mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
547 lines
20 KiB
547 lines
20 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
void cv::cuda::gemm(InputArray, InputArray, double, InputArray, double, OutputArray, int, Stream&) { throw_no_cuda(); } |
|
|
|
void cv::cuda::mulSpectrums(InputArray, InputArray, OutputArray, int, bool, Stream&) { throw_no_cuda(); } |
|
void cv::cuda::mulAndScaleSpectrums(InputArray, InputArray, OutputArray, int, float, bool, Stream&) { throw_no_cuda(); } |
|
|
|
void cv::cuda::dft(InputArray, OutputArray, Size, int, Stream&) { throw_no_cuda(); } |
|
|
|
Ptr<Convolution> cv::cuda::createConvolution(Size) { throw_no_cuda(); return Ptr<Convolution>(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
namespace |
|
{ |
|
#define error_entry(entry) { entry, #entry } |
|
|
|
struct ErrorEntry |
|
{ |
|
int code; |
|
const char* str; |
|
}; |
|
|
|
struct ErrorEntryComparer |
|
{ |
|
int code; |
|
ErrorEntryComparer(int code_) : code(code_) {} |
|
bool operator()(const ErrorEntry& e) const { return e.code == code; } |
|
}; |
|
|
|
String getErrorString(int code, const ErrorEntry* errors, size_t n) |
|
{ |
|
size_t idx = std::find_if(errors, errors + n, ErrorEntryComparer(code)) - errors; |
|
|
|
const char* msg = (idx != n) ? errors[idx].str : "Unknown error code"; |
|
String str = cv::format("%s [Code = %d]", msg, code); |
|
|
|
return str; |
|
} |
|
} |
|
|
|
#ifdef HAVE_CUBLAS |
|
namespace |
|
{ |
|
const ErrorEntry cublas_errors[] = |
|
{ |
|
error_entry( CUBLAS_STATUS_SUCCESS ), |
|
error_entry( CUBLAS_STATUS_NOT_INITIALIZED ), |
|
error_entry( CUBLAS_STATUS_ALLOC_FAILED ), |
|
error_entry( CUBLAS_STATUS_INVALID_VALUE ), |
|
error_entry( CUBLAS_STATUS_ARCH_MISMATCH ), |
|
error_entry( CUBLAS_STATUS_MAPPING_ERROR ), |
|
error_entry( CUBLAS_STATUS_EXECUTION_FAILED ), |
|
error_entry( CUBLAS_STATUS_INTERNAL_ERROR ) |
|
}; |
|
|
|
const size_t cublas_error_num = sizeof(cublas_errors) / sizeof(cublas_errors[0]); |
|
|
|
static inline void ___cublasSafeCall(cublasStatus_t err, const char* file, const int line, const char* func) |
|
{ |
|
if (CUBLAS_STATUS_SUCCESS != err) |
|
{ |
|
String msg = getErrorString(err, cublas_errors, cublas_error_num); |
|
cv::error(cv::Error::GpuApiCallError, msg, func, file, line); |
|
} |
|
} |
|
} |
|
|
|
#if defined(__GNUC__) |
|
#define cublasSafeCall(expr) ___cublasSafeCall(expr, __FILE__, __LINE__, __func__) |
|
#else /* defined(__CUDACC__) || defined(__MSVC__) */ |
|
#define cublasSafeCall(expr) ___cublasSafeCall(expr, __FILE__, __LINE__, "") |
|
#endif |
|
#endif // HAVE_CUBLAS |
|
|
|
#ifdef HAVE_CUFFT |
|
namespace |
|
{ |
|
////////////////////////////////////////////////////////////////////////// |
|
// CUFFT errors |
|
|
|
const ErrorEntry cufft_errors[] = |
|
{ |
|
error_entry( CUFFT_INVALID_PLAN ), |
|
error_entry( CUFFT_ALLOC_FAILED ), |
|
error_entry( CUFFT_INVALID_TYPE ), |
|
error_entry( CUFFT_INVALID_VALUE ), |
|
error_entry( CUFFT_INTERNAL_ERROR ), |
|
error_entry( CUFFT_EXEC_FAILED ), |
|
error_entry( CUFFT_SETUP_FAILED ), |
|
error_entry( CUFFT_INVALID_SIZE ), |
|
error_entry( CUFFT_UNALIGNED_DATA ) |
|
}; |
|
|
|
const int cufft_error_num = sizeof(cufft_errors) / sizeof(cufft_errors[0]); |
|
|
|
void ___cufftSafeCall(int err, const char* file, const int line, const char* func) |
|
{ |
|
if (CUFFT_SUCCESS != err) |
|
{ |
|
String msg = getErrorString(err, cufft_errors, cufft_error_num); |
|
cv::error(cv::Error::GpuApiCallError, msg, func, file, line); |
|
} |
|
} |
|
} |
|
|
|
#if defined(__GNUC__) |
|
#define cufftSafeCall(expr) ___cufftSafeCall(expr, __FILE__, __LINE__, __func__) |
|
#else /* defined(__CUDACC__) || defined(__MSVC__) */ |
|
#define cufftSafeCall(expr) ___cufftSafeCall(expr, __FILE__, __LINE__, "") |
|
#endif |
|
|
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// gemm |
|
|
|
void cv::cuda::gemm(InputArray _src1, InputArray _src2, double alpha, InputArray _src3, double beta, OutputArray _dst, int flags, Stream& stream) |
|
{ |
|
#ifndef HAVE_CUBLAS |
|
(void) _src1; |
|
(void) _src2; |
|
(void) alpha; |
|
(void) _src3; |
|
(void) beta; |
|
(void) _dst; |
|
(void) flags; |
|
(void) stream; |
|
CV_Error(Error::StsNotImplemented, "The library was build without CUBLAS"); |
|
#else |
|
// CUBLAS works with column-major matrices |
|
|
|
GpuMat src1 = _src1.getGpuMat(); |
|
GpuMat src2 = _src2.getGpuMat(); |
|
GpuMat src3 = _src3.getGpuMat(); |
|
|
|
CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2 ); |
|
CV_Assert( src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type()) ); |
|
|
|
if (src1.depth() == CV_64F) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
bool tr1 = (flags & GEMM_1_T) != 0; |
|
bool tr2 = (flags & GEMM_2_T) != 0; |
|
bool tr3 = (flags & GEMM_3_T) != 0; |
|
|
|
if (src1.type() == CV_64FC2) |
|
{ |
|
if (tr1 || tr2 || tr3) |
|
CV_Error(cv::Error::StsNotImplemented, "transpose operation doesn't implemented for CV_64FC2 type"); |
|
} |
|
|
|
Size src1Size = tr1 ? Size(src1.rows, src1.cols) : src1.size(); |
|
Size src2Size = tr2 ? Size(src2.rows, src2.cols) : src2.size(); |
|
Size src3Size = tr3 ? Size(src3.rows, src3.cols) : src3.size(); |
|
Size dstSize(src2Size.width, src1Size.height); |
|
|
|
CV_Assert( src1Size.width == src2Size.height ); |
|
CV_Assert( src3.empty() || src3Size == dstSize ); |
|
|
|
_dst.create(dstSize, src1.type()); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
if (beta != 0) |
|
{ |
|
if (src3.empty()) |
|
{ |
|
dst.setTo(Scalar::all(0), stream); |
|
} |
|
else |
|
{ |
|
if (tr3) |
|
{ |
|
cuda::transpose(src3, dst, stream); |
|
} |
|
else |
|
{ |
|
src3.copyTo(dst, stream); |
|
} |
|
} |
|
} |
|
|
|
cublasHandle_t handle; |
|
cublasSafeCall( cublasCreate_v2(&handle) ); |
|
|
|
cublasSafeCall( cublasSetStream_v2(handle, StreamAccessor::getStream(stream)) ); |
|
|
|
cublasSafeCall( cublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_HOST) ); |
|
|
|
const float alphaf = static_cast<float>(alpha); |
|
const float betaf = static_cast<float>(beta); |
|
|
|
const cuComplex alphacf = make_cuComplex(alphaf, 0); |
|
const cuComplex betacf = make_cuComplex(betaf, 0); |
|
|
|
const cuDoubleComplex alphac = make_cuDoubleComplex(alpha, 0); |
|
const cuDoubleComplex betac = make_cuDoubleComplex(beta, 0); |
|
|
|
cublasOperation_t transa = tr2 ? CUBLAS_OP_T : CUBLAS_OP_N; |
|
cublasOperation_t transb = tr1 ? CUBLAS_OP_T : CUBLAS_OP_N; |
|
|
|
switch (src1.type()) |
|
{ |
|
case CV_32FC1: |
|
cublasSafeCall( cublasSgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, |
|
&alphaf, |
|
src2.ptr<float>(), static_cast<int>(src2.step / sizeof(float)), |
|
src1.ptr<float>(), static_cast<int>(src1.step / sizeof(float)), |
|
&betaf, |
|
dst.ptr<float>(), static_cast<int>(dst.step / sizeof(float))) ); |
|
break; |
|
|
|
case CV_64FC1: |
|
cublasSafeCall( cublasDgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, |
|
&alpha, |
|
src2.ptr<double>(), static_cast<int>(src2.step / sizeof(double)), |
|
src1.ptr<double>(), static_cast<int>(src1.step / sizeof(double)), |
|
&beta, |
|
dst.ptr<double>(), static_cast<int>(dst.step / sizeof(double))) ); |
|
break; |
|
|
|
case CV_32FC2: |
|
cublasSafeCall( cublasCgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, |
|
&alphacf, |
|
src2.ptr<cuComplex>(), static_cast<int>(src2.step / sizeof(cuComplex)), |
|
src1.ptr<cuComplex>(), static_cast<int>(src1.step / sizeof(cuComplex)), |
|
&betacf, |
|
dst.ptr<cuComplex>(), static_cast<int>(dst.step / sizeof(cuComplex))) ); |
|
break; |
|
|
|
case CV_64FC2: |
|
cublasSafeCall( cublasZgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, |
|
&alphac, |
|
src2.ptr<cuDoubleComplex>(), static_cast<int>(src2.step / sizeof(cuDoubleComplex)), |
|
src1.ptr<cuDoubleComplex>(), static_cast<int>(src1.step / sizeof(cuDoubleComplex)), |
|
&betac, |
|
dst.ptr<cuDoubleComplex>(), static_cast<int>(dst.step / sizeof(cuDoubleComplex))) ); |
|
break; |
|
} |
|
|
|
cublasSafeCall( cublasDestroy_v2(handle) ); |
|
#endif |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// dft |
|
|
|
void cv::cuda::dft(InputArray _src, OutputArray _dst, Size dft_size, int flags, Stream& stream) |
|
{ |
|
#ifndef HAVE_CUFFT |
|
(void) _src; |
|
(void) _dst; |
|
(void) dft_size; |
|
(void) flags; |
|
(void) stream; |
|
throw_no_cuda(); |
|
#else |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert( src.type() == CV_32FC1 || src.type() == CV_32FC2 ); |
|
|
|
// We don't support unpacked output (in the case of real input) |
|
CV_Assert( !(flags & DFT_COMPLEX_OUTPUT) ); |
|
|
|
const bool is_1d_input = (dft_size.height == 1) || (dft_size.width == 1); |
|
const bool is_row_dft = (flags & DFT_ROWS) != 0; |
|
const bool is_scaled_dft = (flags & DFT_SCALE) != 0; |
|
const bool is_inverse = (flags & DFT_INVERSE) != 0; |
|
const bool is_complex_input = src.channels() == 2; |
|
const bool is_complex_output = !(flags & DFT_REAL_OUTPUT); |
|
|
|
// We don't support real-to-real transform |
|
CV_Assert( is_complex_input || is_complex_output ); |
|
|
|
GpuMat src_cont = src; |
|
|
|
// Make sure here we work with the continuous input, |
|
// as CUFFT can't handle gaps |
|
createContinuous(src.rows, src.cols, src.type(), src_cont); |
|
if (src_cont.data != src.data) |
|
src.copyTo(src_cont, stream); |
|
|
|
Size dft_size_opt = dft_size; |
|
if (is_1d_input && !is_row_dft) |
|
{ |
|
// If the source matrix is single column handle it as single row |
|
dft_size_opt.width = std::max(dft_size.width, dft_size.height); |
|
dft_size_opt.height = std::min(dft_size.width, dft_size.height); |
|
} |
|
|
|
CV_Assert( dft_size_opt.width > 1 ); |
|
|
|
cufftType dft_type = CUFFT_R2C; |
|
if (is_complex_input) |
|
dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R; |
|
|
|
cufftHandle plan; |
|
if (is_1d_input || is_row_dft) |
|
cufftSafeCall( cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height) ); |
|
else |
|
cufftSafeCall( cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type) ); |
|
|
|
cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) ); |
|
|
|
if (is_complex_input) |
|
{ |
|
if (is_complex_output) |
|
{ |
|
createContinuous(dft_size, CV_32FC2, _dst); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
cufftSafeCall(cufftExecC2C( |
|
plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftComplex>(), |
|
is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD)); |
|
} |
|
else |
|
{ |
|
createContinuous(dft_size, CV_32F, _dst); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
cufftSafeCall(cufftExecC2R( |
|
plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftReal>())); |
|
} |
|
} |
|
else |
|
{ |
|
// We could swap dft_size for efficiency. Here we must reflect it |
|
if (dft_size == dft_size_opt) |
|
createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, _dst); |
|
else |
|
createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, _dst); |
|
|
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
cufftSafeCall(cufftExecR2C( |
|
plan, src_cont.ptr<cufftReal>(), dst.ptr<cufftComplex>())); |
|
} |
|
|
|
cufftSafeCall( cufftDestroy(plan) ); |
|
|
|
if (is_scaled_dft) |
|
cuda::multiply(_dst, Scalar::all(1. / dft_size.area()), _dst, 1, -1, stream); |
|
|
|
#endif |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Convolution |
|
|
|
#ifdef HAVE_CUFFT |
|
|
|
namespace |
|
{ |
|
class ConvolutionImpl : public Convolution |
|
{ |
|
public: |
|
explicit ConvolutionImpl(Size user_block_size_) : user_block_size(user_block_size_) {} |
|
|
|
void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null()); |
|
|
|
private: |
|
void create(Size image_size, Size templ_size); |
|
static Size estimateBlockSize(Size result_size); |
|
|
|
Size result_size; |
|
Size block_size; |
|
Size user_block_size; |
|
Size dft_size; |
|
int spect_len; |
|
|
|
GpuMat image_spect, templ_spect, result_spect; |
|
GpuMat image_block, templ_block, result_data; |
|
}; |
|
|
|
void ConvolutionImpl::create(Size image_size, Size templ_size) |
|
{ |
|
result_size = Size(image_size.width - templ_size.width + 1, |
|
image_size.height - templ_size.height + 1); |
|
|
|
block_size = user_block_size; |
|
if (user_block_size.width == 0 || user_block_size.height == 0) |
|
block_size = estimateBlockSize(result_size); |
|
|
|
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.))); |
|
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.))); |
|
|
|
// CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192), |
|
// see CUDA Toolkit 4.1 CUFFT Library Programming Guide |
|
if (dft_size.width > 8192) |
|
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1); |
|
if (dft_size.height > 8192) |
|
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1); |
|
|
|
// To avoid wasting time doing small DFTs |
|
dft_size.width = std::max(dft_size.width, 512); |
|
dft_size.height = std::max(dft_size.height, 512); |
|
|
|
createContinuous(dft_size, CV_32F, image_block); |
|
createContinuous(dft_size, CV_32F, templ_block); |
|
createContinuous(dft_size, CV_32F, result_data); |
|
|
|
spect_len = dft_size.height * (dft_size.width / 2 + 1); |
|
createContinuous(1, spect_len, CV_32FC2, image_spect); |
|
createContinuous(1, spect_len, CV_32FC2, templ_spect); |
|
createContinuous(1, spect_len, CV_32FC2, result_spect); |
|
|
|
// Use maximum result matrix block size for the estimated DFT block size |
|
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width); |
|
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height); |
|
} |
|
|
|
Size ConvolutionImpl::estimateBlockSize(Size result_size) |
|
{ |
|
int width = (result_size.width + 2) / 3; |
|
int height = (result_size.height + 2) / 3; |
|
width = std::min(width, result_size.width); |
|
height = std::min(height, result_size.height); |
|
return Size(width, height); |
|
} |
|
|
|
void ConvolutionImpl::convolve(InputArray _image, InputArray _templ, OutputArray _result, bool ccorr, Stream& _stream) |
|
{ |
|
GpuMat image = _image.getGpuMat(); |
|
GpuMat templ = _templ.getGpuMat(); |
|
|
|
CV_Assert( image.type() == CV_32FC1 ); |
|
CV_Assert( templ.type() == CV_32FC1 ); |
|
|
|
create(image.size(), templ.size()); |
|
|
|
_result.create(result_size, CV_32FC1); |
|
GpuMat result = _result.getGpuMat(); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream); |
|
|
|
cufftHandle planR2C, planC2R; |
|
cufftSafeCall( cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R) ); |
|
cufftSafeCall( cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C) ); |
|
|
|
cufftSafeCall( cufftSetStream(planR2C, stream) ); |
|
cufftSafeCall( cufftSetStream(planC2R, stream) ); |
|
|
|
GpuMat templ_roi(templ.size(), CV_32FC1, templ.data, templ.step); |
|
cuda::copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0, |
|
templ_block.cols - templ_roi.cols, 0, Scalar(), _stream); |
|
|
|
cufftSafeCall( cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(), templ_spect.ptr<cufftComplex>()) ); |
|
|
|
// Process all blocks of the result matrix |
|
for (int y = 0; y < result.rows; y += block_size.height) |
|
{ |
|
for (int x = 0; x < result.cols; x += block_size.width) |
|
{ |
|
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x, |
|
std::min(y + dft_size.height, image.rows) - y); |
|
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x), |
|
image.step); |
|
cuda::copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, |
|
0, image_block.cols - image_roi.cols, 0, Scalar(), _stream); |
|
|
|
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(), |
|
image_spect.ptr<cufftComplex>())); |
|
cuda::mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0, |
|
1.f / dft_size.area(), ccorr, _stream); |
|
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(), |
|
result_data.ptr<cufftReal>())); |
|
|
|
Size result_roi_size(std::min(x + block_size.width, result.cols) - x, |
|
std::min(y + block_size.height, result.rows) - y); |
|
GpuMat result_roi(result_roi_size, result.type(), |
|
(void*)(result.ptr<float>(y) + x), result.step); |
|
GpuMat result_block(result_roi_size, result_data.type(), |
|
result_data.ptr(), result_data.step); |
|
|
|
result_block.copyTo(result_roi, _stream); |
|
} |
|
} |
|
|
|
cufftSafeCall( cufftDestroy(planR2C) ); |
|
cufftSafeCall( cufftDestroy(planC2R) ); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
Ptr<Convolution> cv::cuda::createConvolution(Size user_block_size) |
|
{ |
|
#ifndef HAVE_CUFFT |
|
(void) user_block_size; |
|
CV_Error(Error::StsNotImplemented, "The library was build without CUFFT"); |
|
return Ptr<Convolution>(); |
|
#else |
|
return makePtr<ConvolutionImpl>(user_block_size); |
|
#endif |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|