Alexander Alekhin
830bff1241
|
8 years ago | |
---|---|---|
.. | ||
opencv | 8 years ago | |
opencv-it | 8 years ago | |
README.md | 8 years ago | |
pom.xml | 8 years ago |
README.md
Using Maven to build OpenCV
This page describes the how to build OpenCV using Apache Maven. The Maven build is simply a wrapper around the existing CMake process but has the additional aims of creating Java OSGi-compatible bundles with included native support and also allow the build to be carried out on RaspberryPi (ARM) architecture. There is nothing preventing using the POM on x86 Linux however.
The following assumes building on Debian-based Linux platform.
1 - Overview
The Maven build process aims to:
- Provide a simpler route to build OpenCV and Java bundles.
- Automatically check the required native dependencies.
- Make the Java libraries OSGi compatible.
- Include the native OpenCV native library inside the Java bundle.
- Integration testing of the bundle within an OSGi environment.
- Allow the build to function on x86, x86_64 or amd architectures, Debian-based Linux platform.
2 - Preparing The Build environment
To build using the Maven build process both Maven
and and up-to-date JDK
(Java Development Kit) need to be installed. If you know you already have these installed then continue to Environment Variable
otherwise the easiest solution is to install them using the aptitude package manager:
sudo aptitude install maven default-jdk
Note that installing via aptitude
you are unlikely to get the latest version of Maven or JDK although if you are not developing Java code this shouldn't matter for this build process.
3 - Starting the build
3.1 - Environment variables
Applicability: All processors.
The following environment variables must be set otherwise the build will fail and halt:
$JAVA_HOME
(the absolute path to the JDK root directory)$ANT_HOME
(the absolute path to the Ant root directory)
It is recommended that advantage is taken of multiple processor cores to reduce build time. This can be done by setting a MAKEFLAGS environment variable specifying the number of parallel builds e.g.:
$MAKEFLAGS="-j8"
However if this flag is not set the build will NOT fail. On a RaspberryPi 2 typical build times are 5 hours with -j1
(which is the default if $MAKEFLAGS
is not specified) and a little over 2 hours with -j4
.
All of the above environment variables can be set on an ad-hoc basis using 'export'.
3.2 - Build Directory
Applicability: All processors
By default the following build directories are created.
<OpenCV_root_dir>/build
<OpenCV_root_dir>/build/maven/opencv/target
<OpenCV_root_dir>/build/maven/opencv-it/target
Under build
are the standard OpenCV artifacts. Under build/maven/opencv/target
can be found the OSGi compatible Java bundle. When deploying the bundle into an OSGi framework e.g. Apache Karaf, loading of the native library is automatically taken care of. An integration testing module is created under the open-cv
directory and is only of use during the build. The standard Java library as created by the CMake process is also available as specified in the existing OpenCV documentation.
The Maven build is initiated from the directory contain the pom.xml
file.
3.3 - x86 or x86_64 Architecture:
Generally all that is required is the standard Maven command:
mvn clean install -Ddownload.cmake=false
One of the first things the build will do is check the required native dependencies. The Maven build indicates the status of the required dependencies and will fail at this point if any are missing. Install using the package manager e.g. aptitude or apt-get, and restart the build with the above command.
Once the build succesfully completes the OSGi compatible artifacts are available as described above in 'Build Directory'.
3.4 - ARM 32-bit Architecture - Raspbian Distribution
Similar to the x86 architecture the native dependencies are first checked so install any that are missing, however at the time of writing there are no official libtbb2
and libtbb-dev
packages in Raspbian. Version 4.4.3 of Intel's Thread Building Blocks library are available here as a Raspbian-compatible Debian packages.
PLEASE NOTE THESE ARE NOT OFFICIAL RASPBIAN PACKAGES. INSTALL AT YOUR OWN RISK.
OpenCV is built using CMake and the Maven build process uses the the cmake-maven plugin. The cmake-maven plugin by default downloads CMake at build time but unfortunately there is no binary for ARM architecture currently available. As a work around it is possible to use the native CMake (which is checked for availability in the above dependency checks). Assuming all native dependencies are available the build can be started with the following command:
mvn clean install -Ddownload.cmake=false
Upon a successful build the libraries will be available as described above in 'Build Directory'.