tree node %d is not a valid map. (stage %d, tree %d)", |
|
k, i, j ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
feature_fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_FEATURE_NAME ); |
|
if( !feature_fn || !CV_NODE_IS_MAP( feature_fn->tag ) ) |
|
{ |
|
sprintf( buf, "Feature node is not a valid map. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
rects_fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_RECTS_NAME ); |
|
if( !rects_fn || !CV_NODE_IS_SEQ( rects_fn->tag ) |
|
|| rects_fn->data.seq->total < 1 |
|
|| rects_fn->data.seq->total > CV_HAAR_FEATURE_MAX ) |
|
{ |
|
sprintf( buf, "Rects node is not a valid sequence. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
cvStartReadSeq( rects_fn->data.seq, &rects_reader ); |
|
for( l = 0; l < rects_fn->data.seq->total; ++l ) |
|
{ |
|
CvFileNode* rect_fn; |
|
CvRect r; |
|
|
|
rect_fn = (CvFileNode*) rects_reader.ptr; |
|
if( !CV_NODE_IS_SEQ( rect_fn->tag ) || rect_fn->data.seq->total != 5 ) |
|
{ |
|
sprintf( buf, "Rect %d is not a valid sequence. " |
|
"(stage %d, tree %d, node %d)", l, i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
|
|
fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 0 ); |
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 ) |
|
{ |
|
sprintf( buf, "x coordinate must be non-negative integer. " |
|
"(stage %d, tree %d, node %d, rect %d)", i, j, k, l ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
r.x = fn->data.i; |
|
fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 1 ); |
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 ) |
|
{ |
|
sprintf( buf, "y coordinate must be non-negative integer. " |
|
"(stage %d, tree %d, node %d, rect %d)", i, j, k, l ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
r.y = fn->data.i; |
|
fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 2 ); |
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 |
|
|| r.x + fn->data.i > cascade->orig_window_size.width ) |
|
{ |
|
sprintf( buf, "width must be positive integer and " |
|
"(x + width) must not exceed window width. " |
|
"(stage %d, tree %d, node %d, rect %d)", i, j, k, l ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
r.width = fn->data.i; |
|
fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 3 ); |
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 |
|
|| r.y + fn->data.i > cascade->orig_window_size.height ) |
|
{ |
|
sprintf( buf, "height must be positive integer and " |
|
"(y + height) must not exceed window height. " |
|
"(stage %d, tree %d, node %d, rect %d)", i, j, k, l ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
r.height = fn->data.i; |
|
fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 4 ); |
|
if( !CV_NODE_IS_REAL( fn->tag ) ) |
|
{ |
|
sprintf( buf, "weight must be real number. " |
|
"(stage %d, tree %d, node %d, rect %d)", i, j, k, l ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
|
|
classifier->haar_feature[k].rect[l].weight = (float) fn->data.f; |
|
classifier->haar_feature[k].rect[l].r = r; |
|
|
|
CV_NEXT_SEQ_ELEM( sizeof( *rect_fn ), rects_reader ); |
|
} /* for each rect */ |
|
for( l = rects_fn->data.seq->total; l < CV_HAAR_FEATURE_MAX; ++l ) |
|
{ |
|
classifier->haar_feature[k].rect[l].weight = 0; |
|
classifier->haar_feature[k].rect[l].r = cvRect( 0, 0, 0, 0 ); |
|
} |
|
|
|
fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_TILTED_NAME); |
|
if( !fn || !CV_NODE_IS_INT( fn->tag ) ) |
|
{ |
|
sprintf( buf, "tilted must be 0 or 1. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
classifier->haar_feature[k].tilted = ( fn->data.i != 0 ); |
|
fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_THRESHOLD_NAME); |
|
if( !fn || !CV_NODE_IS_REAL( fn->tag ) ) |
|
{ |
|
sprintf( buf, "threshold must be real number. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
classifier->threshold[k] = (float) fn->data.f; |
|
fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_NODE_NAME); |
|
if( fn ) |
|
{ |
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k |
|
|| fn->data.i >= tree_fn->data.seq->total ) |
|
{ |
|
sprintf( buf, "left node must be valid node number. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
/* left node */ |
|
classifier->left[k] = fn->data.i; |
|
} |
|
else |
|
{ |
|
fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_VAL_NAME ); |
|
if( !fn ) |
|
{ |
|
sprintf( buf, "left node or left value must be specified. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
if( !CV_NODE_IS_REAL( fn->tag ) ) |
|
{ |
|
sprintf( buf, "left value must be real number. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
/* left value */ |
|
if( last_idx >= classifier->count + 1 ) |
|
{ |
|
sprintf( buf, "Tree structure is broken: too many values. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
classifier->left[k] = -last_idx; |
|
classifier->alpha[last_idx++] = (float) fn->data.f; |
|
} |
|
fn = cvGetFileNodeByName( fs, node_fn,ICV_HAAR_RIGHT_NODE_NAME); |
|
if( fn ) |
|
{ |
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k |
|
|| fn->data.i >= tree_fn->data.seq->total ) |
|
{ |
|
sprintf( buf, "right node must be valid node number. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
/* right node */ |
|
classifier->right[k] = fn->data.i; |
|
} |
|
else |
|
{ |
|
fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_RIGHT_VAL_NAME ); |
|
if( !fn ) |
|
{ |
|
sprintf( buf, "right node or right value must be specified. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
if( !CV_NODE_IS_REAL( fn->tag ) ) |
|
{ |
|
sprintf( buf, "right value must be real number. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
/* right value */ |
|
if( last_idx >= classifier->count + 1 ) |
|
{ |
|
sprintf( buf, "Tree structure is broken: too many values. " |
|
"(stage %d, tree %d, node %d)", i, j, k ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
classifier->right[k] = -last_idx; |
|
classifier->alpha[last_idx++] = (float) fn->data.f; |
|
} |
|
|
|
CV_NEXT_SEQ_ELEM( sizeof( *node_fn ), tree_reader ); |
|
} /* for each node */ |
|
if( last_idx != classifier->count + 1 ) |
|
{ |
|
sprintf( buf, "Tree structure is broken: too few values. " |
|
"(stage %d, tree %d)", i, j ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
|
|
CV_NEXT_SEQ_ELEM( sizeof( *tree_fn ), trees_reader ); |
|
} /* for each tree */ |
|
|
|
fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_STAGE_THRESHOLD_NAME); |
|
if( !fn || !CV_NODE_IS_REAL( fn->tag ) ) |
|
{ |
|
sprintf( buf, "stage threshold must be real number. (stage %d)", i ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
cascade->stage_classifier[i].threshold = (float) fn->data.f; |
|
|
|
parent = i - 1; |
|
next = -1; |
|
|
|
fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_PARENT_NAME ); |
|
if( !fn || !CV_NODE_IS_INT( fn->tag ) |
|
|| fn->data.i < -1 || fn->data.i >= cascade->count ) |
|
{ |
|
sprintf( buf, "parent must be integer number. (stage %d)", i ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
parent = fn->data.i; |
|
fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_NEXT_NAME ); |
|
if( !fn || !CV_NODE_IS_INT( fn->tag ) |
|
|| fn->data.i < -1 || fn->data.i >= cascade->count ) |
|
{ |
|
sprintf( buf, "next must be integer number. (stage %d)", i ); |
|
CV_Error( CV_StsError, buf ); |
|
} |
|
next = fn->data.i; |
|
|
|
cascade->stage_classifier[i].parent = parent; |
|
cascade->stage_classifier[i].next = next; |
|
cascade->stage_classifier[i].child = -1; |
|
|
|
if( parent != -1 && cascade->stage_classifier[parent].child == -1 ) |
|
{ |
|
cascade->stage_classifier[parent].child = i; |
|
} |
|
|
|
CV_NEXT_SEQ_ELEM( sizeof( *stage_fn ), stages_reader ); |
|
} /* for each stage */ |
|
|
|
return cascade; |
|
} |
|
|
|
static void |
|
icvWriteHaarClassifier( CvFileStorage* fs, const char* name, const void* struct_ptr, |
|
CvAttrList attributes ) |
|
{ |
|
int i, j, k, l; |
|
char buf[256]; |
|
const CvHaarClassifierCascade* cascade = (const CvHaarClassifierCascade*) struct_ptr; |
|
|
|
/* TODO: parameters check */ |
|
|
|
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HAAR, attributes ); |
|
|
|
cvStartWriteStruct( fs, ICV_HAAR_SIZE_NAME, CV_NODE_SEQ | CV_NODE_FLOW ); |
|
cvWriteInt( fs, NULL, cascade->orig_window_size.width ); |
|
cvWriteInt( fs, NULL, cascade->orig_window_size.height ); |
|
cvEndWriteStruct( fs ); /* size */ |
|
|
|
cvStartWriteStruct( fs, ICV_HAAR_STAGES_NAME, CV_NODE_SEQ ); |
|
for( i = 0; i < cascade->count; ++i ) |
|
{ |
|
cvStartWriteStruct( fs, NULL, CV_NODE_MAP ); |
|
sprintf( buf, "stage %d", i ); |
|
cvWriteComment( fs, buf, 1 ); |
|
|
|
cvStartWriteStruct( fs, ICV_HAAR_TREES_NAME, CV_NODE_SEQ ); |
|
|
|
for( j = 0; j < cascade->stage_classifier[i].count; ++j ) |
|
{ |
|
CvHaarClassifier* tree = &cascade->stage_classifier[i].classifier[j]; |
|
|
|
cvStartWriteStruct( fs, NULL, CV_NODE_SEQ ); |
|
sprintf( buf, "tree %d", j ); |
|
cvWriteComment( fs, buf, 1 ); |
|
|
|
for( k = 0; k < tree->count; ++k ) |
|
{ |
|
CvHaarFeature* feature = &tree->haar_feature[k]; |
|
|
|
cvStartWriteStruct( fs, NULL, CV_NODE_MAP ); |
|
if( k ) |
|
{ |
|
sprintf( buf, "node %d", k ); |
|
} |
|
else |
|
{ |
|
sprintf( buf, "root node" ); |
|
} |
|
cvWriteComment( fs, buf, 1 ); |
|
|
|
cvStartWriteStruct( fs, ICV_HAAR_FEATURE_NAME, CV_NODE_MAP ); |
|
|
|
cvStartWriteStruct( fs, ICV_HAAR_RECTS_NAME, CV_NODE_SEQ ); |
|
for( l = 0; l < CV_HAAR_FEATURE_MAX && feature->rect[l].r.width != 0; ++l ) |
|
{ |
|
cvStartWriteStruct( fs, NULL, CV_NODE_SEQ | CV_NODE_FLOW ); |
|
cvWriteInt( fs, NULL, feature->rect[l].r.x ); |
|
cvWriteInt( fs, NULL, feature->rect[l].r.y ); |
|
cvWriteInt( fs, NULL, feature->rect[l].r.width ); |
|
cvWriteInt( fs, NULL, feature->rect[l].r.height ); |
|
cvWriteReal( fs, NULL, feature->rect[l].weight ); |
|
cvEndWriteStruct( fs ); /* rect */ |
|
} |
|
cvEndWriteStruct( fs ); /* rects */ |
|
cvWriteInt( fs, ICV_HAAR_TILTED_NAME, feature->tilted ); |
|
cvEndWriteStruct( fs ); /* feature */ |
|
|
|
cvWriteReal( fs, ICV_HAAR_THRESHOLD_NAME, tree->threshold[k]); |
|
|
|
if( tree->left[k] > 0 ) |
|
{ |
|
cvWriteInt( fs, ICV_HAAR_LEFT_NODE_NAME, tree->left[k] ); |
|
} |
|
else |
|
{ |
|
cvWriteReal( fs, ICV_HAAR_LEFT_VAL_NAME, |
|
tree->alpha[-tree->left[k]] ); |
|
} |
|
|
|
if( tree->right[k] > 0 ) |
|
{ |
|
cvWriteInt( fs, ICV_HAAR_RIGHT_NODE_NAME, tree->right[k] ); |
|
} |
|
else |
|
{ |
|
cvWriteReal( fs, ICV_HAAR_RIGHT_VAL_NAME, |
|
tree->alpha[-tree->right[k]] ); |
|
} |
|
|
|
cvEndWriteStruct( fs ); /* split */ |
|
} |
|
|
|
cvEndWriteStruct( fs ); /* tree */ |
|
} |
|
|
|
cvEndWriteStruct( fs ); /* trees */ |
|
|
|
cvWriteReal( fs, ICV_HAAR_STAGE_THRESHOLD_NAME, cascade->stage_classifier[i].threshold); |
|
cvWriteInt( fs, ICV_HAAR_PARENT_NAME, cascade->stage_classifier[i].parent ); |
|
cvWriteInt( fs, ICV_HAAR_NEXT_NAME, cascade->stage_classifier[i].next ); |
|
|
|
cvEndWriteStruct( fs ); /* stage */ |
|
} /* for each stage */ |
|
|
|
cvEndWriteStruct( fs ); /* stages */ |
|
cvEndWriteStruct( fs ); /* root */ |
|
} |
|
|
|
static void* |
|
icvCloneHaarClassifier( const void* struct_ptr ) |
|
{ |
|
CvHaarClassifierCascade* cascade = NULL; |
|
|
|
int i, j, k, n; |
|
const CvHaarClassifierCascade* cascade_src = |
|
(const CvHaarClassifierCascade*) struct_ptr; |
|
|
|
n = cascade_src->count; |
|
cascade = icvCreateHaarClassifierCascade(n); |
|
cascade->orig_window_size = cascade_src->orig_window_size; |
|
|
|
for( i = 0; i < n; ++i ) |
|
{ |
|
cascade->stage_classifier[i].parent = cascade_src->stage_classifier[i].parent; |
|
cascade->stage_classifier[i].next = cascade_src->stage_classifier[i].next; |
|
cascade->stage_classifier[i].child = cascade_src->stage_classifier[i].child; |
|
cascade->stage_classifier[i].threshold = cascade_src->stage_classifier[i].threshold; |
|
|
|
cascade->stage_classifier[i].count = 0; |
|
cascade->stage_classifier[i].classifier = |
|
(CvHaarClassifier*) cvAlloc( cascade_src->stage_classifier[i].count |
|
* sizeof( cascade->stage_classifier[i].classifier[0] ) ); |
|
|
|
cascade->stage_classifier[i].count = cascade_src->stage_classifier[i].count; |
|
|
|
for( j = 0; j < cascade->stage_classifier[i].count; ++j ) |
|
cascade->stage_classifier[i].classifier[j].haar_feature = NULL; |
|
|
|
for( j = 0; j < cascade->stage_classifier[i].count; ++j ) |
|
{ |
|
const CvHaarClassifier* classifier_src = |
|
&cascade_src->stage_classifier[i].classifier[j]; |
|
CvHaarClassifier* classifier = |
|
&cascade->stage_classifier[i].classifier[j]; |
|
|
|
classifier->count = classifier_src->count; |
|
classifier->haar_feature = (CvHaarFeature*) cvAlloc( |
|
classifier->count * ( sizeof( *classifier->haar_feature ) + |
|
sizeof( *classifier->threshold ) + |
|
sizeof( *classifier->left ) + |
|
sizeof( *classifier->right ) ) + |
|
(classifier->count + 1) * sizeof( *classifier->alpha ) ); |
|
classifier->threshold = (float*) (classifier->haar_feature+classifier->count); |
|
classifier->left = (int*) (classifier->threshold + classifier->count); |
|
classifier->right = (int*) (classifier->left + classifier->count); |
|
classifier->alpha = (float*) (classifier->right + classifier->count); |
|
for( k = 0; k < classifier->count; ++k ) |
|
{ |
|
classifier->haar_feature[k] = classifier_src->haar_feature[k]; |
|
classifier->threshold[k] = classifier_src->threshold[k]; |
|
classifier->left[k] = classifier_src->left[k]; |
|
classifier->right[k] = classifier_src->right[k]; |
|
classifier->alpha[k] = classifier_src->alpha[k]; |
|
} |
|
classifier->alpha[classifier->count] = |
|
classifier_src->alpha[classifier->count]; |
|
} |
|
} |
|
|
|
return cascade; |
|
} |
|
|
|
|
|
CvType haar_type( CV_TYPE_NAME_HAAR, icvIsHaarClassifier, |
|
(CvReleaseFunc)cvReleaseHaarClassifierCascade, |
|
icvReadHaarClassifier, icvWriteHaarClassifier, |
|
icvCloneHaarClassifier ); |
|
|
|
/* End of file. */
|
|
|